
'

&

$

%

Towards programming logics for low level languages

Ando Saabas

Institute of Cybernetics / INRIA Sophia-Antipolis

01.02.2004

'

&

$

%

Motivation

• In case of smart-cards, port-issuance downloading of code is
possible, raising major security issues.

• Besides obvious security guarantees, some guarantees about
functional properties of this code might be needed.

• Typically, developers can use interactive verification tools to get
some guarantees about functional and behavioural properties of a
program.

• How to bring these benefits to the code user?

'

&

$

%

Outline

• Proof carrying code.

• Source, target and assertion language.

• The weakest precondition calculus.

• Some small examples.

• Conclusion and further work.

'

&

$

%

Proof carrying code

The code developer...

• Writes a program A, annotates it with (Hoare style)
specifications S, and builds a proof P that A abides to S using
some verification environment.

• Compiles the program, its specification and the proof, obtaining
a compiled program A , a (compiled) specification S , and a
(compiled) proof P .

'

&

$

%

The code consumer...

• Generates the set of proof obligations from A and S using a
weakest precondition calculus.

• Uses a simple and fast proof checker to check if the proof P is
valid.

'

&

$

%

The source language

e ::= x | n | e op e

c ::= x := e | skip | if e then c else c | c; c | while {I} e do c

Prog ::= {P} c {Q}

'

&

$

%

Instruction set of the target language

i ::= prim op primitive operation

| push n push n on stack

| load x load value of x on stack

| store x store top of stack in x

| if j conditional jump

| goto j unconditional jump

where op is a primitive operation +,−,×, . . ., or a comparison
operation <,≤,=, . . .;

'

&

$

%

The assertion language

P,Q ::= a1 bop a2

| true

| P ∨Q

| P ⇒ Q

| P ∧Q

| ¬P

| ∃x.P

| ∀x.P

where a ::= n | x | a1 aop a2

'

&

$

%

The ”low level” assertion language

P,Q ::= a1 bop a2

| true

| P ∨Q

| P ⇒ Q

| P ∧Q

| ¬P

| ∃x.P

| ∀x.P

where a ::= n | x | a1 aop a2 | top | stack(se)

se ::= top | top− n

'

&

$

%

Weakest precondition calculus

We have a Hoare triple - a program with a pre- and postcondition:
{P} c {Q}.

To check whether the program respects the specification, calculate
the weakest precondition of the program...

wp(c,Q) = {s ∈ Σ⊥ | C[c]s � Q}

...and check if the precondition implies the weakest precondition
� P ⇒ wp(c,Q)
Defining the weakest precondition calculus – how to deal with the
unstructuredness of the assembly code?

'

&

$

%

Divide the code into blocks:

Definition 1 (Basic blocks) Let P [j] be the j-th instruction of an
assembly program.

1. A basic block b is defined by an interval (i, j] such that P [j] is a
jump instruction and i is the smallest program point k with k < j

and for all k′ ≥ k we have that P [k′] is not a jump instruction.

2. (i, j] is the successor of (i′, j′], or equivalently (i′, j′] is a
predecessor of (i, j], if P [j′] = goto i or P [j′] = if i.

3. a sub-block b′ is an interval (i, j − 1), ie a block without its
terminating jump instruction.

'

&

$

%

Dealing with loops

• For every block, the set of its predecessors and successors can be
calculated.

• In case there is a circular reference between blocks, a loop triple
(lp, lb, lc) can be built, ie find the loop body, the loop conditional,
and the loop predecessor.

• The loop conditional has to be annotated with an invariant.

'

&

$

%

The calculus wps a for sub-blocks

wps(b1; b2, ϕ) = wps(b1;wps(b2, ϕ))

wps(push n, ϕ) = ϕ[stack(t)← n, t← t + 1]

wps(prim op, ϕ) = ϕ[stack(t)← stack(t) op stack(t− 1), top← t− 1]

wps(load x, ϕ) = ϕ[stack(t)← x, t← t + 1]

wps(store x, ϕ) = ϕ[x← stack(t), t = t− 1]

'

&

$

%

Example 1

{P} x = 2 + y {x > 5}

P ⇒ y > 3

load y 2 + y > 5

push 2 2 + stack(top) > 5

prim + stack(top) + stack(top− 1) > 5

store x stack(top) > 5

x > 5

'

&

$

%

The wp for blocks

The weakest precondition ϕi of a block bi is ..
if bi terminates on a

• return

ϕi = wps(b′i, post)

• goto l

ϕi = wps(b′i, ϕ
′
i,l)

• if l

ϕi = wps(b′i, stack(top)⇒ ϕ′
i,next(i)[top← top− 1]∧

¬stack(top)⇒ ϕ′
i,l[top← top− 1])

where..

'

&

$

%

1. ϕ′
i,l = I, if bi is the loop body and bl is a loop conditional

2. ϕ′
i,l = I ∧ ∀y.(I ⇒ ϕl) if bi is its loop predecessor and bl is a loop

conditional.

3. otherwise ϕ′
i,l = ϕj

'

&

$

%

Example 2

{P} if x > 3 then y = 2 else y = 1 {y = 1}

x ≤ 3

push 3 x > 3 ⇒ 2 = 1 ∧ x ≤ 3 ⇒ 1 = 1

load x x > stack(top) ⇒ 2 = 1 ∧ ...

prim > stack(top) > stack(top− 1) ⇒ 2 = 1 ∧ ...

if 1 stack(top) ⇒ 2 = 1 ∧ ¬stack(top) ⇒ 1 = 1

push 2 2 = 1

store y stack(top) = 1

goto 2 y = 1

1 : push 1 1 = 1

store y stack(top) = 1

2 : y = 1

'

&

$

%

Some results

Theorem 1 (Soundness of wp rules) For all states s, programs c
and assertions P s

c−→ s′ ∧ s � wp(c, P)⇒ s′ � post

Theorem 2 For all while program c and assertions P , the weakest
precondition of c is equal to the weakest precondition of its compiled
counterpart C(c)
wpw(c, post) = wpa(C(c), post)

'

&

$

%

Conclusion and ongoing work.

• Defining a wp for Java bytecode instructions.

• Dealing with optimizations.

• An implementation.

