[bookmark: _GoBack]BASIC - Beginner's All-purpose Symbolic Instruction Code

Something that wasn’t as complex as FORTRAN or ALGOL, but something that could be
easy to do simple arithmetics with. A computer system that was easy to use for everybody
and a computing language similarly easy and accessible to everyone on the campus.
With those ideas John Kemeny’s and Thomas Kurtz’s goal became to develop a time
sharing program. Instead of trying to modify existing languages they came to the decision
that a new language was needed. Out came something that could be made simply and to be
simple - BASIC. Alongside BASIC the Dartmouth Time Sharing System was also developed.
This in conjunction with BASIC made it so that instead of person being able to use the one
huge computer, that was available at that time many people could instead use it
simultaneously. BASIC brought computing to the masses and caused it to evolve into
various dialects all over the world.
BASIC is small and compact, but because of the intended hardware and how it was made to
be used on make it slow. BASIC combines compiling and interpreting, which means unless
you compile it it will be compiled line by line at run time. Compiling can speed up the process
but it will still be slow. Rating D
Because the aim, when creating BASIC was to make it easily accessible and useable
making it a fairly simply readable language. Rating A
BASIC’s instructions are compared to today’s orthogonal, where an instruction modifies only
very registers. But because the amount of registers is not also very big orthogonality is
lowered. Rating C
The syntax because of the language is easily understandable but fairly limited- because of
memory restrictions at time, making it very concise. Rating A
Early computers very all different and all needed most of the time needed different ways to
use them. BASIC changed this by becoming embedded in different computers and allowing
people to program in BASIC on different systems. But because it is run line by line the
reliability decreases - errors are more prone to happen. Rating C
Abstraction in BASIC is limited to few data types as well as procedural concepts - this again
was made so because of the limitations of early computers. Allowing only 286 different
variable names to be used, consisting of either a single letter, or a single letter followed by a
single digit. Data types were all limited to float types. In addition arrays were also allowed.
Rating E.
Considering that all code had to be mostly physically transported to be shared the portability
is very low. However because BASIC was included in many computer it made it easier to be
shared. Rating D.
https://www.dartmouth.edu/basicfifty/basicmanual_1964.pdf - First BASIC manual
https://www.dartmouth.edu/basicfifty/commands.html - BASIC Commands
https://www.youtube.com/watch?v=WYPNjSoDrqw - Birth of BASIC
https://www.youtube.com/watch?v=seM9SqTsRG4 The basics of BASIC, the programming
language of the 1980s.

C

Efficiency
Being a compiled language, it will take some time to first compile the code, however once
compiled the code itself runs efficiently, especially if is well optimized. Another issue with
compiled code is that, that testing code revisions requires additional time for re-compilation of
the modified files.
Well written and optimized C code is hard to beat in performance. To improve on C code even
further, it is possible to use inline assembly [21].
A downside of efficiency in C is that in the original standard there was no multithreading
support. In the beginning there were third party implementations of this available. As of C11
standard, the language has added native multithreading support to address this shortcoming
[12].
Simplicity
There are very few different constructs in C language, which makes learning them easy and
fast. It can be considered to consist only of the essentials. The original design by K&R intended
the language to be simple and beautiful to read and write, however the language itself does not
prohibit for a developer to write extremely obfuscated code. Due to C considering whitespace as
optional, only used for improving the readability of the code, the developers have gone as far as
to holding competitions for obfuscating C code [27].
Orthogonality
C cannot be considered an orthogonal language, as there are language quirks that that differ
between data types. E.g. when comparing data types, you can use ‘==’ to compare numbers,
but not strings [12]. Similar argument can be brought when comparing dynamic and static
arrays, as dynamic arrays need to be freed manually, but we need not worry about statically
declared arrays.
Definiteness
Even though C can be considered a basic language, it contains a few constructs that are
context-dependent. One of those would be the while and do while loops, which both contain the
keyword while, but the placement and additional keyword “do” will achieve a different behavior
of the conditional checking [12]. A second example of context-dependent semantics would be
the asterisk ‘*’ symbol, which can mean refer to three different operations: multiplication,
dereferencing a pointer or a data type. A similar idea is followed by the inverse operation of
dereferencing, using the ampersand ‘&’ symbol. When used before the variable name, it asks
for the address of a variable, however it can also mean a bitwise logical operation AND. Finally
C is standardized by ISO (latest revision is ISO/IEC 9899:2018).

Reliability
The language does not provide almost any safety at all. Any kind of errors will allow for attacks
against the software and program crashes, errors, corruption etc. It is hard to write safe to use
code in C. Often times, wrapper functions are written to help the developers write safer code.
Many other languages were also developed for the same reason.
Program verification
There is no native mechanic in C to write unit tests or do formal verification, but there are plenty
of ways to implement formal verification using third party tools. C compiler also provides data
type correctness correctness, however it can be considered partial since the developer can use
type casting to suppress the compiler warnings.
Abstraction facilities
The C can be considered a very primitive language in terms of abstraction, as most what can be
done is either handled by void pointers to data, function pointers, unions and structures. It is
also possible to have function pointers as part of structures [12].
Portability
The portability in the C language is two-fold. Even though the C language is very close to
machine language, compilers exist for almost any architecture imaginable. However the code
needs to be compiled separately for different architectures and operating systems. This allows
for decent portability, but only as long as standard libraries are in use. Once system libraries
need to be used, it needs to be rewritten for each system. This is very prevalent when graphical,
sound or audio libraries are in use. Another portability issue with the C language are struct
bit-fields, which need to be rewritten depending on whether the system is using little or big
endian.
One of the key portability benefits in C language is that it’s a subset of C++ language. This
means that any C++ compiler will be able to compile C code. So even if they didn’t design the
compiler for C code, it comes as a byproduct of the C++ specification. This of course may
change with newer versions of C and C++ being developed, as older unsafe features are being
continuously deprecated from both.

C++

Efficiency
Being a compiled language, the one-time compilation process time must be accounted for.
However more importantly, when comparing code execution, C++ is typically performing nearly
as well as C. The overhead is minimal and for most cases, negligible [15].
Simplicity
Even though C++ is based on C, the developers of this language felt that C was lacking in
features. By adding loads of new features, including the object oriented approach, the language
grew to a point where it is really hard to comprehend for an unexperienced developer.
Orthogonality
C++ is non-orthogonal language as it has non-orthogonality types (e.g. classes, strings, arrays
enumerators), expressions (e.g. prefix and postfix decrement, postfix and postfix increment) and
flow controls (e.g. conditional branches, virtual functions). [16]
Definiteness
C++ is similar to C, but there are some differences such as “ const int * const ptr; ”. Regarding
data types the definiteness isn’t really the best, only signed char and unsigned char are
guaranteed to hold specific value range, for other primitive data types the value range is
dependent on the architecture of target system (i.e integers, int , can have different value ranges
in different targets).[28] Regarding documentation everything about C++ is very well defined, the
knowledge about every semantic aspect is well know and the standard library is documented
with good detail. C++ is also standardized by ISO, latest stable revision of the standard being
ISO/IEC 14882:2017 .
Reliability
All of the problems that C language has carry over to C++, as C is a subset of C++. However
C++ does introduce concepts like lists, which provide ways for a programmer to handle data
with less issues. Handling input is also simpler in C++, as cin and cout will take care of picking
the right formats.
Program verification
Since C++ is more strongly typed than C, C++ makes it easier to catch type casting errors.
Following good design practices, with regards to modern C++ (C++11 and onwards), can
greatly reduce common type issues (usage of auto keyword for variable type definition), but in
general the verification of the program is difficult with

Abstraction facilities
C++ has much more abstraction facilities compared to C. C++ incorporates a notion of
templates, thus making it possible to write code in more abstract level so that the type of
specific implementation is (close to) irrelevant. Template metaprogramming takes the
abstraction capabilities of C++ above other languages compared here.
Portability
In general, the portability can be considered similar, if not equal to C. The most common
compiler, GCC, typically supports both out of the box. GCC in itself is available on almost any
platform imaginable. Writing portable code needs some considerations as the primitive default
datatypes can vary between platforms, even the standard specifies them by saying that they
occupy “at least” a definite number of bytes. [29] Portable C++ code thus has to consider all the
possible architectures or use the std::numeric_limits package definitions of the minimum size of
data types and apply sufficient corrections during compilation.

C++ (II wrong)
C++ can be viewed as updated version of C, adding new features to an already very solid foundation. This includes the low-level memory management, what gives the C and C++ edge in performance and efficiency, compared to some other languages, such as Java or Python, that rely on “garbage collector” subsystem. This feature does exist in C++, but external tools are needed, which are not very efficient, can cause losses in performance, so most developers will stick to manual memory management. This is the very reason why most game engines are built on C++, to allow the developer squeeze out every drop of performance possible. Another way to compare which language is the most effective, is to compare them based on time, memory and energy. Article published by the Universidade do Minho in Portugal, compared most popular programming languages how much energy, time and memory was needed to complete certain tasks. The results were very fascinating, with C being the clear winner, and the C++ right behind him. The main reason for this, was combination of manual memory management and the requirement of strong typed language. This efficiency does not come without a cost. Some developers have noted, learning and mastering C++ can be very difficult and bothersome. Some languages offer the ability to do things with few simple lines of code, but thanks to strong structure here we cannot do things as fast as we want. Every little detail must be described. What type of variable are we dealing with, how long a certain array must be or even how many bytes of data we want to allocate to a certain function. Portability of C++ is strong, meaning that it can run on most system, but it is nowhere close to Java capabilities. Setting up the development environment, for some Windows systems it can be tedious and sometimes nerve-racking. In Linux most of the heavy lifting is already been done natively. Another major is issue is the standard. Are we dealing with C++98, C++17 or C++03. When running the same code, but using a different standard, many things can happen. For example, lambda expressions or automatic type deduction and decltype. In older version of C++, such as C++03, during the declaration we had to specify the type of an object. In C++11 you don’t have to do it anymore using “auto” method, which will identify what type of variable are we dealing with. When looking C++ reliability, program verification, orthogonality, data and procedural and syntax and semantics, we can see a how they are all connected to each other. Because of the strict structure and the need of defining every variable with a certain type can be intimidating for those who are just starting to program, but in the long run, it gives a very detailed view how everything is done and can save a lot of time. In python we don’t need describe whether our variable is an integer or float. Because of the type safety, the complier will not allow to compile programs, that have not properly typed, which can cause core dumps, ending in a crashed program. Strongly typed language allows us to minimize the orthogonality, meaning that one operation won’t affect another. For example. An array can be returned if it is inside a structure. In conclusion, C++ is a more modern version of C, bringing new features, such as object orientated programming, but at the same time retaining the good old solid fountation that the C was built upon. Manual memory management, allowing us to write code for any purpose as needed, very portable. Those features do come at a cost, such a the time needed to master C++, setting up development environment, have a deep understanding of syntax and how thing work on low level, very close to hardware. Despite the negatives, it is still quite popular, maybe not as popular as Java, but still very competive, especially in embedded system, servers and game development.


JAVA

Efficiency
In software development, the programming language Java was historically considered slower than
the fastest 3rd generation typed languages such as C and C++.The main reason being a different
language design, where after compiling, Java programs run on a Java virtual machine (JVM) rather
than directly on the computer's processor as native code, as do C and C++ programs [1].
Simplicity
Part of the JAVAs simplicity comes from the JVM. In the sense that the user doesn't have to too any
sort of memory allocation or memory clean up [2]. The JVM has a garbage-collection algorithm
that cleans the memory. Also thanks to the JVM the programer doesn't have to worry about running
the machine that the code is executed .
Orthogonality
In computer programming, orthogonality means that operations change just one thing without
affecting others. The term is most-frequently used regarding assembly instruction sets, as
orthogonal instruction set. In Java it is possible to follow orthogonality but in some cases the
orthogonality has to be broken [3].
Syntax and semantics
Java syntax derived mostly from C and C++. Java doesn't allow global variables and functions. All
code in java has to be in classes and all the values are objects. Java is consider as a strongly typed
language, all the variables have to have a declared type [4]. In Java you are not able to overload
operators or use unsigned integers.
Reliability and Portability
Java is considered one of the most safe and reliable language. In its core it's has been able eliminate
a lot of security bugs by restricting certain actions [5]. JAVA is executed in JVM which makes it
compatible and runnable on every system that can fit . Biggest key aspects of JAVA is it is able to
run different version of JAVA at the same time by capsulating the code.
Refrences:
1. http://www.scribblethink.org/Computer/javaCbenchmark.html
2. https://www.artima.com/insidejvm/ed2/index.html
3. https://www.javaworld.com/article/2078767/open-source-tools/java-tip-orthogonality-by-example.html
4. https://docs.oracle.com/javase/tutorial/java/javaOO/variables.html
5. https://ieeexplore.ieee.org/document/722326


Python

Efficiency (A)
Python is really efficient tool (programming language). You can use it, when creating a
fast prototype in order to test You business logic in very early development phase as
well as production ready core applications. There are some major widely used platforms
that use Python. For example, Dropbox, Reddit and even some parts of Instagram and
Google. (1, 3, 4)
Simplicity (A)
Compared to the C, for example, Python is relatively simple. Therefore, it can be used
by people, who are not very familiar with programming. Finally, mathematicians can test
their algorithms without much struggle. Some universities (including TalcTech) are
taking advantage of this aspect and introduce first steps in programming in Python in
order to make programming more clearer. (1)
Orthogonality (C)
It is really easy to mess things up in Python - there are a lot of roughly said “global”
context. For example, many libraries take advantage of the built on “logging”
functionality. That said, it is a real struggle to synchronize the logic level. Also as a
dynamically typed language, mixing the data type operations is hardly inevitable. (1, 4)
Syntax and semantics (A)
Python has really good syntax. It is so plain and simple and therefore is easily teachable
even to the children in primary schools. The main reason behind it that it was designed
so in the very beginning of creating a language. (4)
Reliability (A)
Python runs in its own environment, which means that all the resources are given out as
they should. Developers do not have to struggle with low level program like buffer
overflow derived from memory allocation problems. (1, 3)
Program verification (D)
It is really hard to say if Your code does not contain any errors. One can have faulty
code running for several months without realising it. This happens, when faulty part
does not get interpreted (is hidden in some rarely used if statement). There are some
tools to overcome this, but sometimes these tools are just not good enough. (1)
Data and procedural (B)
One can define almost anything in Python. It has very useful data structures such as
dictionaries and stacks. But it comes with a price. As the programmers do not have to
specify data types, it is really hard to say, which kind of arguments functions/methods
may have. (1)
Portability (B)
As Python is interpreted in its own so called “special environment”, it is really easy to
transport Your code from one machine to another. The only strong requirement is that
this other machine (computer) has to have Python environment installed. Grade “B” is
given because of the difference between Python 2.x and 3.x, which is not backwards
compatible. (1)
Total score: B
References:
1) https://www.python.org/
2) https://dzone.com/articles/four-reasons-why-python-is-a-good-programming-lang
3) https://hackernoon.com/how-is-python-different-from-other-programming-languag
es-63311390f8dd
4) https://www.python-course.eu/python3_history_and_philosophy.php
Smalltalk

Full procedural object oriented language based on Simula 67. First created in 1972 by
Alan Kay at Xerox’s Palo Alto Research Center (PARC). Smalltalk was one of the most
popular languages in the low time-to-market communities and with those who value low
software maintenance costs. The language has no de facto language standard to this
day as the ANSI Smalltalk standard offers no real differences to the first commercial
Smalltalk-80 release and many dialects of the language exist(Squeak, Pharo, and
Dolphin Smalltalk etc.). Smalltalk is considered by many to be the starter of the Object
Oriented Programming revolution.[1],[2],[3], [4]
Smalltalk uses a virtual machine interpreter which runs the code on the computer. Code
is compiled into bytecode, which is in turn interpreted by the virtual machine or
dynamically translated to machine-native code. No hardware specific optimisations and
the virtual machine is written mainly in Smalltalk itself, offering no efficiency gains but
raising its portability considerably. [3]
Efficiency GRADE: C
The language itself is very compact and the syntax can be fitted onto a postcard . It is
designed to be easily understood and written. Thus it is suitable for fast prototyping and
and has low time-to-market functionality. [1],[2]
Simplicity GRADE: A
As the language is a high level, object oriented language, its orthogonality is low.
Orthogonality GRADE: C
The syntax and semantics of the language is similar to other high level languages. It
also allows more flexibility in control flow than for example C programming language
with user defined control flow statements. [3]
Definiteness GRADE: B
Smalltalk is an interpreted language, thus it has high reliability compared to other truly
compiled languages like C++. [3]
Reliability GRADE: B
The language supports a wide variety of abstraction facilities which can be found in
modern programming languages: classes, widely known flow control statements, code
blocks, return statements. Classes support inheritance, variables and methods (static
member functions in Java/C++). No constructors, operators or keywords. Operators are
Analysis of Programming Languages (IAG0450) Karl Laanemets 178191IASM
defined in the receiving objects class. Supports user defined flow-of-control constructs.
[2],[3] Abstraction facilities GRADE: B.
Smalltalk code runs on any system identically regardless on which system the code was
written. It has better hardware portability than Java. [3] Portability GRADE: A
Refrences:
[1] http://sdmeta.gforge.inria.fr/Programmez/OnTheWeb/Art2-Eng-AminimalistSyntax.pdf
[2] http://logos.cs.uic.edu/476/resources/SmallTalk/cs476_Smalltalk/Smalltalk.htm
[3] http://web.cecs.pdx.edu/~harry/musings/SmalltalkOverview.html
[4] https://stackoverflow.com/questions/6368337/whats-the-difference-of-ansi-smalltalk-a
nd-smalltalk-80

 



Rust

Efficiency
Rust, being a compiled language, means that translating the written code to machine code
takes time, though correctly compiler machine code will most probably run faster than code that
is interpreted and ran on some virtual machine.
Simplicity
Rust is not a simple language by any means. Even the basic concepts are different compared to
C/C++ derived languages so learning curve is very steep, for example simple variable
ownership that is designed to be thread safe. The number of language features on the other
hand isn’t as big as in C++ meaning that obtaining the knowledge on the language features is
somewhat more manageable.[3]
Orthogonality
Rust is quite orthogonal as many keywords can be combined in different ways.[3] But it can not
be compared with the orthogonality offered by Go language. [13, 14] Orthogonality in Rust can
be demonstrated by the feature that every piece of language can nest inside another, for
example we can have a whole module (equivalent to namespace in C++) inside some if
statement.[20]
Definiteness
Rust is definite in a sense that it is designed to be a systems programming language (like C).In
the sense of consistency Rust is not the greatest language out there. For example there are
multiple different operationions that are performed by the same operator : ..expr can either
mean right-exclusive range literal or struct literal updating; Self and self keywords differ in
meaning, where the first refers to type aliasing mechanism and the latter method subject,
current instance (similar to this keyword in C++). All this results in a code where the definition of
how some operation is done isn’t obvious immediately but the context and exact listing must be
taken into account. In addition there doesn’t seem to be available strict semantics of the
language (or the memory model used) which is interesting as the language is called and thought
to be safe.
Reliability
The type system and memory management of Rust is far superior compared to C and C++.
Essentially the language itself prevents you from segmentation faults (access violations). Also
the same implementation is designed to handle race condition issues in multithreading. In
conclusion Rust can be seen as a language when after writing the code one can be fairly certain
that the program will not have data and memory management issues that C and C++ have.
Although it must be mentioned that the unsafe keyword, present in the Rust language, allows to

bypass the checks in a similar way that type casting is done by C and C++ but the specific
keyword allows easier identification of problematic and error-prone code areas.[17]
Program verification
As mentioned before the type and memory handling systems in Rust are very rigorous. Meaning
that verification of the software can be limited to checking the functional aspects of the code.
This is much easier compared to C and C++ as Rust has built-in capabilities of automated
testing (unit-testing).[18] .
Abstraction facilities
Rust supports abstraction facilities like traits, iterators etc. Rust creators promote that the
language has “zero-cost” abstractions. Diving deeper and comparing traits with abstract classes
of C++ one can see that the support is quite limited. Regarding data type related abstraction
Rust supports generic data types that is comparable to the template options and auto keyword
provided by C++.[19]
Portability
Rust can be compiled and run on variety of platforms. Rust has grouped supported platforms
into tiers: Tier 1 (guaranteed to work), Tier 2 (guaranteed to build) and Tier 3 (code base has
support, but not build and tested automatically). [11] As Rust can be still considered as a young
language, that is gaining popularity, the variety of platforms where it can be used will definitely
rise.

Go

Efficiency
The go language is a compiled language, so the process here is the same as with C. However
as the language provides memory handling and safety for the developer, it boasts about twice
the memory usage and slower overall speed, algorithm dependent [6]. The language is
designed natively to be efficient in multithreading and networking with the purpose of developing
server side software [7].
Simplicity
Compared to C, Go boasts better support for IDEs by removing the symbol table, which made C
hard to handle. It’s simpler to develop various tools and debuggers [7]. They’ve also simplified
variable declarations by moving the type after the variable name(s) and allowing to declare
variables without implicitly specifying the variable type. Go introduces a garbage collector to
lessen the load on bookkeeping by the developer. They have also removed code elements
which were designed for lexers, but unfriendly for human operators.
Orthogonality
Orthogonality plays important role in designing Go language and it’s libraries. It is inspired by
Unix Philosophy, keeping in mind the principles that code units should kept simple,
concentrating on doing one task well and having standard way to communicate. [9]
Definiteness
The Go language design philosophy has been reducing complexity from the beginning,
removing many of the repetitive ways of doing the same things in C and other language [7]. A
good example of this would be to remove all of the loop types except for loop, which now
handles all possible cases [22]. Only thing that remains context dependent is the asterisk
symbol, which is still used for both pointer operations and multiplication.
Reliability
One of the main purposes of Go is to improve on the unsafe practices in C. By introducing
memory and type safety there are a lot less caveats where the programmer might
unintentionally introduce bugs [7].
Program verification
Go makes program verification very easy. It can be built and tested quickly, is statically typed, is
simple, concise, but expressive, has clear paths of error and recovery, has well maintained and
extensive standard library [10]. Go language also has built in testing facilities, which allows for
very simple unit testing. It also provides means for runtime analysis, creating options for simple
performance profiling [23].
8
Abstraction facilities
Go is designed to be a simple language for new programmers and therefore does not have
loads of abstractions[7]. The abstraction capability for Go is similar in nature to C language,
while some of the constructs have been reworked. Function pointers in C have been updated for
better readability [25], but are still usable. Structures are also slightly more powerful, however
Go does not consider itself as an object-oriented language, thus they are not as powerful as
classes in other object oriented languages. They are lacking in hierarchy, however now it is
possible to have methods inside of classes. In C it was possible to have function pointers inside
of classes, Go’s implementation of methods is more powerful. The language developers
themselves consider Go not to have classes, but structures instead [26].
Portability
Although Go compiles code into executable for a specific platform, it is made very easy and
hassle-free to choose the target platform(s) [8]. This is limited in nature however to more
powerful systems, as the language was designed by google to help replace C++ in creating
server software for their ever-growing operations [7]. This means that, even though it can be
considered an all-purpose language, compiling for embedded systems and various other
lower-performing hardware can be problematic due to the added safety features and garbage
collector, which are taking up resources. This isn’t however impossible, as there are plenty of
projects out there, such as Go, Robot, Go, which are designed to help use the language on
embedded systems [24]. That all said, being a newer language, Go cannot compete with the
evergreen C and C++ languages and their compatibility with older systems.

List of references
[1] Molotnikov, Z., Schorp, K., Arvantinos, V., Schätz, B., Future Programming Paradigms in
the Automotive Industry. [Online].
Available: https://www.vda.de/dam/vda/publications/2016/FAT/FAT-Schriftenreihe_287.pdf
.Accessed on: Nov. 1, 2018
[2] Trejo, D., After All These Years, the World is Still Powered by C Programming. [Online].
Available:
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
.Accessed on: Nov. 1, 2018
[3] Mollevik, I., Olsson, S. Vikdahl, M., Weijand, S., Westin, J. Seminar: The Rust
Programming Language. [Online].
Available: https://www8.cs.umu.se/kurser/5DV086/VT18/resources/seminar/rust.pdf .Accessed
on: Nov. 1, 2018
[4] A vision for portability in Rust. [Online].
Available: http://aturon.github.io/2018/02/06/portability-vision/ .Accessed on: Nov. 1, 2018
[5] Baranowski, M., He, S., Rakamar, Z. Verifying Rust Programs with SMACK.
Proceedings of the 16th International Symposium on Automated Technology for Verification and
Analysis (ATVA), 2018
[6] Go versus C gcc fastest programs. [Online]
Available: https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/go-gcc.html
.Accessed on: Nov. 1, 2018
[7] The Go Programming Language. Frequently Asked Questions (FAQ). [Online]
Available: https://golang.org/doc/faq .Accessed on: Nov. 1, 2018
[8] The Go Programming Language. Package build. [Online]
Available: https://golang.org/pkg/go/build .Accessed on: Nov. 1, 2018
[9] Schlesinger, A. Orthogonality in Go. [Online]
Available: https://arschles.svbtle.com/orthogonality-in-go .Accessed on: Nov. 1, 2018
[10] Kol, T. How to write bulletproof code in Go: a workflow for servers that can’t fail. [Online]
Available:
https://medium.freecodecamp.org/how-to-write-bulletproof-code-in-go-a-workflow-for-servers-th
at-cant-fail-10a14a765f22 .
Accessed on: Nov. 1, 2018
[11] Rust Forge. Rust Platform Support. [Online]
Available: https://forge.rust-lang.org/platform-support.htm .Accessed on: Nov. 1, 2018
[12] ISO/IEC 9899:2011 Information technology - Programming languages - C, 2011
[13] Go and Rust. [Online]
Available: https://www.davidb.org/post/go-and-rust/ .Accessed on: Nov. 1, 2018
[14] Mollevik, I., Olsson, S. Vikdahl, M., Weijand, S., Westin, J. Seminar: The Rust
Programming Language. [Online].
Available: https://www8.cs.umu.se/kurser/5DV086/VT18/resources/seminar/rust.pdf .Accessed
on: Nov. 1, 2018
[15] C++ g++ versus C gcc fastest programs. [Online]
Available: https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/cpp.html
.Accessed on: Nov. 1, 2018
[16] Yang, Feng-Jen, The orthogonality in C++, J. Comput. Sci. Coll., Consortium for
Computing Sciences in Colleges, 2008
[17] The Rust Programming Language. Unsafe Rust. [Online]
Available: https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html#unsafe-rust
.Accessed on: Nov. 1, 2018
[18] The Rust Programming Language. Writing Automated Tests. [Online]
Available: https://doc.rust-lang.org/book/second-edition/ch11-00-testing.html .Accessed on:
Nov. 1, 2018
[19] The Rust Programming Language. Generic Data Types. [Online]
Available: https://doc.rust-lang.org/book/second-edition/ch10-01-syntax.html . Accessed on:
Nov. 1, 2018
[20] Blandy, J., Orendorff, J., Programming Rust: Fast, Safe Systems Development, O’Reilly
Media, 2017
[21] Coppen, W., S., Optimizing C/C++ with Inline Assembly Programming. [Online]
Available: http://www.drdobbs.com/optimizing-cc-with-inline-assembly-progr/184401967
.Accessed on: Nov. 1, 2018
[22] The Go Programming Language. The Go Programming Language Specification. [Online]
Available: https://golang.org/ref/spec .Accessed on: Nov. 1, 2018
[23] The Go Programming Language. Package testing. [Online]
Available: https://golang.org/pkg/testing/ .Accessed on: Nov. 1, 2018
[24] Gobot - Golang framework for robotics, drones and the Internet of Things (IoT). [Online]
Available: https://gobot.io/ .Accessed on: Nov. 1, 2018
[25] The Go Blog. Go's Declaration Syntax. [Online]
Available: https://blog.golang.org/gos-declaration-syntax Accessed on: Nov. 1, 2018
[26] Golang tutorial series. Part 26: Structs Instead of Classes - OOP in Go. [Online]
Available: https://golangbot.com/structs-instead-of-classes/ .Accessed on: Nov. 1, 2018
[27] The International Obfuscated C Code Contest. [Online]
Available: https://www.ioccc.org/ . Accessed on: Nov. 1, 2018
[28] Stroustrup, Bjarne, The C++ Programming Language, Fourth Edition, Addison-Wesley
Professional, 2013
[29] Cppreference. Fundamental types. [Online]
Available: https://en.cppreference.com/w/cpp/language/types . Accessed on: Nov. 1, 2018
