
GIT TUTORIAL FOR IAG0582
Updated: 09.2017

Disclaimer

Installing git
Windows
Other platforms

Gitlab login

Create project

Configure git

Create SSH key (optional)

Cloning project
Cloning using SSH (preferred)
Cloning using HTTP

Working process with git
View new / modified / deleted files
Adding files to staging area
Commiting staged files
Pushing commits to gitlab server
View commit history
Getting latest version from server

Special files
README.md
.gitignore

Working process with Web interface
Adding new files / directories
Modifying files

Correcting issues
Enable issue notifications

Errors
Server certificate verification failed

RULES
Project structure
Grading / points
Appealing / Correcting

Disclaimer
This chapter will point out the parts which may change in time and are essentially variables
whenever they occur in text / images. These variables will be surrounded by brackets [and].
Gitlab version is 9.4.5 at the last edit of this document.
NB! The sample values used in this document should be replaced in your case.

Variable Description

Uni-ID This is username which is used by multiple services in TTU e.g.
gitlab. Earlier versions of this were in the following format:
firstname.surname. Newer version of Uni-ID has fixed length of 6
e.g. xxyyyy where xx is 2 first characters from first name and
yyyy first 4 characters from surname. Some characters may be
replaced e.g. Estonian ‘ü’ -> ‘u’. In this document Uni-ID will have
a value of josmit (Derived from John Smith).

repository Repository in gitlab is ‘Project’ name. This may vary from course
to course meaning that it will be specified by the lecturers. For
example in the Programming I course the name should be course
code all in lowercase letters e.g. iag0581 (for the older courses -
2016 and older) or iax0583 (for 2017 and newer). In this
document project name test is used.

Installing git
This chapter will describe how to set up your system for git usage.

Windows
Windows installation will ask you multiple things, just leave the default settings as is and click
“next” until you can click “finish”. Then click finish and you’re done.
For a video tutorial one can follow this : https://www.youtube.com/watch?v=albr1o7Z1nw
Aforementioned tutorial also shows how to do basic git configuration (this will be covered in next
chapters).

https://www.youtube.com/watch?v=albr1o7Z1nw

Other platforms
In linux and mac you can verify if you have git by typing “git --version” into terminal.

If you don’t have git then follow the tutorials given here:
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Gitlab login
For you to create git project you need to log into gitlab (http://gitlab.ati.ttu.ee/). To log in with
your Uni-ID make sure you have LDAP selected.

If you don’t have Uni-ID log into https://pass.ttu.ee/ with your ID card and set up your Uni-ID.

Create project
To create a new project one should navigate to http://gitlab.ati.ttu.ee/dashboard/projects and
click green “New project” button. If you don’t have any previous projects you should see this
selection in the center of the page as shown on the figure.

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://gitlab.pld.ttu.ee/
https://pass.ttu.ee/
http://gitlab.pld.ttu.ee/dashboard/projects

If you already have created a project you find the button on the right side of the page as seen on
the figure.

When creating new project make sure you :
● Name it as [repository].
● Set visibility as Internal

Next you shall be forwarded to the front page of your project. This is the url you should give us
(Your project URL), in this example it is http://gitlab.ati.ttu.ee/josmit/test . In your project page
under the “Git global setup” section you find the necessary commands for git configuration.
These are the commands you should enter in the next chapter.

Configure git
To configure git open terminal window in the directory you wish to put your project in. In
computer class this should be on your P drive!
Windows users should go to directory you wish to save your project in and right click in the
folder and click “Git Bash Here”

http://gitlab.pld.ttu.ee/User/iag0581

For basic configuration type in the commands shown in your Git global setup. For user.name
you should enter your full name and for user.email the email you used to create an account. If
you used LDAP for login, your @ttu.ee email is used. It is very important that this info
matches. To verify your data go to your profile settings http://gitlab.ati.ttu.ee/profile .

Create SSH key (optional)
Using SSH key is recommended because it offers you a way to push / pull code without entering
your credentials every time. One can think of it as a fingerprint.
To create an ssh key you must type the following (NB! Check that your spaces are correct!):

● ssh-keygen -t rsa -C “josmit@ttu.ee”
○ Email should be the same as on the user.email setting!

http://gitlab.pld.ttu.ee/profile
mailto:josmit@ttu.ee

● * press enter *
○ Then the key will be saved in your home directory (~/.ssh/id_rsa.pub)

● * press enter *
○ If you type password here, you will always be prompted for password.

● * press enter *
● cat ~/.ssh/id_rsa.pub

○ This command will print the ssh public key on terminal.

Now you should add this key to your SSH keys in gitlab (http://gitlab.ati.ttu.ee/profile/keys).

http://gitlab.pld.ttu.ee/profile/keys

Make sure that there is no newline after the email address! Then press “Add key”
You have now successfully added SSH key!

Cloning project
This chapter will describe how to clone using different methods. Using SSH you need to do the
SSH key setup in previous chapter.

Cloning using SSH (preferred)
The first 2 commands used for this step are shown on the Create a new repository section in
your project directory.

Then you should use the git clone command, in our example it would be “git clone
git@gitlab.ati.ttu.ee:[Uni-ID]/[repository].git”. You can get this URL in your project directory:

You shall be prompted with a question whether you wish to continue connecting to the server,
you should type “yes” and then press enter.

After successfully cloning the repository you must go to that directory by typing “cd iag0581”

Cloning using HTTP
The first 2 commands used for this step are shown on the Create a new repository section in
your project directory.

Then you should use the git clone command, in our example it would be “git clone
http://gitlab.ati.ttu.ee/User/iag0581.git”. You can get this URL in your project directory:

mailto:git@gitlab.pld.ttu.ee
http://gitlab.pld.ttu.ee/User/iag0581.git

You shall be prompted with Username and password. Your username could be found in the
URL, in our example it is “User”. When you type your password in linux password fields will
not be filled with asterisks (*)!

After successfully cloning the repository you must go to that directory by typing “cd iag0581”

Working process with git
This chapter will describe the workflow with git. To use git in windows you must open the
directory where your project is and right click in there and then press “Git Bash Here”.
To use these commands your working directory must be the project directory.

View new / modified / deleted files
To view changed files (modified / new / deleted) type “git status”.
New / untracked / modified files will be shown with red font.

Staged files will be shown with green font.

Adding files to staging area
To add all new / modified / deleted files into staging area type “git add --all”. To add files to
staging area means to save these files at current state. This enables users to view these files as
they were in future.

Commiting staged files

To confirm the saving user must commit these changes by typing “git commit -m “message””,
where -m will indicate that message parameter will be added with this commit. By executing this
command user will commit all staged files with the same message. User can also commit files
seperately with different messages by specifying file: “git commit README.md -m “Add
README””
After typing the command the output should be something similar:

Pushing commits to gitlab server
This action is required to have the latest version of your files accessible in server. It is not
necessary to do this after every commit however it is recommended to do after finishing your
programming session.
To push changes into gitlab server type “git push”

Now your files are pushed into server and the lecturers can access them and grade your
homework / lab work.
All of the commits can be seen in your commits url at gitlab.ati.ttu.ee in our example the url is (
http://gitlab.ati.ttu.ee/josmit/test/commits/master)

View commit history
To see the commits made in this project one can type: “git log” or “git log --pretty=oneline”

http://gitlab.pld.ttu.ee/User/iag0581/commits/master

Getting latest version from server
To get the latest version of files from server type “git pull”.

Note that ls shows the contents of current folder.

Special files

README.md
This file is usually added to the root directory of the repository. This file is a markdown file which
is essentially a text file that supports styling. Project page will display the README.md file
contents. See markdown cheatsheet and online markdown editor .

.gitignore
This file is added to the root directory of the repository. The contents of this file will dictate which
files won’t be tracked. It is a desired usage for binary files such as .exe etc.

Working process with Web interface
To operate with web interface one must first log in at http://gitlab.ati.ttu.ee/ .

https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
http://dillinger.io/
http://gitlab.pld.ttu.ee/

Adding new files / directories
To add new files first navigate to your project and then press “Files”.

Then we can add files by pressing “+” button

In this example we are adding a new directory “Lab3”

After pressing “Create directory” you will have added new directory with a commit message
“Add Lab3”.

Modifying files
To modify file, from “Files” menu navigate to the file that needs modifications, then press “Edit”
button.

After making your modifications press “Commit Changes”.

Now you have successfully changed your file and there is a history of it.

Correcting issues
We shall be giving feedback by creating issues, your task is to fix these issues in order to get
points.
You can find issues in your project directory:

To view issues click on “Issues” and you should see something like this:

After clicking on the title (bold text) of the issue you should see more details.

Once you have corrected the mistakes pointed out in this issue return to this page, write what
you’ve done and mark this issue as complete by clicking on “Close issue” In your commits it
would be wise to use format “Fix issue [issue number]” e.g. “Fix issue #1”
After closing the issue you can see these issues under “All” tab or “Closed” tab.

Now you should let us know that you have fixed issue and we will recheck your work.

Enable issue notifications
To receive email notifications about opened issues you must first enable them. Navigate to your
notification settings page http://gitlab.ati.ttu.ee/profile/notifications .
Click on the arrow button and then on “Custom”

http://gitlab.pld.ttu.ee/profile/notifications

In custom issue menu you should enable the following notifications:

Email notifications will be sent on your email specified in Notification email tab.

Same settings should be applied to Project notifications. This is located on the same page but
on the bottom right corner.

Errors

Server certificate verification failed

RULES
Rules described in this chapter must be followed in order to pass this course.

Project structure
Project name must be [repository] . In project directory you should have each lab in
different sub-directory. Preferred naming convention would be as follows : lab# where # is
number.
For example by the end of week 3 your project structure could look something like this:

Grading / points
When giving points the following rules apply:

● All of your homeworks and lab works must be uploaded to gitlab.
○ Failing to do so will get you 0 points for homework / lab work.

● Code uploaded to gitlab must compile without errors (and preferably without warnings)
and produce expected output.

○ For compiling use c11 (-std=c11) standard and enable all warnings (-Wall).
Check debug101.pdf for more info.

○ Failing to do so will result with 0 points. You can correct / improve your code
(See Appealing / Correcting)

● Code uploaded to gitlab must be formatted correctly

○ Failing to do so will result in 0 points. You can correct / improve your code
(See Appealing / Correcting)

○ Formatting guide by Risto H. : http://blue.pri.ee/ttu/coding-style/
● Missing homework deadline will result in given points divided by 2 (applies only for

homework / lab work part).

Appealing / Correcting
In regard to appealing your results and correcting your work the following rules apply:

● You have 1 weeks after deadline to appeal your concerns. After that no changes will be
made

○ If you have presented your work within deadline you have 1 weeks to correct
your work and still receive maximum points

● You have 1 weeks after deadline to correct / improve your work. After that you will not
receive more points for corrected / improved work.

● By default tasks will be graded once after the task deadline has passed and once after
the 1 week correction deadline has passed.

○ If you want your work checked after improving your work let one of us know in
slack.

http://blue.pri.ee/ttu/coding-style/

