Evaluation of Clojure, Java, and Scala

Analysis of Programming Languages - TTU
Toke Abildgaard von Ryberg
10.12.2015

Evaluation of Clojure, Java, and Scala
Analysis of Programming Languages
Toke Abildgaard von Ryberg

Introduction
Java Virtual Machine
Java
Scala
Clojure
Programming languages evaluation
Essential characteristics
Well defined syntactic and semantic definition of language

Reliability

Fast translation

Machine independence
Desirable characteristics

Generality
Consistency with commonly used notations

Uniformity
Extensibility (ease to add features)

Summary
References

10.12.2015

Evaluation of Clojure, Java, and Scala 10.12.2015
Analysis of Programming Languages
Toke Abildgaard von Ryberg

Introduction

In this paper | will evaluate three languages that all uses Java Virtual Machine (JVM). The
three languages are Clojure, Java, and Scala. First, | will briefly describe JVM and the three
languages. Then | will evaluate the languages based on essential characteristics and
desirable characteristics. The essential characteristics | use for evaluating programming
languages are:

e Well defined syntactic and semantic definition of language

e Reliability

e Fast translation

e Machine independence
The desirable characteristics are:
Generality
Consistency with commonly used notations
Uniformity
Extensibility (ease to add features)

Java Virtual Machine’

The Java Virtual Machine(JVM) is a virtual machine used for executing Java bytecode. JVM
is part of Java Runtime Environment(JRE) along with Java Class library. JRE is available on
multiple platforms including Windows, Mac OS X, and Linux. The features of JVM include
garbage collection and a JIT compiler. A programming language with functionality expressed
in valid class files and able to be hosted by JVM is called a JVM language. When choosing
to create a new programming language one might choose to create a JVM language to take
advantage of the features of JVM. A JVM language is platform independant in the sense that
JVM exists on multiple platforms. When creating a JVM language one have to write a
compiler from the JVM language to Java bytecode for each platform. JVM then executes and
optimizes the bytecode for the given platform.

Java?

Java is a modern programming language created in 1995. It is based on the philosophy
“Write once, run everywhere” to let developers run the same code on multiple platforms. This
is achieved by executing the code on JVM for a given platform. Java is implemented in C
and C++. Java is a object-oriented programming language with support for classes and
concurrency.

Scala®

Scala is created in 2004 and is heavily influenced by Java. The design of Scala is inspired
by the shortcomings of Java. Scala support functional programming fully with a static type

' Based on [1]
2 Based on [2]
3 Based on [3]

Evaluation of Clojure, Java, and Scala 10.12.2015
Analysis of Programming Languages
Toke Abildgaard von Ryberg

system. Scala code is compiled to Java bytecode to be executed on JVM. This makes it
possible to use Scala libraries in Java and vice versa. Scala is designed with scaling in mind.
The name Scala originates from the words scalable and language.

Clojure*

Clojure is created in 2007 and is also a JVM language. Clojure is based on Lisp and has an
emphasis on functional programming. Clojure encourages developers to use immutable data
types to facilitate development of stable multithreaded software. Clojure can run on JVM,
Common Language Runtime, and Javascript engines.

Programming languages evaluation

Essential characteristics

Well defined syntactic and semantic definition of language

When evaluating the syntactic and semantic definition of a language | look for
documentation on the syntax and on the semantics. Oracle publishes a language
specification for each version of Java with information about the syntax and semantics °. It is
also possible to find information about certain parts of the language in the API
documentation®. Scala also provides a language specification about syntax and semantics’
along with API documentation®. There is not a language specification for Clojure, but
language reference documentation along with API documentation exists®. Overall Java and
Scala have the best defined syntactic and semantic definition while Clojure lack
documentation.

Reliability

There are multiple factors influencing reliability in programming languages: Type checking,
exception handling, and compatibility with newer versions of the language. Java uses
compile-time type checking and support exception handling. Source code from an old
version of Java is compatible with newer version of JVM'™. Scala is also using compile-time
type checking and support exception handling just like Java. Scala supports compatibility in
minor version updates. Major version updates is not necessarily compatible''. The Clojure
compiler does not support type checking but supports exception handling and is also
backwards compatible according to this HackerNews post'?. No official information about
compatibility is available. Java is the most reliable language with type checking, exception

4 Based on [4]

5 https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
8 https://docs.oracle.com/javase/8/docs/api/index.html
7 http://www.scala-lang.org/files/archive/spec/2.11/

8 http://www.scala-lang.org/api/current/#package

9 http://clojure.org/documentation

10 [8]

1 [9]

12 [10]

https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/8/docs/api/index.html
http://www.scala-lang.org/files/archive/spec/2.11/
http://www.scala-lang.org/api/current/#package
http://clojure.org/documentation

Evaluation of Clojure, Java, and Scala 10.12.2015
Analysis of Programming Languages
Toke Abildgaard von Ryberg

handling, and full compatibility, Scala is second most reliable since it does not offer full
compatibility, and Clojure is the least reliable since it does not have type checking.

Fast translation

| understand fast translation as the time it takes to compile source code to Java bytecode. |
will compare the three languages relative to each other. Java uses javac to compile source
code to bytecode and Scala uses scalac. scalac is more complex than javac since it has to
take care of more than javac including implicit conversion and type interference'. Thereby
scalac is slower than javac. Clojure uses a compile function from the clojure.core package. It
compiles a namespace to Java bytecode™. The Clojure compiler does more setup work than
javac and also using more steps when calling functions'. Java has the fastest translation
since the compilation process is simpler and the compiler has to do less work than the
compilers for Scala and Clojure.

Machine independence

Java, Scala, and Clojure are all machine independent. They are all compiled to Java
bytecode and hosted on JVM which optimizes and executes the program on the machine in
use.

Desirable characteristics

Generality

| understand generality as the avoidance of special cases and specific constructs in a
programming language. A way to investigate generality is to see how many loop structure
there is implemented in a programming language. It is a sign of low generality if there is
many ways to construct the same loop. Java and Scala supports the loop structures
do-while, for, and while'®"". Clojure supports the loop structures dotimes, for, and while'®.
Based on how many loop structures that actually do the same thing Clojure, Java, and Scala
have low generality with 3 different loop structures.

Consistency with commonly used notations

When talking about commonly used notations | take a look at the most popular programming
languages, since the most used notation is also the most common. Java is created in 1995.
Much of the syntax is based on C and C++"°. In 1995 the two most popular programming
languages was C and C++* thereby making Java consistent with the most commonly used
notations at the time. Scala can be used as “Java without semicolons” and also support
functional programming inspired by Haskell, F#, and ML?". In 2005, a year after Scala was

13 [5]
14 [6]
15 [7]
16 [1 1]
17 [12]
18 [13]
19 [2]
20 [14]
21 [15]

Evaluation of Clojure, Java, and Scala 10.12.2015
Analysis of Programming Languages
Toke Abildgaard von Ryberg

created, Java was the second most used language. In 2015 Haskell, F#, and ML was ranked
as 39, 34, and 48 respectively. Scala’s notation can be very common if used as “Java
without semicolons” but can also be more exotic when using the functional programming
aspects. Clojure is a dialect of Lisp?2. When Clojure was created in 2007 List was the 13th
most used programming language. Today, Lisp is the 29th most used programming
language?®®. Clojure’s notation was more common when the programming language was
created than it is today.

Uniformity

As in the generality section | will focus on loops. There is consistency between Java'’s for
and while loop. After the keyword the condition is specified in parentheses, then a bracket,
the loop body, and a closing bracket. The do-while loop has the do keyword followed by a
bracket, the loop body, and a closing bracket. Then follows the while keyword with the loop
conditions in parentheses®. The same applies for Scala®. The loops in Clojure is quite
different. The for loop begins with a parenthesis, the keyword for, and then a sequence
encapsulated in square brackets. Then comes the body expression which can be
encapsulated in parentheses, square brackets or nothing. The for loop is closed with a
closing parenthesis?®. The while loop is written with a parenthesis, the while keyword, the
loop condition encapsulated in parentheses, the body encapsulated in parentheses, and a
closing parenthesis® . The dotimes loop is written with a parenthesis, the dotimes keyword,
the condition in square brackets, the body in parentheses, and a closing parenthesis®®. Java
and Scala are the most uniform programming languages, since their loops are constructed
almost the same way. Clojure is less uniform since the loops are constructed differently.

Extensibility (ease to add features)

Clojure, Java, and Scala are highly extensible. A way to extend Java and Scala applications
is to add a new JAR file with additional functionality®**. A way to extend Clojure is to built a
library that can be included in Clojure projects®'.

Summary

In this paper | have evaluated the design three JVM languages Clojure, Java, and Scala. |
have found out that Java is the best designed language of the three. This makes sense
since Java is the oldest language and it have had more time to mature compared to Clojure
and Scala. Java is the most used programming language today®. As a result of that Java is
very well-documented. Scala is the second best designed language. The reason might be

22 [4]

23 [14]
24 [1 1]
25 [12]
26 [19]
27 [20]
28 [21]
29 [16]
30 [17]
31 [18]
32 [14]

Evaluation of Clojure, Java, and Scala 10.12.2015
Analysis of Programming Languages
Toke Abildgaard von Ryberg

that Scala is build on Java and benefit from Java’s popularity. Clojure is worst designed
language. This does not mean that Clojure is a bad programming language. It is a dialect of
Lisp and might inherit some of the its design shortcomings.

Another finding is that JVM languages do not have to be similar. All they have to do is to
compile source code to Java bytecode which can be hosted on JVM.

Each programming language solves different problems. A bad language design does not
mean that the programming language is bad but it might mean that it is difficult to use.

References

All references was accessed between 07.12.2015 and 10.12.2015
[1]: https://en.wikipedia.org/wiki/Java_virtual_machine

[2]: hitps://en.wikipedia.org/wiki/Java_(programming_language)

[3]: https://en.wikipedia.org/wiki/Scala_(programming_language)

[4]: https://en.wikipedia.org/wiki/Clojure

[5]:
https://stackoverflow.com/questions/3490383/java-compile-speed-vs-scala-compile-speed
[6]: http://clojure.org/compilation

[7]: http://blog.ndk.i0/2014/01/26/clojure-compilation.html

[8]: http://www.oracle.com/technetwork/java/javase/compatibility-417013.html
[9]: http://scala-lang.org/news/2.11.1#binary_compatibility

[10]: https://news.ycombinator.com/item?id=9805520

[11]: http://www.tutorialspoint.com/javal/java_loop_control.htm

[12]: http://www.tutorialspoint.com/scala/scala_loop_types.htm

[13]: https://clojuredocs.org/clojure.core

[14]: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
[15]: http://www.scala-lang.org/what-is-scala.html

[16]: hitps://docs.oracle.com/javase/tutorial/ext/basics/spi.html

[17]: http://docs.scala-lang.org/tutorials/tour/tour-of-scala.html

[18]: http://clojure.org/libraries

[19]: https://clojuredocs.org/clojure.core/for

[20]: https://clojuredocs.org/clojure.core/while

[21]: https://clojuredocs.org/clojure.core/dotimes

https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Clojure
https://stackoverflow.com/questions/3490383/java-compile-speed-vs-scala-compile-speed
http://clojure.org/compilation
http://blog.ndk.io/2014/01/26/clojure-compilation.html
http://www.oracle.com/technetwork/java/javase/compatibility-417013.html
http://scala-lang.org/news/2.11.1#binary_compatibility
https://news.ycombinator.com/item?id=9805520
http://www.tutorialspoint.com/java/java_loop_control.htm
http://www.tutorialspoint.com/scala/scala_loop_types.htm
https://clojuredocs.org/clojure.core
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.scala-lang.org/what-is-scala.html
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
http://docs.scala-lang.org/tutorials/tour/tour-of-scala.html
http://clojure.org/libraries
https://clojuredocs.org/clojure.core/for
https://clojuredocs.org/clojure.core/while
https://clojuredocs.org/clojure.core/dotimes

