4 D

Towards programming logics for low level languages

Ando Saabas
Institute of Cybernetics / INRIA Sophia-Antipolis

01.02.2004

MOTIVATION '

In case of smart-cards, port-issuance downloading of code is

possible, raising major security issues.

Besides obvious security guarantees, some guarantees about

functional properties of this code might be needed.

Typically, developers can use interactive verification tools to get
some guarantees about functional and behavioural properties of a

program.

How to bring these benefits to the code user?

/

OUTLINE '

Proof carrying code.

Source, target and assertion language.
The weakest precondition calculus.
Some small examples.

Conclusion and further work.

PROOF CARRYING CODE'

The code developer...

e Writes a program A, annotates it with (Hoare style)

specifications S, and builds a proof P that A abides to S using
some verification environment.

e Compiles the program, its specification and the proof, obtaining
a compiled program A , a (compiled) specification S , and a
(compiled) proof P .

N /

4 N

The code consumer...

e Generates the set of proof obligations from A and S using a

weakest precondition calculus.

e Uses a simple and fast proof checker to check if the proof P is

valid.

N

/

THE SOURCE LANGUAGE'

ex=x|nleope
ci:=x:=e| skip | if e then ¢ else ¢ | c¢;c| while {I} e do ¢

Prog ::={P} c {Q}

N /

INSTRUCTION SET OF THE TARGET LANGUAGE'

¢ = primop primitive operation

push n push n on stack
load x load value of x on stack
store x store top of stack in x

if j conditional jump

goto j unconditional jump
where op is a primitive operation +, —, X, ..., or a comparison

operation <, <,=,...;

)

N /

THE ASSERTION LANGUAGE'

P,Q := aq bop as
true
PVvVQ
P=0Q
PAQ

- P

dx. P
Vr.P

where a:=n|x | a aop as

/ THE "LOW LEVEL” ASSERTION LANGUAGE' \

P.Q == a1 bop as
true
PVQ
P=Q
PAQ

- P

dx. P
Va.P

where a:=n|x | ai aop as | top | stack(se)

se :=top | top —n

N /

-

WEAKEST PRECONDITION CALCULUS'

{P} c{Q}.
To check whether the program respects the specification, calculate

the weakest precondition of the program...

wp(c,Q) ={se ¥, | ClcsF Q}

...and check if the precondition implies the weakest precondition
= P = wp(c, Q)

Defining the weakest precondition calculus — how to deal with the
unstructuredness of the assembly code?

N

We have a Hoare triple - a program with a pre- and postcondition:

~

4 N

Divide the code into blocks:

Definition 1 (Basic blocks) Let P|j] be the j-th instruction of an

assembly program.

1. A basic block b is defined by an interval (i,j] such that Plj] is a
Jump instruction and i is the smallest program point k with k < j

and for all k' > k we have that P[K'] is not a jump instruction.

2. (i, 4] is the successor of (', j'], or equivalently (i’,j'] is a

predecessor of (i, 7], if P|j'] = goto i or P[j'| = if i.

3. a sub-block b is an interval (i,7 — 1), ie a block without its

terminating jump wnstruction.

N /

4 N

DEALING WITH LOOPS'

e For every block, the set of its predecessors and successors can be

calculated.

e In case there is a circular reference between blocks, a loop triple
(Ip,1p,1.) can be built, ie find the loop body, the loop conditional,
and the loop predecessor.

e The loop conditional has to be annotated with an invariant.

N /

w

w

S

w

w

N

THE CALCULUS wps A FOR SUB—BLOCKSI

ps bl) b27) _ wp8<b17wp8(b27))
ps(push n, @) = p|stack(t) «— n,t «— t + 1]

ps(load x, p) = p|stack(t) «— x,t «— t + 1]

(
(
ps(prim op,) = p|stack(t) <« stack(t) op stack(t — 1),top «— t — 1]
(
(

ps(store x,¢) = lx « stack(t),t =t — 1]

/

EXAMPLE 1 '

{P} x =2 + y {x > 5}

P=y>3
load y 24+y>95
push 2 2 + stack(top) > 5

prim + stack(top) + stack(top —1) > 5
store x stack(top) > 5
x>0

-

THE wp FOR BLOCKS I

The weakest precondition ¢; of a block b; is ..

if b; terminates on a

e return

;i = wps (b}, post)
e goto 1

pi = wps(b;, %)

o if 1
©i = wps(bi, stack(top) = ¢

;,next(i) [t()p A tOp R 1]/\
—stack(top) = ¢} ;[top < top — 1])

where..

N

: gpé)l = I, if b; is the loop body and b; is a loop conditional

. @i =1 AVy.(I =) if b; is its loop predecessor and b; is a loop

conditional.

. otherwise ¢; , = ¢;

EXAMPLE 2 '

{P} if x > 3 then y = 2 else y = 1 {y = 1}

r<3
push 3 r>3=>2=1Nzxz<3=1=1
load x x > stack(top) =2 =1A ...
prim > stack(top) > stack(top — 1) =2 =1A ...
if 1 stack(top) = 2 = 1 A\ —stack(top) = 1 =1
push 2 2=1
store y stack(top) =1
goto 2 y=1
push 1 1=1
store y stack(top) = 1

y=1

SOME RESULTS '

Theorem 1 (Soundness of wp rules) For all states s, programs c

and assertions P s — s' A s Ewp(c, P) = s’ E post

Theorem 2 For all while program c and assertions P, the weakest
precondition of c is equal to the weakest precondition of its compiled

counterpart C(c)

WPy (¢, post) = wp,(C(c), post)

N /

CONCLUSION AND ONGOING WORK. '

e Defining a wp for Java bytecode instructions.
e Dealing with optimizations.

e An implementation.

N

