How to use files in C
Text Files in C
A file is for storing permanent data. C provides file operations in stdio.h. A file is viewed as a stream of characters. Files must be opened before being accessed, and characters can be read one at a time, in order, from the file.
[bookmark: _GoBack]There is a current position in the file's character stream. The current position starts out at the first character in the file, and moves one character over as a result of a character read (or write) to the file; to read the 10th character you need to first read the first 9 characters (or you need to explicitly move the current position in the file to the 10th character). There are special hidden chars (just like there are in the stdin input stream), '\n', '\t', etc. In a file there is another special hidden char, EOF, marking the end of the file.
Using text files in C
1. DECLARE a FILE * variable
2. 	FILE *infile;
3. 	FILE *outfile;
4. OPEN the file: associate the variable with an actual file using fopen you can open a file in read, "r", write, "w", or append, "a" mode
5. 	infile = fopen("input.txt", "r"); // using relative path name of file
6. 	if (infile == NULL) {
7. 	 // assume that Error is some error function that handles the error, maybe
8. 		// printing out the passed error string and calling exit(1);
9. 		Error("Unable to open file.");
10. 	}
11. 	outfile = fopen("/home/newhall/output.txt", "w"); // using absolute path name of file
12. 	if (outfile == NULL) {
13. 		Error("Unable to open file.");
14. 	}
15. USE I/O operations to read, write, or move the current position in the file
16. 	int ch; // EOF is not considered a char, but an int, and since all
17. 	 // char values can be stored in int, we define ch to be an int
18.
19. 	ch = getc(infile); // read in the character at the current position in the inputfile
20. 	putc(ch, outfile); // write the value of ch to the current position in the outfile
21.
22. 	// see below for other functions to read and write, including fscanf, fprintf
23. CLOSE the file: use fclose to close the file after you are done with it
24. 	fclose(infile);
25. 	fclose(outfile);
You can also move the current file position in a file:
 // to reset current position to beginning of file
 void rewind(FILE *f);

 rewind(infile);

 // to move to a specific location in the file:
 fseek(FILE *f, long offset, int whence);

 fseek(f, 0, SEEK_SET); // seek to the beginning of the file
 fseek(f, 3, SEEK_CUR); // seek to 3 chars from the current position
 fseek(f, -3, SEEK_END); // seek to 3 chars from the end of the file

File I/O operations in stdio.h

Character Based

int getc(FILE *f): returns the next character in the file stream f
		 as an integer or EOF
int fgetc(FILE *f): same as getc

int putc(int c, FILE *f): writes the character c to the file stream f and
 			 returns the character written
int fputc(int c, FILE *f): same as putc

int ungetc(int c, FILE *f): pushes the character c back onto the file stream f
 			 returns the chars pushed

 	you can only push back one character and EOF cannot be pushed back

 	used when you need to read in a char value and test it, and based on
	test results need to put it back in the file.

int getchar(); read from stdin

putchar(int c); write to stdout (we usually use printf to do this instead)

Line Based: WARNING THESE CAN BE A BIT MORE TRICKY TO USE than getc & putc

char *fgets(char *s, int n, FILE *f);

 reads at most n-1 characters into the array s stopping if a newline is
 encountered, newline is included in the array which is '\0' terminated

int fputs(char *s, FILE *f);

 writes the string s which need not contain a newline onto the file stream f

Formatted: WARNING THESE CAN BE REALLY TRICKY TO USE
--------- (USING scanf for reading in input from a user is NOT ROBUST to bad input)

int fscanf(FILE *f, char *format, arg1, arg2, ...);

 designed to be the counterpart to printf, uses a similar control string
 returns EOF if end of file or an error occurs
 otherwise returns the number of input items converted and assigned

 int scanf(char *format, arg1, arg2, ...); for stdin

%d integer 		
%f float 		
%lf double 		
%c character 	 	
%s string, up to first white space

%[...] string, up to first character not in brackets
%[0123456789] would read in digits
%[^...] string, up to first character in brackets
%[^\n] would read everything up to a newline

int fprintf(FILE *f, char *format, addrofarg1, addrofarg2, ...);

 just like standard printf, which assumes a file stream of stdout
 allows you to specify other file streams

Examples:

int x;
double d;
char c, array[MAX];

scanf("%d %c", &x, &c); // read int & char from stdin, ignore ALL whitespace

fscanf(infile, "%d,%c", &x, &c); // read an int & char from file where int and
				 // char are separated by a comma

fprintf(outfile, "%d:%c\n", x, c); // write int & char char values to file
				 // separated by colon, followd by new line char

fscanf(infile,"%s", array); // read a string from file into array
			 // stops at white space

fscanf(infile, "%lf %24s", &d, array); // read a double and a string upto
					// 24 chars from infile

fscanf(infile, "%20[012345]",array); // read a string of at most 20 chars
				 // consisting of only chars in set

fscanf(infile, "%[^.,:!;]", array); // read in a string, stop when hit
				 // punctuation mark

fscanf(infile, "%ld %d%c", &x, &b, &c); // read in two integer values store
					 // first in long, second in int
					 // read in end of line char into c

fscanf returns the number of items read (above example would return 3) or
it returns EOF if it reaches EOF while reading

C Programming Tutorial # 37 - Files and Their Types [HD] (10 min)
http://www.youtube.com/watch?v=RhKK0_f5E0g
C Programming Tutorial # 38 - Opening and Closing Files - fopen() and fclose() - Part 2 (9:30)
http://www.youtube.com/watch?v=xncfiT0JsUs
C Programming Tutorial # 39 - fprintf() - Writing to Files (10:27)
http://www.youtube.com/watch?v=6zP4HjJ1xww
C Programming Tutorial # 41 - fscanf() - feof() - Reading From A File - Part 1 (9:47)
http://www.youtube.com/watch?v=mrKSsb3h2tQ
C Programming Tutorial # 42 - fgets() - Reading Strings From A File - Part 1 (9:48)
http://www.youtube.com/watch?v=cWdsIDLXBJA
C File I/O and Binary File I/O
http://www.cprogramming.com/tutorial/cfileio.html

C Tutorial – File I/O (using text files)
http://www.codingunit.com/c-tutorial-file-io-using-text-files

Handling Files in C
http://www2.its.strath.ac.uk/courses/c/section3_11.html

Text Files in C
http://www.cs.swarthmore.edu/~newhall/unixhelp/C_files.html

The GNU C Library - Input/Output on Streams
http://www.cs.utah.edu/dept/old/texinfo/glibc-manual-0.02/library_11.html
