I The theory part(inc essay and seminar)
1. (x points)What language(s) can be described by following chracateristics? Explain.
· data types, data objects, and procedure specifications can be encapsulated into a package. This supports the program design of data abstraction.
· has very good exception handling capabilities which allow the program to handle its own run-time errors.
· it is possible to write a procedure (for example, a sorting procedure) which does not require a data type to be specified.
· supports parallel and concurrent execution of tasks.
· supports object-oriented programming
· more flexible libraries
· better control mechanisms for shared data

0. (x points)What language(s) can be describes by following characteristics? Explain.
· is completely free form and has no reserved keywords.
· precisely defines its data types without regard for any hardware.
· is a block-oriented language, consisting of packages, begin blocks, and statements. This type of structure allows the programmer to produce highly-modular applications.
· contains control stuctures.
· supports arrays, structures, unions, arrays of structures or unions, structures or unions of arrays, and combinations thereof.
· provides four different storage classes: AUTOMATIC, STATIC, CONTROLLED, and BASED. Application objects' data type, representation, nature of use, etc decides the type of storage class used for each.
0. (x points)Explain the "dangling else" problem and how you would solve it.
(x points)What are the possibilities for implicit variable declaration in various languages? Name a few examples.
0. (x points)What are the different types of subroutines in various languages? Name a few examples.
0. (x points)What is the difference between ANTLR4 and Bison grammar parsing? (LL(*) vs LALR)
0. (x points)What is abstract syntax tree and where is it used?
II The practice part(inc home task)
0. (x points)Create syntax diagram or description in a metalanguage for the following sentences:
	IF X(J)>X(J+1) THEN DO;
		Y = X(J);
		X(J) = X(J+1);
		X(J+1) = Y;
	END;
0. (x points)Create syntax diagram or description in a metalanguage for the following sentences:
	for i := 1 to n do
		p := p * p;
	repeat
		sum := sum + a[k];
		k := k + 1
	until k = m;
0. (x points)Create syntax diagram or description in a metalanguage for the following sentences:
	select
		when (condition = 0) do;
			(sentence A)
		end;
		when (condition = 1) do;
			(sentence B)
		end;
		otherwise do;
			(sentence C)
		end;
	end;
0. (x points)Create syntax diagram or description in a metalanguage for the following sentences:
	assign(it, 'somefile.txt');
	reset(it);
	readln(it, s);
	close(it);
	println(s);
0. (x points)Translate to postfix form and assign the order of operations:
	Y = A / S - K * (P / M + V) + L * I
0. [bookmark: _GoBack](x points)Translate to infix form and add parantheses where necessary:
	Y = A T K * + F P R Q / - * I + C G * +
0. (x points)Translate given sentences from C to pseudo-C using three main sentences:
	for(i = 0; i < n; i++)
	{		s = s + a[i];}
0. (x points)Comment and optimize code:
	S=1
	DO 1 I = 1,N
	S=S*(-1)**I*J
	1 CONTINUE
0. (x points)Write scanner rules for parsing integer values, floating point values and variables.
0. (x points)Write scanner and/or parser rules for parsing following code:
	(3 8 5 7 11 6)
	(1)
	(3 5 7)
	()
0. (x points)Write grammar rules that would accept the following HTML code
<table>
	<tr>
		<th>some fancy text</th>
		<th>more fancy text</th>
	</tr>
	<tr>
		<td>some mundane text</td>
		<td>
			<table>
				<tr>
					<th>fancy words</th>
					<td>nonfancy words</td>
				</tr>
				<tr>
					<th>more fancy words</th>
					<td>more nonfancy words</td>
				</tr>
			</table>
		</td>
	</tr>
</table>
0. (x points)We have following Flex scanner rules:
	digit [0-9]
	alpha [a-zA-Z]
	alphanum [0-9a-zA-Z]
	%%
	"PROCEDURE" 		{ return PROC; }
	"PRINT" 		{ return PRINT;}
	{digit}+ 		{ return INT;}
	{alpha}{alphanum}* 	{ return VAR;}
	[=;{}()+-/*] 		{ return yytext[0];}
	[\t\n] 		; // do nothing
and following source code:
	PROCEDURE Calculate (x)
	{ y = x * x - 5; PRINT y;}
What would be the sequence of tokens that Flex generates from this code?
0. (x points)We have following source code:
	BEGIN
		a = 5 + 2;
		b = 10 - 2;
		IF a > b THEN c = a;
		ELSE c = b;
		ENDIF;
	END;
Define tokens and write parser rules (in Bison or equivalent) for parsing these sentences.
0. (x points)Translate the following code to C:
BUB: PROCEDURE(ARRAY,N);
 DECLARE (I,J) FIXED BIN(15);
 DECLARE S BIT(1);
 DECLARE Y FIXED BIN(15);
 DO I = N-1 BY -1 TO 1;
 S = '1'B;
 DO J = 1 TO I;
 IF X(J)>X(J+1) THEN DO;
 S = '0'B;
 Y = X(J);
 X(J) = X(J+1);
 X(J+1) = Y;
 END;
 END;
 IF S THEN RETURN;
 END;
 RETURN;
0. (x points) **ANTLR4 grammar is given:
	grammar Expr;
	prog	: stat+ ;
	stat	: expr NEWLINE
		| ID '=' expr NEWLINE
		| NEWLINE
		;
	expr	: expr ('*'|'/') expr
		| expr ('+'|'-') expr
		| INT
		| ID
		| '(' expr ')'
		;
	ID 	: [a-zA-Z]+ ;
	INT 	: [0-9]+ ;
	NEWLINE	: '\r'? '\n' ;
	WS 	: [\t]+ -> skip ;
Which inputs are recognized as correct according to the grammar?
	a = 1 + 2
	a2 = 2 - 4
	(b + 3);
	c = a / (1 + b*(2-c))
	d = 4 / 0.5
	5 + 4 = e
	f = a2
	g = a * 2+ n
0. (x points)**ANTLR4 grammar is given:
	grammar Expr;
	prog	: stat+ ;
	stat	: expr NEWLINE
		| ID '=' expr NEWLINE
		| NEWLINE
		;
	expr	: expr ('*'|'/') expr
		| expr ('+'|'-') expr
		| FLOAT
		| ID
		| '(' expr ')'
		;
	ID 	: [a-zA-Z][a-zA-Z0-9_]+ ;

	FLOAT	: [0-9]+'.'[0-9]*
		| [0-9]*'.'[0-9]+
		| [0-9]+
		;
	NEWLINE	: ';';
	WS 	: [\t\r\n]+ -> skip ;
Which inputs are recognized as correct according to the grammar?
	a = .5 + 2.;
	a2 = 2 - 4;
	(2b + 3);
	c = a / (1 + b*(2-c_b));
	d = 4 / 0.5
	5 + 4 = e;
	f = a 2;
	g = a * 2+ n;
