
30.11.2015

Tallinn University of Technology

Department of Computer Engineering

Scala
A Scalable language

Petra Krnáčová

156604IV

Essay

Analysis of programming languages

(IAG0450)

1

CONTENTS

Introduction .. 2

Essential characteristics ... 2

Well defined syntactic and semantic definition of language ... 2

Reliability .. 4

Fast translation ... 5

Efficient object code ... 5

Orthogonality ... 8

Machine independence .. 9

Desirable characteristics .. 9

Provability ... 9

Generality ... 10

Consistency with commonly used notations ... 10

Subsets ... 10

Uniformity .. 10

Extensibility (ease to add features) .. 11

Summary .. 11

Bibliography .. 12

2

INTRODUCTION

Scala programming language is quite new language, its design started in 2001 at the École

Polytechnique Fédérale de Lausanne (EPFL) in Switzerland by Martin Odersky, who had

previously worked on current generation of javac, the Java compiler [1]. It was publically

released in 2004 for the first time.

It is a programming language for general software applications which is statically typed and

multi-paradigm programming language that runs on Java virtual machine [2]. Multi-paradigm

programming language means that it allows programmers to mix multiple programming styles

such as object-oriented, imperative and functional programming.

Originally, it has two compiler implementations. First implementation translates Scala into

Java byte code, second into .NET [3]. However .NET implementation stopped being supported

in 2012 [4] and in 2015 first no experimental version of the Scala to JavaScript compiler was

released [5]. Current stable release of Scala is 2.11.7. which was released in June 2015 [4].

Because of language interoperability with Java, Java libraries can be used directly in Scala

source code and vice-versa.

Nowadays, Scala is gathering the programmers and the companies. In 2012, it was voted the

most popular JVM scripting language at JavaOne conference. Programming language

popularity measures place Scala in the first 50 most popular languages (TIOBE index 2013 –

31st, RedMonk 2013 – 12th). Some interesting works which use Scala are: Twitter, Coursera

and LinkedIn [4].

ESSENTIAL CHARACTERISTICS

WELL DEFINED SYNTACTIC AND SEMANTIC DEFINITION OF LANGUAGE

Even though Scala is not “officially” standardized, like for example C++ with version

specifications as: ANSI C89, ISO C90, ISO C99, ISO C11 by ISO or ANSI authorities. It is de facto

(as Java) standardized by its own Scala Language Specification (SLS) [23].

All syntax of language is represented in EBNF notation and then semantic is described in detail.

A lot of Scala’s design decisions were inspired by shortcomings of Java. Its design was also

inspired by languages such as Eiffel, Erlang, Haskell, Lisp, Pizza, Standard ML, OCaml, Scheme,

Smalltalk and Oz [4].

Let’s examine some differences between Java and Scala according to [4].

 Scala does not require semicolons to end statements.

 Value types are capitalized.

https://en.wikipedia.org/wiki/ANSI_C

3

 Parameter and return type follow, as in Pascal.
o num: Int

 Local or class variables must be preceded by val – immutable or var – mutable

variable

 Type cast operator is different than in Java - foo.asInstanceOf[Type]

 Methods can be called without class reference operator . and parentheses
o thread.send(signo) has the same meaning thread send signo

 Array references are written like functions calls
o Array(i)

 Generic types are written as List[String] instead of List<String>

 Scala has singleton class Unit instead of pseudo-type void

 Methods definitions are preceded with keyword def

 Scala has no static variables or methods – instead it uses singleton objects

 Default visibility in Scala is public – it doesn’t have public keyword

 Parameters from Scala class constructor are saved as class parameters, it is not
necessary to declare them explicitly

 For expressions are similar to Haskell or Python, usage of yield makes a collection
generator from for loop

o val s = for (x <- 1 to 25 if x*x > 50) yield 2*x

o Result - Vector(16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,

40, 42, 44, 46, 48, 50)

Because Scala allows functional programming, we can find these functional tendencies in it:

 No distinction between statements and expressions – everything is an expression

 Type inference – compiler can deduce the type of variables, function return values and
other expressions, so the types can be omitted

 Anonymous functions – similar to lambda functions in Java 8, you can create inline
function without name it

 Immutable variables and objects

 Lazy evaluation – Scala evaluates expressions as soon as they are available, it is possible
to change this behavior by using a keyword lazy

 Delimited continuations (since 2.8)

 Higher-order functions

 Nested functions

 Currying - evaluation of a function that takes multiple arguments into evaluating a
sequence of functions, each with a single argument.

 Pattern matching - can be viewed as an extensible version of a switch statement,
where arbitrary data types can be matched (rather than just simple types like integers,
booleans and strings), including arbitrary nesting.

Scala is also an object-oriented language in the sense that every value is an object. Data
types and behaviors of objects are described by classes and traits. Traits are Scala's
replacement for Java's interfaces. Traits are similar to mixin classes in that they have nearly all
the power of a regular abstract class, lacking only class parameters (Scala's equivalent to Java's
constructor parameters), since traits are always mixed in with a class.

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Delimited_continuation
https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Currying
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Parameter_(computer_science)
https://en.wikipedia.org/wiki/Pattern_matching
https://en.wikipedia.org/wiki/Switch_statement
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Trait_(computer_science)
https://en.wikipedia.org/wiki/Protocol_(object-oriented_programming)
https://en.wikipedia.org/wiki/Mixin

4

RELIABILITY

Scala programs are running on JVM, which means that it’s machine independent language,

which means that Scala is reliable regarding to machine dependent errors. It also uses features

used in Java such as garbage collector which makes Scala reliable regarding to wrong memory

management errors.

Scala is statically typed language which means that type checking is done by the compiler

before running the program. Its immutable variables and objects increase the reliability of

programs too.

It also has a great support for runtime checking. Same as in Java, Scala uses exceptions to

handle the errors. But differently to Java, it only has unchecked exceptions – even for I/O

exceptions – so it totally depends on programmer which exceptions he will handle. It makes

him more vulnerable to make a mistake.

Exception can be handled in typical try-catch-finally block, or it is possible to use Scala’s
control.Exception.

Example usage [23]:

val x1 = catching(classOf[MalformedURLException]) opt new URL(s)

But Scala has more error handling mechanisms [24]:

 Use Option when you are not sure if an instance of object will be returned. It returns

an instance of Some(A) if A exists, or None if it does not.

 Construct Either is a disjoint union construct. It returns either an instance

of Left[L] or an instance of Right[R]. It’s commonly used for error handling, where

by convention Left is used to represent failure and Right is used to represent success.

 Construct Try is similar to Either, but instead of returning any class in

a Left or Right wrapper, it returns Failure[Throwable] or Success[T]. It’s an

analogue for the try-catch block: it replaces try-catch’s stack based error handling with

heap based error handling.

o Don’t confuse it with try-catch block

o Example: (symbol <- is used in for-construction to separate pattern from

generator.)
val sumTry = for {

 int1 <- Try(Integer.parseInt(“1”))

 int2 <- Try(Integer.parseInt(“2”))

} yield {

 int1 + int2

}

http://www.scala-lang.org/api/current/scala/util/control/Exception$.html
http://www.scala-lang.org/api/rc/index.html#scala.util.Try

5

Although Scala provides a lot of mechanisms to check errors, so it can be considered as a

reliable language, it also has some features such as implicit conversions, or not implemented

null-safety (its implementation was abandoned because of recommend usage of own Option

classes [16]) which can violate reliability.

FAST TRANSLATION

Speed of translation is one of the greatest weakness of Scala programming language. As I

previously mentioned, Scala is compiled to Java byte code and run on JVM, but according to

Martin Odersky [6], Scalac (Scala’s compiler) manages about 500-1000 lines per second which

may seem that it’s 10 times slower than Javac (Java’s compiler) does, but 1000 lines of code

written in Scala correspond to about 2000-3000 lines of code written in Java, which means

that in Scala there is more functionality per line.

Why the compilation is slow?

 Scala is statically typed programming language.

 Type inference is costly.

 Type checking is occurring twice – once according to Scala’s rules, second time after

erasure according to Java’s rules.

 There are about 15 transformation steps to go from Scala to Java.

 Optimization.

 Startup of the compiler Scalac is slow (4-8 seconds) because of loading a huge amount

of classes (because of complexity of the language) and searching for classpath for all

root packages and files.

A solution for improving the speed of compilation is usage of fsc (Fast offline compiler) which,

as is written in the description: “The fsc tool submits Scala compilation jobs to a compilation

daemon. The first time it is executed, the daemon is started automatically. On subsequent runs,

the same daemon can be reused, thus resulting in a faster compilation. The tool is especially

effective when repeatedly compiling with the same class paths, because the compilation

daemon can reuse a compiler instance.” [7] Fsc plugin can be integrated into most of the

commonly used IDE’s, such as NetBeans, Eclipse and IntelliJ.

EFFICIENT OBJECT CODE

Efficient object code means that performance of the program will be good (fast execution,

small memory consumption). Scala compiler emits Java byte code, but it doesn’t mean that

the efficiency characteristics must be necessarily the same as Java has. It depends on how

effectively the Scala compiler transforms source code into Java byte code. Then VM is a

limitation, because it converts Java byte code into machine code for the computer

6

architecture on which it is being run (just in time compilation), so on this level Java and Scala

are the same.

The level of code optimization is low with just in time compilation, because it has to be fast.

In the moment, JVM uses HotSpot dynamic compilation. Rather than convert all byte codes

into machine code before they are executed, HotSpot first runs as an interpreter and only

compiles the "hot" code - the code executed most frequently. Then, it optimizes only the parts

of the code which are executed frequently, to avoid recompiling. That means, that a program

could have different performance each time it is run (whether the particular code was

optimized in between the runs or not) [9].

So let’s go back to the Scala compiler, because the major differences between Java and Scala

can be found there.

“The Scala compiler is complementing the traditional optimizations with a boxing optimization

(that removes unnecessary boxing and unboxing operations), a type-propagation analysis

(that obtains more precise types for values on the stack and local variables) and a copy-

propagation optimization (that has a simple heap model handling common object patterns like

boxed values and closures).” [10]

Benchmarks [11], [12] shows that performance of Scala and Java is similar, depends on the

task and quality of source code, even though both languages allow you to write a program

with poor performance if you do not understand syntax, semantic and the optimization

process well.

Is Scala efficient? Let’s compare with another languages like C++. Note that current results

hardly depends on quality of implementation of algorithm.

Task: Computation of k-nucleotide frequencies [11]

Language Time (in s) Memory (in KB) CPU usage

Scala 6.77 223 624 20.28

C 12.17 189 420 36.18

C++ 7.16 157 828 24.08

Java 11.29 1 118 288 38.66

Ada 11.91 278 332 25.60

Fortran 23.90 194 140 61.70

7

Task: Fannkuch-Redux benchmark [11]

Language Time (in s) Memory (in KB) CPU usage

Scala 15.23 36 820 59.62

C 9.16 3 624 35.83

C++ 13.12 2 032 51.38

Java 17.41 33 032 68.64

Ada 11.25 4 116 44.84

Fortran 13.98 10 536 55.74

Task: Reverse complement of DNA

Language Time (in s) Memory (in KB) CPU usage

Scala 1.36 477 268 1.80

C 0.50 251 028 0.76

C++ 0.58 214 852 0.96

Java 1.27 315 296 2.68

Ada 0.78 201 036 0.92

Fortran 1.01 248 636 1.01

Task: Hans Boehm's GCBench

Language Time (in s) Memory (in KB) CPU usage

Scala 13.65 518 700 19.53

C 3.25 156 764 10.17

C++ 37.97 199 720 37.94

Java 5.67 356 656 8.00

Ada 5.37 179 164 17.86

Fortran 6.02 184 420 19.17

http://hboehm.info/gc/gc_bench/

8

ORTHOGONALITY

In the book The Art Of Unix Programming [13] orthogonality is described such as:

“Orthogonality is one of the most important properties that can help make even complex

designs compact. In a purely orthogonal design, operations do not have side effects; each

action (whether it's an API call, a macro invocation, or a language operation) changes just one

thing without affecting others.”

It also means, that you are able to use various language features in arbitrary combinations

with consistent results [14]. Great example of violation of orthogonality is that in C returning

array from function is permitted, but passing the array as an argument is allowed.

Not propagation of side effects in programming languages is typically achieved by separation

of concerns and encapsulation [14].

Even though Scala is very complex language, which provides lot of different features and

constructs and the syntax of Scala is flexible and may be hard to master, it is also quite general

and orthogonal. Martin Odersky described in video [15] that Object-Oriented paradigm and

Functional Programming paradigm are orthogonal to each other, and Scala unifies them into

Object-Functional paradigm.

It also means, that features of functional programming and features of objected-oriented

programming don’t affect each other in the way that functional language isn't less functional

because it's also object-oriented and vice-versa. But it is flexible in the way, that it allows the

programmer to combine both styles as he wants without inconsistent results.

Martin Odersky also said that it was one of the main goals in designing Scala to make it

orthogonal, complex, flexible and compact [16]. One of the Scala features strongly connected

with orthogonality is that Scala is immutable. Compactness in Scala could be demonstrated in

contrast of Java, as I previously mentioned, Java program with 2000-3000 lines could be

reduced by usage of Scala into 1000 lines of code. On the other hand some condensed

statements are hard to read and understand for average programmer.

In the book Programming in Scala [17] you can find a definition of Scala as a language with

high cohesion and orthogonal abstractions. One of the features for sustaining orthogonal

abstraction is mixin-class composition [18]. It is impossible to combine functionality of two

classes into new one with single inheritance and interfaces. Scala’s mixin-class composition

allows reusing of the delta of a class definition (all new definitions that are not inherited).

Keyword trait is used to define a class which can be used as a mixin.

Example [18]:

abstract class AbsIterator {

 type T

 def hasNext: Boolean

 def next: T

9

}

trait RichIterator extends AbsIterator {

 def foreach(f: T => Unit) { while (hasNext) f(next) }

}

class StringIterator(s: String) extends AbsIterator {

 type T = Char

 private var i = 0

 def hasNext = i < s.length()

 def next = { val ch = s charAt i; i += 1; ch }

}

object StringIteratorTest {

 def main(args: Array[String]) {

 class Iter extends StringIterator(args(0)) with RichIterator

 val iter = new Iter

 iter foreach println

 }

}

“The Iter class in function main is constructed from a mixin composition of the

parents StringIterator and RichIterator with the keyword with. The first parent is called

the superclass of Iter, whereas the second (and every other, if present) parent is called

a mixin.“ [18]

That behavior suppress redundancy which is not at all orthogonal.

MACHINE INDEPENDENCE

Because Scala’s source code is translated into Java byte code and run in JVM, it is also platform

independent language as Java is. Even though JVM needs to be installed before running an

application, source code of Scala application is the same for every platform on which it will be

run, because JVM provides a bridge between the code and underlying platform. JVM acts like

a virtual platform on which the code is executed.

DESIRABLE CHARACTERISTICS

PROVABILITY

Provability (automatic proof that written application works correctly or not) is one of the

characteristics that modern programming languages hardly achieve because of their

complexity and freedom given to programmers. In Scala it’s especially hard because of its

syntax flexibility and multi-paradigm.

So as in the many programming languages (like Java), to know if the program works as

intended, it is needed to perform some tests.

10

GENERALITY

Scala is a general purpose programming language. It is possible to write application for wide

range of domains because of its flexible syntax, Java interoperability, direct XML support and

support of both functional and object-oriented programming with all theirs benefits.

Scala has good support for abstraction which directly supports generality (if we see generality

as a combining closely related constructs into a single more general one), for example it allows

implicit conversions.

CONSISTENCY WITH COMMONLY USED NOTATIONS

Scala notations are inspired by notations which can be found in programming languages such

as C, Java, Lisp, Python or Haskell [4]. Main differences between Scala’s and Java’s syntax

(notations) were discussed in the chapter Well defined syntactic and semantic definition of

language.

Guide for moving from Scala to Java can be found there:

http://techblog.realestate.com.au/java-to-scala-cheatsheet/

Notations are logical and consistent. Writeability is good, although syntax constructions are

more condensed than Java has, and it take some time to move from Java to Scala, Scala

rewards programmer with more complex and more abstract constructions.

But programs in Scala could be hard to read (readability is not the most powerful feature of

Scala) because it representation could be far from used pseudo-code notations.

SUBSETS

In Scala, it is possible to create different language subsets. One possibility is to restrict all Java

(and XML) constructions and libraries. Then, because Scala is multi-paradigm language, it is

possible to use only functional programming constructs or object-oriented programming

constructs depending on a task.

UNIFORMITY

Simple definition of uniformity is that language constructs with similar meanings should look
similar and language constructs with different meanings should look different [19].

Scala favors uniformity in for example while / for loops, in contrast to the Pascal, where while

and repeat loops are not uniform, because repeat does not require begin-end keyword and in
treating collections of primitives.

It also supports uniform access principle that states that variables and parameterless functions

should be accessed using the same syntax. “Scala supports this principle by not allowing

http://techblog.realestate.com.au/java-to-scala-cheatsheet/

11

parentheses to be placed at call sites of parameterless functions. As a result, a parameterless

function definition can be changed to a val, or vice versa, without affecting client code.” [21]

But because Scala is very flexible and complex language, which supports interoperability with

Java it also has some non-uniform concepts.

Good example is allowed usage of Java keyword null, although Scala has its own idiom Option

class [20]. Instead of returning one object when a function succeeds and null when it fails,

function should instead return an instance of an Option, where the Option object is either: an

instance of the Some class or an instance of the None class. None class makes null

unnecessary, redundant and the construct with similar meaning looks different.

Example [20]:

def toInt(in: String): Option[Int] = {
 try {
 Some(Integer.parseInt(in.trim))
 } catch {
 case e: NumberFormatException => None
 }

}

toInt(someString) match {
 case Some(i) => println(i)
 case None => println("That didn't work.")

}

EXTENSIBILITY (EASE TO ADD FEATURES)

Scala is an extensible (scalable) language. It allows the programmer to define new types inside

the objects (type definition), extend with libraries, both Java and Scala libraries, because of

interoperability, it supports direct usage of XML syntax in regular Scala’s source code.

Usage of SugarScala framework [22], which enables syntax extensibility for Scala, makes it

usable for domain-specific languages embedding.

SUMMARY

Scala is new and progressive language, which means that backward compatibility is not

assured, but bugs are progressively fixed and new features are added. It is running on JVM

and supports Java interoperability. Because it is multi-paradigm language and has flexible

syntax with good level of abstraction it gives lot of freedom to programmer to write his

applications. Though, it has well defined syntax and semantic, it is reliable, orthogonal,

scalable and extensible language. Harder readability (linked with complexity and abstraction)

and slow translation could be considered as main flaws of this language.

12

BIBLIOGRAPHY

[1] https://en.wikipedia.org/wiki/Martin_Odersky

[2] https://dzone.com/articles/moving-java-scala-one-year

[3] http://www.artima.com/weblogs/viewpost.jsp?thread=163733

[4] https://en.wikipedia.org/wiki/Scala_(programming_language)

[5] http://www.scala-lang.org/news/2015/02/05/scala-js-no-longer-experimental.html

[6] http://stackoverflow.com/questions/3490383/java-compile-speed-vs-scala-compile-

speed/3612212#3612212

[7] http://www.scala-

lang.org/old/sites/default/files/linuxsoft_archives/docu/files/tools/fsc.html

[8] http://www.scala-lang.org/files/archive/spec/2.11/

[9] http://www.ibm.com/developerworks/library/j-jtp12214/

[10] http://wessexacademy.ch/wp-content/uploads/2013/09/scala_paper.pdf

[11] http://benchmarksgame.alioth.debian.org/u64q/scala.html

[12] http://shipilev.net/blog/2014/java-scala-divided-we-fail/

[13] http://www.amazon.com/Programming-Addison-Wesley-Professional-Computng-

Series/dp/0131429019

[14] https://en.wikipedia.org/wiki/Orthogonality#Computer%5Fscience

[15] https://www.youtube.com/watch?v=01rXrI6xelE

[16] http://www.slideshare.net/Odersky/scala-evolution

[17]

https://books.google.ee/books?id=AnurBQAAQBAJ&pg=PR15&lpg=PR15&dq=scala+orthogo

nal?&source=bl&ots=7K8Dh7r3Y_&sig=k-

q5DwFfSHrRJNV7HRsLyix7LEE&hl=sk&sa=X&ved=0ahUKEwjireHq2KHJAhUCWCwKHWv6Ch8

4ChDoAQgmMAE#v=onepage&q=scala%20orthogonal%3F&f=false

[18] http://www.scala-lang.org/old/node/117

[19] http://www.eecs.ucf.edu/~leavens/ComS541Fall97/hw-pages/comparing/

[20] http://alvinalexander.com/scala/using-scala-option-some-none-idiom-function-java-null

[21] http://docs.scala-lang.org/glossary/#uniform-access-principle

https://en.wikipedia.org/wiki/Martin_Odersky
https://dzone.com/articles/moving-java-scala-one-year
http://www.artima.com/weblogs/viewpost.jsp?thread=163733
https://en.wikipedia.org/wiki/Scala_(programming_language)
http://www.scala-lang.org/news/2015/02/05/scala-js-no-longer-experimental.html
http://stackoverflow.com/questions/3490383/java-compile-speed-vs-scala-compile-speed/3612212%233612212
http://stackoverflow.com/questions/3490383/java-compile-speed-vs-scala-compile-speed/3612212%233612212
http://www.scala-lang.org/old/sites/default/files/linuxsoft_archives/docu/files/tools/fsc.html
http://www.scala-lang.org/old/sites/default/files/linuxsoft_archives/docu/files/tools/fsc.html
http://www.scala-lang.org/files/archive/spec/2.11/
http://www.ibm.com/developerworks/library/j-jtp12214/
http://wessexacademy.ch/wp-content/uploads/2013/09/scala_paper.pdf
http://benchmarksgame.alioth.debian.org/u64q/scala.html
http://shipilev.net/blog/2014/java-scala-divided-we-fail/
http://www.amazon.com/Programming-Addison-Wesley-Professional-Computng-Series/dp/0131429019
http://www.amazon.com/Programming-Addison-Wesley-Professional-Computng-Series/dp/0131429019
https://en.wikipedia.org/wiki/Orthogonality#Computer%5Fscience
https://www.youtube.com/watch?v=01rXrI6xelE
http://www.slideshare.net/Odersky/scala-evolution
https://books.google.ee/books?id=AnurBQAAQBAJ&pg=PR15&lpg=PR15&dq=scala+orthogonal?&source=bl&ots=7K8Dh7r3Y_&sig=k-q5DwFfSHrRJNV7HRsLyix7LEE&hl=sk&sa=X&ved=0ahUKEwjireHq2KHJAhUCWCwKHWv6Ch84ChDoAQgmMAE#v=onepage&q=scala%20orthogonal%3F&f=false
https://books.google.ee/books?id=AnurBQAAQBAJ&pg=PR15&lpg=PR15&dq=scala+orthogonal?&source=bl&ots=7K8Dh7r3Y_&sig=k-q5DwFfSHrRJNV7HRsLyix7LEE&hl=sk&sa=X&ved=0ahUKEwjireHq2KHJAhUCWCwKHWv6Ch84ChDoAQgmMAE#v=onepage&q=scala%20orthogonal%3F&f=false
https://books.google.ee/books?id=AnurBQAAQBAJ&pg=PR15&lpg=PR15&dq=scala+orthogonal?&source=bl&ots=7K8Dh7r3Y_&sig=k-q5DwFfSHrRJNV7HRsLyix7LEE&hl=sk&sa=X&ved=0ahUKEwjireHq2KHJAhUCWCwKHWv6Ch84ChDoAQgmMAE#v=onepage&q=scala%20orthogonal%3F&f=false
https://books.google.ee/books?id=AnurBQAAQBAJ&pg=PR15&lpg=PR15&dq=scala+orthogonal?&source=bl&ots=7K8Dh7r3Y_&sig=k-q5DwFfSHrRJNV7HRsLyix7LEE&hl=sk&sa=X&ved=0ahUKEwjireHq2KHJAhUCWCwKHWv6Ch84ChDoAQgmMAE#v=onepage&q=scala%20orthogonal%3F&f=false
http://www.scala-lang.org/old/node/117
http://alvinalexander.com/scala/using-scala-option-some-none-idiom-function-java-null
http://docs.scala-lang.org/glossary/#uniform-access-principle

13

[22] http://www.informatik.uni-marburg.de/~seba/teaching/thesis-jakob.pdf

[23] http://www.scala-lang.org/api/current/index.html#scala.util.control.Exception$

http://www.informatik.uni-marburg.de/~seba/teaching/thesis-jakob.pdf

