
TALLINNA TEHNIKAULIKOOL

Faculty of Information Technology

Institute of computer Systems

Mikuláš Šveda 244729

FUNCTION TABULATION

1. Homework in subject IAX0583

Lecturer: Vladimir Viies

Tallinn 2024

Copyright declaration

I confirm that I have prepared this homework independently and it is not from someone else

previously submitted to the defense. All works of other authors used in the preparation of the

work, important points of view, data from literary sources and elsewhere are cited in the work.

Author: Mikuláš Šveda

13.9.2024

2

Contents

Copyright declaration 2

1 Task definition 5

1.1 Task variant . 5

2 Function y = f(x) analysis 6

2.1 Graph of the function y = f(x) . 6

3 Solution 7

3.1 Workflow . 8

3.2 Algorithm . 9

3.3 Special cases . 10

4 Summary 11

References 12

List of Figures

1 Graph of the function [2] . 6

2 UML diagram [1] . 9

3 Programs reaction to invalid input . 13

4 Programs reaction to too many invalid inputs 13

5 Programs reaction to undefined calculation . 14

6 Programs reaction to y < YM. 15

7 Programs reaction to very large numbers. 15

8 Code part 1 . 16

9 Code part 2 . 17

3

List of Tables

1 Table with special cases . 10

4

1 Task definition

Create an algorithm (as a diagram or pseudocode) for solving the task and C code that would

correspond to the algorithm description. All of the input data should be inserted from the

keyboard and it can be any real number. The results should be shown on the terminal screen

as tables, which has the columns for argument x and function y=f(x) values.

The value of the function should be displayed only if it exists i.e. it is final and real number. If

the function value is not defined (it is infinite) or it is complex number, program should display

’not avilable’ or ’complex number’ accordingly.

1.1 Task variant

The method and function were based on my student number, which is 244729.

Method 5: User inputs a starting value A, step H and the lower limit of function value YM.

The following conditions have to be true:

H > 0.

The function value y will be calculated in the following points:

A

A + H

A + 2H

A + 3H

while the condition y > YM holds true, however not more than 15 times.

Function

y = x2 +
x

2
−
√

1

2x
(1)

5

2 Function y = f(x) analysis

In order to compute the parameters entered by the user, we consider the function determination

region. The function is defined only when the expression under the square root is larger than

0.

The domain of determination is x ∈ (0,∞).

2.1 Graph of the function y = f(x)

To better understand the function, we will use the tools available on the web for the function

to display the graph. From the graph, it can be seen that the region of determination we found

is true.

Figure 1: Graph of the function [2]

6

3 Solution

The goal of the task is to solve function (1) for several argument values. The argument follows

a simple rule

xi = A+ (i− 1) ∗H, (2)

where i goes from 1 to 15. Unless function value is below lower limit YM.

The user is asked to enter values for A, H and YM individually. With each input the program

checks whether valid input has been given. This means input is a number and not a symbol,

and number value follows meets all conditions (H > 0). All variables are doubles, as there is

no upper limit for inputs.

Thanks to the square root at the end of the function, only positive arguments (xi > 0) can

lead to values in ℜ. For all negative arguments (xi < 0) the value of the function will be from

complex plane ℑ. The most problematic argument value is 0, where such function is undefined

even in ℑ. The program still calculates the result as −∞.

As complex solutions are in my field of studies (Mechanical Engineering) often ignored as they

do not present any actual solution for out problems, I have decided not implement support for

imaginary numbers. Involving them would also create an issue for comparing function value

y to lower limit YM . Where we would have to decide if we compare only the ℜ part of the

solution, or we use it’s absolute value.

Nevertheless I have also decided not to restrict user from entering input resulting in com-

plex function solutions. The answer will simply be "not available". This also applies for the

argument equal to 0.

The output of the program is a table of values in a form of

xi = ”argument” yi = ”solution”

with 6 decimal places.

7

3.1 Workflow

A very simple description of the program:

1) Defines variables

2) Asks user for input

3) Checks whether inputs meet condiditons

4) Calculates

5) Outputs results

8

3.2 Algorithm

For user’s better understanding of the code and the whole process, here is an UML diagram.

Figure 2: UML diagram [1]

9

3.3 Special cases

Description Status Solution

1 Input does not

meet H > 0 con-

dition

Resolved Program will recognise such input as invalid.

See #2

2 Input is invalid /

not number

Resolved Program will recognise faulty input and will

ask user for input again. However not more

than 3 times. (Limit can be changed easily

at the beginning of the code.)

3 Too large num-

bers

Unresolved User can put numbers too large leading to

loss of precision.

4 Complex plane Unresolved Support for complex numbers is not added.

Calculation leading to imaginary number will

simply output "not available".

5 Undefined oper-

ation

Resolved Undefined operations will lead to the output

of "not available".

Table 1: Table with special cases

10

4 Summary

After getting to know the assignment, I have started writing code right away. Slowly, step by

step, making sure that every addition to the code works as intended.

Starting with declaring variables and asking for input. It was important to keep the condition

H > 0 in mind. However, the bigger issue was to ensure that program will not take characters

and other symbols as valid input. Of course, an limit for possible input attempts was

necessary.

Moving on to the calculation process itself, this was fairly easy part, as the only important

condition was the y > YM . However, another issue arose. Undefined function value would

sometimes trigger this condition, even though "NaN" cannot be bigger or smaller than real

number.

Although it might be shorter and easier to read to have output as a part of calculation

process, I have decided to keep them separate. This is because most of my programming

experience is from matlab, where we would like to keep the values in an array, instead of just

being printed out. Nevertheless I have also decided to include 2in1 (process and output) code

in a form of a text comment.

Finally, I have done UML diagram, so the whole process can be clearer for the reader / user.

11

References

[1] draw.io. diagrams.net. url: https://app.diagrams.net/.

[2] Geogebra. Graphing calculator. url: https://www.geogebra.org/graphing?lang=en.

12

https://app.diagrams.net/
https://www.geogebra.org/graphing?lang=en

Annex - Screenshots

Figure 3: Programs reaction to invalid input

Figure 4: Programs reaction to too many invalid inputs

13

Figure 5: Programs reaction to undefined calculation

14

Figure 6: Programs reaction to y < YM.

Figure 7: Programs reaction to very large numbers.

15

Figure 8: Code part 1

16

Figure 9: Code part 2

17

	Copyright declaration
	Task definition
	Task variant

	Function y = f(x) analysis
	Graph of the function y = f(x)

	Solution
	Workflow
	Algorithm
	Special cases

	Summary
	References

