FORTRAN, FORTRAN IV, FORTRAN 77,.... FORTRAN 2008
Areas of Application

FORTRAN is useful for a wide variety of applications, some of the more outstanding ones are as follows:

· Number crunching - due to the more natural (like it's true algebraic form) way of expressing complex mathematical functions and it's quick execution time, FORTRAN is easy and efficient at processing mathematical equations.

· Scientific, mathematical, statistical, and engineering type procedures -due to it's rapid number-crunching ability FORTRAN is a good choice for these type of applications.

Basically FORTRAN is most useful for applications that are "computational-bound" rather than "I/O bound".
One of the oldest programming languages, the FORTRAN was developed by a team of programmers at IBM led by John Backus, and was first published in 1957. The name FORTRAN is an acronym for FORmula TRANslation, because it was designed to allow easy translation of math formulas into code.
Often referred to as a scientific language, FORTRAN was the first high-level language, using the first compiler ever developed. Prior to the development of FORTRAN computer programmers were required to program in machine/assembly code, which was an extremely difficult and time consuming task, not to mention the dreadful chore of debugging the code. The objective during it's design was to create a programming language that would be: simple to learn, suitable for a wide variety of applications, machine independent, and would allow complex mathematical expressions to be stated similarly to regular algebraic notation. While still being almost as efficient in execution as assembly language. Since FORTRAN was so much easier to code, programmers were able to write programs 500% faster than before, while execution efficiency was only reduced by 20%, this allowed them to focus more on the problem solving aspects of a problem, and less on coding.

FORTRAN was so innovative not only because it was the first high-level language, but also because of it's compiler, which is credited as giving rise to the branch of computer science now known as compiler theory. Several years after it's release FORTRAN had developed many different dialects, (due to special tweaking by programmers trying to make it better suit their personal needs) making it very difficult to transfer programs from one machine to another.

These problems lead the American Standards Association (now known as the American National Standards Association) to release it's first Standard for a Programming Languagein 1966. This first standardized version has come to be known as FORTRAN '66 (aka.. FORTRAN IV).

Despite this standardization, a few years later, various new dialects began to surface again, requiring the Standards Association review the language again. This version is known as FORTRAN '77. This version was released in 1978 (it was called '77 because the Association began it's review in 1977), with several new features. Some of the more notable properties were; new error handling methods, and mechanisms for managing large-scale programs. The latest version; Fortran '90 (released in 1990, using the new capitalization scheme) added even more new features, such as support for: recursion, pointers, and for programmer-defined data types.
Komponendid: Laused:

-põhiprogramm -tegevuslaused

-alamprogramm -kirjelduslaused

-andmeplokk

PROGRAM SUBROUTINE FUNCTIONE (AVALDIS-FUNKTSIOON)

BLOCK DATA (COMMON)

WRITE(juhtinfo) - UNIT,FMT,ERR,END,REC,IOSTAT

 - kujul UNIT=k

OPEN(juhtinfo) -UNIT,FILE,ACCESS,STATUS,FORM,RECL,IOSTAT,ERR,BLANK

INQUIRE

Keelte areng.

Significant Language Features

www.fortran.com

Some of the more significant features of the language are as listed below:

· Simple to learn - when FORTRAN was design one of the objectives was to write a language that was easy to learn and understand.

· Machine Independent - allows for easy transportation of a program from one machine to another.

· More natural ways to express mathematical functions - FORTRAN permits even severely complex mathematical functions to be expressed similarly to regular algebraic notation.

· Problem orientated language

· Remains close to and exploits the available hardware

· Efficient execution - there is only an approximate 20% decrease in efficiency as compared to assembly/machine code.

· Ability to control storage allocation -programmers were able to easily control the allocation of storage (although this is considered to be a dangerous practice today, it was quite important some time ago due to limited memory.

· More freedom in code layout - unlike assembly/machine language, code does not need to be laid out in rigidly defined columns, (though it still must remain within the parameters of the FORTRAN source code form).

4.1 Fortran 2003 status

GNU Fortran supports several Fortran 2003 features; an incomplete list can be found below. See also the wiki page about Fortran 2003.

· Procedure pointers including procedure-pointer components with PASS attribute.

· Procedures which are bound to a derived type (type-bound procedures) including PASS, PROCEDURE and GENERIC, and operators bound to a type.

· Abstract interfaces and and type extension with the possibility to override type-bound procedures or to have deferred binding.

· Polymorphic entities (“CLASS”) for derived types – including SAME_TYPE_AS, EXTENDS_TYPE_OF and SELECT TYPE. Note that the support for array-valued polymorphic entities is incomplete and unlimited polymophism is currently not supported.

· The ASSOCIATE construct.

· Interoperability with C including enumerations,

· In structure constructors the components with default values may be omitted.

· Extensions to the ALLOCATE statement, allowing for a type-specification with type parameter and for allocation and initialization from a SOURCE= expression; ALLOCATE and DEALLOCATE optionally return an error message string via ERRMSG=.

· Reallocation on assignment: If an intrinsic assignment is used, an allocatable variable on the left-hand side is automatically allocated (if unallocated) or reallocated (if the shape is different). Currently, scalar deferred character length left-hand sides are correctly handled but arrays are not yet fully implemented.

· Transferring of allocations via MOVE_ALLOC.

· The PRIVATE and PUBLIC attributes may be given individually to derived-type components.

· In pointer assignments, the lower bound may be specified and the remapping of elements is supported.

· For pointers an INTENT may be specified which affect the association status not the value of the pointer target.

· Intrinsics command_argument_count, get_command, get_command_argument, and get_environment_variable.

· Support for unicode characters (ISO 10646) and UTF-8, including the SELECTED_CHAR_KIND and NEW_LINE intrinsic functions.

· Support for binary, octal and hexadecimal (BOZ) constants in the intrinsic functions INT, REAL, CMPLX and DBLE.

· Support for namelist variables with allocatable and pointer attribute and nonconstant length type parameter.

· Array constructors using square brackets. That is, [...] rather than (/.../). Type-specification for array constructors like (/ some-type :: ... /).

· Extensions to the specification and initialization expressions, including the support for intrinsics with real and complex arguments.

· Support for the asynchronous input/output syntax; however, the data transfer is currently always synchronously performed.

· FLUSH statement.

· IOMSG= specifier for I/O statements.

· Support for the declaration of enumeration constants via the ENUM and ENUMERATOR statements. Interoperability with gcc is guaranteed also for the case where the -fshort-enums command line option is given.

· TR 15581:

· ALLOCATABLE dummy arguments.

· ALLOCATABLE function results

· ALLOCATABLE components of derived types

· The OPEN statement supports the ACCESS='STREAM' specifier, allowing I/O without any record structure.

· Namelist input/output for internal files.

· Further I/O extensions: Rounding during formatted output, using of a decimal comma instead of a decimal point, setting whether a plus sign should appear for positive numbers.

· The PROTECTED statement and attribute.

· The VALUE statement and attribute.

· The VOLATILE statement and attribute.

· The IMPORT statement, allowing to import host-associated derived types.

· The intrinsic modules ISO_FORTRAN_ENVIRONMENT is supported, which contains parameters of the I/O units, storage sizes. Additionally, procedures for C interoperability are available in the ISO_C_BINDING module.

· USE statement with INTRINSIC and NON_INTRINSIC attribute; supported intrinsic modules: ISO_FORTRAN_ENV, ISO_C_BINDING, OMP_LIB and OMP_LIB_KINDS.

· Renaming of operators in the USE statement.

4.2 Fortran 2008 status

The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally known as Fortran 2008. The official version is available from International Organization for Standardization (ISO) or its national member organizations. The the final draft (FDIS) can be downloaded free of charge from http://www.nag.co.uk/sc22wg5/links.html. Fortran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the International Organization for Standardization and the International Electrotechnical Commission (IEC). This group is known as WG5.

The GNU Fortran supports several of the new features of Fortran 2008; the wiki has some information about the current Fortran 2008 implementation status. In particular, the following is implemented.

· The -std=f2008 option and support for the file extensions .f08 and .F08.

· The OPEN statement now supports the NEWUNIT= option, which returns a unique file unit, thus preventing inadvertent use of the same unit in different parts of the program.

· The g0 format descriptor and unlimited format items.

· The mathematical intrinsics ASINH, ACOSH, ATANH, ERF, ERFC, GAMMA, LOG_GAMMA, BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_Y0, BESSEL_Y1, BESSEL_YN, HYPOT, NORM2, and ERFC_SCALED.

· Using complex arguments with TAN, SINH, COSH, TANH, ASIN, ACOS, and ATAN is now possible; ATAN(Y,X) is now an alias for ATAN2(Y,X).

· Support of the PARITY intrinsic functions.

· The following bit intrinsics: LEADZ and TRAILZ for counting the number of leading and trailing zero bits, POPCNT and POPPAR for counting the number of one bits and returning the parity; BGE, BGT, BLE, and BLT for bitwise comparisons; DSHIFTL and DSHIFTR for combined left and right shifts, MASKL and MASKR for simple left and right justified masks, MERGE_BITS for a bitwise merge using a mask, SHIFTA, SHIFTL and SHIFTR for shift operations, and the transformational bit intrinsics IALL, IANY and IPARITY.

· Support of the EXECUTE_COMMAND_LINE intrinsic subroutine.

· Support for the STORAGE_SIZE intrinsic inquiry function.

· The INT{8,16,32} and REAL{32,64,128} kind type parameters and the array-valued named constants INTEGER_KINDS, LOGICAL_KINDS, REAL_KINDS and CHARACTER_KINDS of the intrinsic module ISO_FORTRAN_ENV.

· The module procedures C_SIZEOF of the intrinsic module ISO_C_BINDINGS and COMPILER_VERSION and COMPILER_OPTIONS of ISO_FORTRAN_ENV.

· Experimental coarray support (for one image only), use the -fcoarray=single flag to enable it.

· The BLOCK construct is supported.

· The STOP and the new ERROR STOP statements now support all constant expressions.

· Support for the CONTIGUOUS attribute.

· Support for ALLOCATE with MOLD.

· Support for the IMPURE attribute for procedures, which allows for ELEMENTAL procedures without the restrictions of PURE.

· Null pointers (including NULL()) and not-allocated variables can be used as actual argument to optional non-pointer, non-allocatable dummy arguments, denoting an absent argument.

· Non-pointer variables with TARGET attribute can be used as actual argument to POINTER dummies with INTENT(IN).

· Pointers including procedure pointers and those in a derived type (pointer components) can now be initialized by a target instead of only by NULL.

· The EXIT statement (with construct-name) can be now be used to leave not only the DO but also the ASSOCIATE, BLOCK, IF, SELECT CASE and SELECT TYPE constructs.

· Internal procedures can now be used as actual argument.

· Minor features: obsolesce diagnostics for ENTRY with -std=f2008; a line may start with a semicolon; for internal and module procedures END can be used instead of END SUBROUTINE and END FUNCTION; SELECTED_REAL_KIND now also takes a RADIX argument; intrinsic types are supported for TYPE(intrinsic-type-spec); multiple type-bound procedures can be declared in a single PROCEDURE statement; implied-shape arrays are supported for named constants (PARAMETER).

