
Processing text in C involves handling sequences of characters, typically using arrays of type char. Since C does not have a built-in string type like some other languages, strings are represented as null-terminated character arrays. Here's an overview of common methods for processing text in C:

Strings are declared as char arrays:
char str[100]; // allocate space for 100 characters
char greeting[] = "Hello"; // initialized string

Reading Input:
char name[50];
scanf("%49s", name); // reads a word (up to whitespace)from file
Using fgets() for full lines (safer):
fgets(str, sizeof(str), stdin); // reads a word (up to whitespace)from file puhver

Functions from the <string.h> library are used to process strings:
strlen() to find length:
size_t len = strlen(str);
strcpy() to copy strings:
strcpy(dest, src);
strcat() to concatenate:
strcat(str1, str2);
strcmp() to compare strings:
if (strcmp(str1, str2) == 0) { /* equal */ }
strchr() to locate a character:

char *p = strchr(str, 'a'); or char p[]=strchr(str, 'a');

Processing Content:
Loop through characters:
for (i = 0; str[i] != '\0'; i++) { // process each character}
Modifying strings:
str[0] = 'h'; // change first character
==
Important Considerations:

Always ensure buffers are large enough to avoid overflow.!!
Remember that strings are null-terminated ('\0'), it means that each string (which is represented as an array of characters) ends with a special character called the null character, '\0'. This null character signals the end of the string so that functions know where the string finishes.
Example: char greeting[] = "Hello";in memory 'H' 'e' 'l' 'l' 'o' '\0'
Be cautious with functions like strcpy() and strcat() that do not perform bounds checking;
 prefer safer alternatives like strncpy() and strncat() when available.
· Standard string functions like strlen(), strcpy(), strcmp(), etc., rely on the null character to determine the length and boundaries of the string.
· Without the null terminator, these functions may read beyond the intended end of the string, causing undefined behavior or bugs.

Summary:
Processing text in C involves using arrays of characters, reading input carefully, and leveraging standard string functions for manipulation. Since C lacks native string types, managing memory and null-termination is key to safe and effective text processing.
· Every string in C must end with '\0' to be properly recognized as a string.
· It's automatically added if you initialize a string with a string literal.
· When manually creating strings with character arrays, you must remember to include '\0' at the end.
[bookmark: _GoBack]
