FORTRAN, FORTRAN IV, FORTRAN 77,.... FORTRAN 2008...FORTRAN 2024
Areas of Application

FORTRAN is useful for a wide variety of applications, some of the more outstanding ones are as follows:

· Number crunching - due to the more natural (like it's true algebraic form) way of expressing complex mathematical functions and it's quick execution time, FORTRAN is easy and efficient at processing mathematical equations.

· Scientific, mathematical, statistical, and engineering type procedures -due to it's rapid number-crunching ability FORTRAN is a good choice for these type of applications.

Basically FORTRAN is most useful for applications that are "computational-bound" rather than "I/O bound".
One of the oldest programming languages, the FORTRAN was developed by a team of programmers at IBM led by John Backus, and was first published in 1957. The name FORTRAN is an acronym for FORmula TRANslation, because it was designed to allow easy translation of math formulas into code.
Often referred to as a scientific language, FORTRAN was the first high-level language, using the first compiler ever developed. Prior to the development of FORTRAN computer programmers were required to program in machine/assembly code, which was an extremely difficult and time consuming task, not to mention the dreadful chore of debugging the code. The objective during it's design was to create a programming language that would be: simple to learn, suitable for a wide variety of applications, machine independent, and would allow complex mathematical expressions to be stated similarly to regular algebraic notation. While still being almost as efficient in execution as assembly language. Since FORTRAN was so much easier to code, programmers were able to write programs 500% faster than before, while execution efficiency was only reduced by 20%, this allowed them to focus more on the problem solving aspects of a problem, and less on coding.

FORTRAN was so innovative not only because it was the first high-level language, but also because of it's compiler, which is credited as giving rise to the branch of computer science now known as compiler theory. Several years after it's release FORTRAN had developed many different dialects, (due to special tweaking by programmers trying to make it better suit their personal needs) making it very difficult to transfer programs from one machine to another.

These problems lead the American Standards Association (now known as the American National Standards Association) to release it's first Standard for a Programming Languagein 1966. This first standardized version has come to be known as FORTRAN '66 (aka.. FORTRAN IV).

Despite this standardization, a few years later, various new dialects began to surface again, requiring the Standards Association review the language again. This version is known as FORTRAN '77. This version was released in 1978 (it was called '77 because the Association began it's review in 1977), with several new features. Some of the more notable properties were; new error handling methods, and mechanisms for managing large-scale programs. The latest version; Fortran '90 (released in 1990, using the new capitalization scheme) added even more new features, such as support for: recursion, pointers, and for programmer-defined data types.
Komponendid: Laused:

-põhiprogramm -tegevuslaused

-alamprogramm -kirjelduslaused

-andmeplokk

PROGRAM SUBROUTINE FUNCTIONE (AVALDIS-FUNKTSIOON)

BLOCK DATA (COMMON)

WRITE(juhtinfo) - UNIT,FMT,ERR,END,REC,IOSTAT

 - kujul UNIT=k

OPEN(juhtinfo) -UNIT,FILE,ACCESS,STATUS,FORM,RECL,IOSTAT,ERR,BLANK

INQUIRE

Keelte areng.

Significant Language Features

www.fortran.com

Some of the more significant features of the language are as listed below:

· Simple to learn - when FORTRAN was design one of the objectives was to write a language that was easy to learn and understand.

· Machine Independent - allows for easy transportation of a program from one machine to another.

· More natural ways to express mathematical functions - FORTRAN permits even severely complex mathematical functions to be expressed similarly to regular algebraic notation.

· Problem orientated language

· Remains close to and exploits the available hardware

· Efficient execution - there is only an approximate 20% decrease in efficiency as compared to assembly/machine code.

· Ability to control storage allocation -programmers were able to easily control the allocation of storage (although this is considered to be a dangerous practice today, it was quite important some time ago due to limited memory.

· More freedom in code layout - unlike assembly/machine language, code does not need to be laid out in rigidly defined columns, (though it still must remain within the parameters of the FORTRAN source code form).

4.1 Fortran 2003 status

GNU Fortran supports several Fortran 2003 features; an incomplete list can be found below. See also the wiki page about Fortran 2003.

· Procedure pointers including procedure-pointer components with PASS attribute.

· Procedures which are bound to a derived type (type-bound procedures) including PASS, PROCEDURE and GENERIC, and operators bound to a type.

· Abstract interfaces and and type extension with the possibility to override type-bound procedures or to have deferred binding.

· Polymorphic entities (“CLASS”) for derived types – including SAME_TYPE_AS, EXTENDS_TYPE_OF and SELECT TYPE. Note that the support for array-valued polymorphic entities is incomplete and unlimited polymophism is currently not supported.

· The ASSOCIATE construct.

· Interoperability with C including enumerations,

· In structure constructors the components with default values may be omitted.

· Extensions to the ALLOCATE statement, allowing for a type-specification with type parameter and for allocation and initialization from a SOURCE= expression; ALLOCATE and DEALLOCATE optionally return an error message string via ERRMSG=.

· Reallocation on assignment: If an intrinsic assignment is used, an allocatable variable on the left-hand side is automatically allocated (if unallocated) or reallocated (if the shape is different). Currently, scalar deferred character length left-hand sides are correctly handled but arrays are not yet fully implemented.

· Transferring of allocations via MOVE_ALLOC.

· The PRIVATE and PUBLIC attributes may be given individually to derived-type components.

· In pointer assignments, the lower bound may be specified and the remapping of elements is supported.

· For pointers an INTENT may be specified which affect the association status not the value of the pointer target.

· Intrinsics command_argument_count, get_command, get_command_argument, and get_environment_variable.

· Support for unicode characters (ISO 10646) and UTF-8, including the SELECTED_CHAR_KIND and NEW_LINE intrinsic functions.

· Support for binary, octal and hexadecimal (BOZ) constants in the intrinsic functions INT, REAL, CMPLX and DBLE.

· Support for namelist variables with allocatable and pointer attribute and nonconstant length type parameter.

· Array constructors using square brackets. That is, [...] rather than (/.../). Type-specification for array constructors like (/ some-type :: ... /).

· Extensions to the specification and initialization expressions, including the support for intrinsics with real and complex arguments.

· Support for the asynchronous input/output syntax; however, the data transfer is currently always synchronously performed.

· FLUSH statement.

· IOMSG= specifier for I/O statements.

· Support for the declaration of enumeration constants via the ENUM and ENUMERATOR statements. Interoperability with gcc is guaranteed also for the case where the -fshort-enums command line option is given.

· TR 15581:

· ALLOCATABLE dummy arguments.

· ALLOCATABLE function results

· ALLOCATABLE components of derived types

· The OPEN statement supports the ACCESS='STREAM' specifier, allowing I/O without any record structure.

· Namelist input/output for internal files.

· Further I/O extensions: Rounding during formatted output, using of a decimal comma instead of a decimal point, setting whether a plus sign should appear for positive numbers.

· The PROTECTED statement and attribute.

· The VALUE statement and attribute.

· The VOLATILE statement and attribute.

· The IMPORT statement, allowing to import host-associated derived types.

· The intrinsic modules ISO_FORTRAN_ENVIRONMENT is supported, which contains parameters of the I/O units, storage sizes. Additionally, procedures for C interoperability are available in the ISO_C_BINDING module.

· USE statement with INTRINSIC and NON_INTRINSIC attribute; supported intrinsic modules: ISO_FORTRAN_ENV, ISO_C_BINDING, OMP_LIB and OMP_LIB_KINDS.

· Renaming of operators in the USE statement.

4.2 Fortran 2008 status

The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally known as Fortran 2008. The official version is available from International Organization for Standardization (ISO) or its national member organizations. The the final draft (FDIS) can be downloaded free of charge from http://www.nag.co.uk/sc22wg5/links.html. Fortran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the International Organization for Standardization and the International Electrotechnical Commission (IEC). This group is known as WG5.

The GNU Fortran supports several of the new features of Fortran 2008; the wiki has some information about the current Fortran 2008 implementation status. In particular, the following is implemented.

· The -std=f2008 option and support for the file extensions .f08 and .F08.

· The OPEN statement now supports the NEWUNIT= option, which returns a unique file unit, thus preventing inadvertent use of the same unit in different parts of the program.

· The g0 format descriptor and unlimited format items.

· The mathematical intrinsics ASINH, ACOSH, ATANH, ERF, ERFC, GAMMA, LOG_GAMMA, BESSEL_J0, BESSEL_J1, BESSEL_JN, BESSEL_Y0, BESSEL_Y1, BESSEL_YN, HYPOT, NORM2, and ERFC_SCALED.

· Using complex arguments with TAN, SINH, COSH, TANH, ASIN, ACOS, and ATAN is now possible; ATAN(Y,X) is now an alias for ATAN2(Y,X).

· Support of the PARITY intrinsic functions.

· The following bit intrinsics: LEADZ and TRAILZ for counting the number of leading and trailing zero bits, POPCNT and POPPAR for counting the number of one bits and returning the parity; BGE, BGT, BLE, and BLT for bitwise comparisons; DSHIFTL and DSHIFTR for combined left and right shifts, MASKL and MASKR for simple left and right justified masks, MERGE_BITS for a bitwise merge using a mask, SHIFTA, SHIFTL and SHIFTR for shift operations, and the transformational bit intrinsics IALL, IANY and IPARITY.

· Support of the EXECUTE_COMMAND_LINE intrinsic subroutine.

· Support for the STORAGE_SIZE intrinsic inquiry function.

· The INT{8,16,32} and REAL{32,64,128} kind type parameters and the array-valued named constants INTEGER_KINDS, LOGICAL_KINDS, REAL_KINDS and CHARACTER_KINDS of the intrinsic module ISO_FORTRAN_ENV.

· The module procedures C_SIZEOF of the intrinsic module ISO_C_BINDINGS and COMPILER_VERSION and COMPILER_OPTIONS of ISO_FORTRAN_ENV.

· Experimental coarray support (for one image only), use the -fcoarray=single flag to enable it.

· The BLOCK construct is supported.

· The STOP and the new ERROR STOP statements now support all constant expressions.

· Support for the CONTIGUOUS attribute.

· Support for ALLOCATE with MOLD.

· Support for the IMPURE attribute for procedures, which allows for ELEMENTAL procedures without the restrictions of PURE.

· Null pointers (including NULL()) and not-allocated variables can be used as actual argument to optional non-pointer, non-allocatable dummy arguments, denoting an absent argument.

· Non-pointer variables with TARGET attribute can be used as actual argument to POINTER dummies with INTENT(IN).

· Pointers including procedure pointers and those in a derived type (pointer components) can now be initialized by a target instead of only by NULL.

· The EXIT statement (with construct-name) can be now be used to leave not only the DO but also the ASSOCIATE, BLOCK, IF, SELECT CASE and SELECT TYPE constructs.

· Internal procedures can now be used as actual argument.

· Minor features: obsolesce diagnostics for ENTRY with -std=f2008; a line may start with a semicolon; for internal and module procedures END can be used instead of END SUBROUTINE and END FUNCTION; SELECTED_REAL_KIND now also takes a RADIX argument; intrinsic types are supported for TYPE(intrinsic-type-spec); multiple type-bound procedures can be declared in a single PROCEDURE statement; implied-shape arrays are supported for named constants (PARAMETER).
Kaasaegse Fortrani edusammud suure jõudlusega andmetöötluse jaoks 2024. aastal: mõju ja kodeerimise näited

Modern Fortran for High Performance Computing: Some Code (2024)

Advances of Modern Fortran for High Performance Computing in 2024: impact and coding examples.

Author

Paul Norvig

Published

January 12, 2024

Introduction

I just finished an overview on Modern Fortran for 2024 which shows how it’s used in HPC nowadays. Below I cover the basics, like syntax and features, and also get into how to optimize Fortran code for maximum performance. Then I share some insights on parallel computing with coarrays and MPI, and wrap up with a few case studies that illustrate Fortran’s real-world applications in HPC projects.

Introduction to Modern Fortran and Its Relevance in 2024

Let’s talk Fortran, specifically the flavor we’re coding in 2024. When I first encountered Fortran, it felt like excavating a programming relic, a glimpse into the computational past. Yet here we are, with Fortran not just surviving but thriving in the realm of High Performance Computing (HPC). The language has been quietly pulling the heavy load behind the scenes, propelling science and engineering forward with its sheer computational power and efficiency.

If you’re new to Fortran, it’s this incredible language that’s been optimized over the decades for numerical tasks. Think of it like a seasoned mathematician who’s seen it all; no fancy tricks, just solid, reliable math. In the world of HPC, where every millisecond counts, Fortran is the go-to because compilers can optimize it so well for speed.

Now, let’s get to some coding. If you’re used to languages like Python, Fortran syntax might seem a tad exotic. But fear not, it’s straightforward once you get the hang of it.

program hello_fortran

print *, "Hello, Modern Fortran"
end program hello_fortran
The above code is your standard ‘Hello, World’ but in Fortran. It starts with program and ends with end program. The print *, is how you output to the console, with the asterisk (*) signifying the default output device (usually the console).

One thing that keeps Fortran relevant is its ability to deal with arrays efficiently. Arrays in Fortran are first-class citizens and this makes a lot of numerical algorithms much easier to implement.

! Define and operate on arrays
program array_operations

integer, dimension(5) :: array = [1, 2, 3, 4, 5]
array = array**2
print *, array

end program array_operations
In the snippet above, we declare an array of integers, initialize it, and then square each element - all without loops. This kind of operation, known as array programming, is super powerful in Fortran.

But Fortran isn’t standing still. The latest versions, like Fortran 2008 and 2018, have introduced modern programming concepts like object-oriented programming and coarray features for parallel computing. These features allow for writing clean, modular, and easy-to-maintain code, while keeping the performance benefits Fortran is renowned for.

Consider this simple example of a module, which is Fortran’s way of encapsulating data and procedures:

module simple_math

implicit none
contains
function add(a, b)

integer, intent(in) :: a, b

integer :: add

add = a + b

end function add

end module simple_math
Modules can be used to group related functions and subroutines, making code organization a breeze. With implicit none, we ensure that all variables must be explicitly declared, avoiding common errors caused by typos.

Fortran’s relevance in 2024 is also largely due to the community and resources available. Websites like the Fortran Wiki, forums, and repositories on GitHub are teeming with libraries, frameworks, and discussions that help programmers of all levels. Universities still offer courses in computational physics and engineering with a significant amount of Fortran in the curriculum.

So, while Fortran may seem like an artifact from a bygone era, it’s anything but antiquated. The language has adapted, embraced new paradigms, and maintained its spot on the leaderboard for solving large-scale computational problems. As we progress through the 2020s, Fortran’s synergy of vintage and vanguard continues to be a foundational pillar of HPC. With this introduction under your belt, we’ll next explore the key features that make Fortran a powerhouse in HPC environments.

Key Features of Fortran in HPC Environments

Fortran has remained a stalwart in the realm of high-performance computing (HPC), and for good reasons. Its array-centric design and inherent support for numerical computation has made Fortran a go-to language when dealing with scientific computations. Now, let’s take a look at some of the key features that make Fortran stand out in HPC environments.

Array Operations
real, dimension(100,100) :: A, B, C

C = A + B
From the moment I started using Fortran for scientific computing, the elegance of its array operations stood out. The above code snippet just touches the surface but imagine performing complex operations across multi-dimensional arrays with similar ease. This high-level abstraction is not only elegant but also optimizes performance, as Fortran compilers are adept at translating such operations into efficient, vectorized machine instructions.

Implicit Parallelism
In Fortran, parallelism can be quite straightforward. With directives such as !$OMP PARALLEL DO, I can instruct the compiler to parallelize a loop without getting tangled in the complexities of thread management. Here’s how it can look:

!$OMP PARALLEL DO
do i = 1, n

A(i) = B(i) + C(i)

end do
!$OMP END PARALLEL DO
This feature allows the exploitation of multi-core processor architectures, essential in modern HPC setups.

Intrinsic Functions and Modules
Fortran comes with a rich set of intrinsic functions that are highly optimized for performance. Take MATMUL for instance:

matrix_product = MATMUL(A, B)
And when it comes to modularity, Fortran’s module system lets me encapsulate functionalities and data structures efficiently, which is a boon for maintaining large-scale scientific codebases. Here’s a simple module example:

module linear_algebra

contains
function dot_product(u, v) result(dp)

real, intent(in) :: u(:), v(:)

real :: dp

dp = sum(u * v)

end function dot_product
end module linear_algebra
Memory Hierarchy Optimization
Fortran’s syntax and semantics help in optimizing memory hierarchy usage. By correctly aligning data structures and using contiguous memory arrangements, I can ensure that cache utilization is maximized, which is critical in HPC for achieving high performance. This is part of the Fortran standard and doesn’t need specific syntax in the code, but it is something a programmer should be aware of while designing data structures.

Interoperability with C
As much as Fortran is self-sufficient for numeric computations, there are scenarios where I’ve found it necessary to interface with C libraries. Fortran’s interoperability with C is seamless, owing to the ISO_C_BINDING module which makes calling C code from Fortran a breeze.

module c_bindings

use, intrinsic :: iso_c_binding

interface
subroutine c_function(a) bind(C, name="c_function")

real(c_float), intent(inout) :: a

end subroutine c_function

end interface
end module c_bindings
These are just a few of the features that make Fortran a top choice for HPC. As someone who’s dabbled in various programming languages, I can say that Fortran’s focus on performance, coupled with its modern features, makes it exceptionally well-suited for scientific and numeric computation. While I haven’t covered parallel programming with coarrays or Message Passing Interface (MPI) here (because you’ll find that in another section), I use them extensively too.

The beauty of Fortran in HPC is that it doesn’t require me to be a magician. The language itself is designed for the very purpose of high performance, which means a lot of the optimization happens under the hood, thanks to sophisticated compilers. This allows me, as a developer or scientist, to focus more on solving the domain-specific problems rather than the intricacies of the programming language itself.

Parallel Computing with Fortran Coarrays and MPI

Parallel computing is an indispensable ingredient in today’s High Performance Computing (HPC) recipes, and for good measure. With gargantuan data sets and computationally intense models, harnessing multiple processors to perform tasks concurrently doesn’t just save time—it’s often the only way to make certain computation feasible.

Take Fortran, the time-honored workhorse of the numerical world. Despite being older than many of its users, it has evolved, embracing modern HPC needs beautifully. Specifically, I’ll focus on Fortran Coarrays and the Message Passing Interface (MPI)—two robust tools for parallel computing.

Fortran introduced Coarrays in the 2008 standard as a native Fortran parallel feature, offering a cozier alternative to MPI for parallelism within Fortran codes. Write code like this, and you’re doing parallel computing:

program coarray_hello_world

implicit none
integer :: my_rank

my_rank = this_image() ! Each image gets its own unique rank
write(*,*) 'Hello from image', my_rank, 'of', num_images()

end program coarray_hello_world
Running this simple coarray program utilizes parallel resources virtually without users knowing much about the underlying parallel architecture. The coarray syntax is integrated neatly within Fortran, making it cleaner to read and easier to manage. I find this advantageous when teaching newcomers to parallel computing; it lowers the entry barrier without sacrificing performance.

But let’s not kid ourselves: when it comes to outright control and ubiquity in HPC, MPI is like the grandmaster chess player in a room full of amateurs. Almost every parallel supercomputer speaks MPI. Sure, it has a steeper learning curve, but the level of granularity and cross-platform friendliness it offers, that’s unmatched. Here’s your “Hello World” in MPI:

program mpi_hello_world

use mpi

implicit none
integer :: my_rank, size, ierr

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'Hello world from process', my_rank, 'of', size
call MPI_FINALIZE(ierr)
end program mpi_hello_world
This code must be compiled with an MPI compiler wrapper like mpif90 and executed with an MPI launcher like mpirun or mpiexec. Unlike coarrays, where the run-time specifics are somewhat hidden, MPI requires explicit instructions to the MPI environment.

It’s crucial to understand that the two can be mixed—coarrays for user-friendly syntax where possible, and MPI where fine-tuned control is necessary. I’ve juggled the two in my simulations, opting for coarrays’ ease when divvying up domain-decomposed tasks across different processors, and MPI when coordinating complex data communications.

You might wonder—why bother with Fortran in a world teeming with modern languages? The answer lies in these very capabilities: Fortran’s array handling, intrinsic functions, and simple syntax combined with its parallel prowess make it a battle-tested giant that doesn’t shy away from today’s HPC challenges.

To learn more, universities like the Massachusetts Institute of Technology (MIT) and organizations like the Exascale Computing Project host a plethora of Fortran resources and communities that dive deep into these topics. And if you’re the tinkering kind, start experimenting with code and insights from repositories on sites like GitHub.

Remember, the beauty of Fortran in HPC lies in its simplicity and efficiency—and when you sprinkle in some parallel computing with coarrays and MPI, the old dog does indeed learn some rather impressive new tricks.

Optimization Techniques for Fortran in HPC

! Sample Fortran code with optimization techniques
program optimization_demo

implicit none
integer, parameter :: n = 1000000
real(kind=8), dimension(n) :: x, y

integer :: i

real(kind=8) :: alpha = 0.5
real(8) :: start, finish

! Populate arrays with initial values
x = 1.0
y = 2.0
call cpu_time(start)
! Optimized loop using array operations
y = y + alpha * x

call cpu_time(finish)
print *, 'Time taken: ', finish - start, ' seconds'
end program optimization_demo
In my experience with Fortran for high-performance computing (HPC), optimization is key. Take, for instance, the loop above. This demonstrates a basic vector operation that benefits from the array-processing capabilities inherent in Fortran, ensuring optimized memory access patterns and reducing the execution time significantly when compared to a traditional loop iteration.

! Unoptimized loop for comparison
do i = 1, n

y(i) = y(i) + alpha * x(i)

end do
The unoptimized loop, while functionally equivalent, will often run slower due to its scalar operations, which do not take full advantage of modern CPU’s vectorization capabilities.

When optimizing Fortran code, I also prioritize the usage of built-in mathematical functions which are highly optimized and can significantly outperform custom written ones on large array operations. Making proper use of intrinsic functions like matmul for matrix multiplication or dot_product for calculating scalar products can take you far into optimizing numerical computations.

Another critical aspect is to enable compiler optimizations. Most Fortran compilers offer different levels of optimization flags. For instance, using gfortran, the GNU Fortran compiler, involves setting the -O or -Ofast flags during compilation:

gfortran -Ofast optimization_demo.f90 -o optimization_demo
While -O most often balances between compilation time and execution performance, -Ofast unleashes aggressive optimizations that could substantially reduce your program’s runtime. But, be cautious, as it can alter numerical results due to changes like floating-point model adjustments.

Additionally, profiling tools are indispensable for pinpointing bottlenecks in your code. Tools such as gprof for GNU Compiler Collection (GCC) or Intel’s VTune Profiler provide insights not only into which parts of the code consume most of the execution time but also about cache-misses and branch mispredictions.

Lastly, proper exploitation of parallel computing is non-negotiable for HPC. Tapping into shared-memory parallelism using OpenMP can accelerate loop computations:

! Using OpenMP for parallel loop
!$omp parallel do
do i = 1, n

y(i) = y(i) + alpha * x(i)

end do
!$omp end parallel do
Just adding a few OpenMP directives can transform a single-threaded loop into a multi-threaded workhorse, assuming you’ve compiled with OpenMP support enabled:

gfortran -fopenmp optimization_demo.f90 -o optimization_demo
Through practical experience, adopting these optimization techniques can transform sluggish code into highly optimized routines that excel in the demanding HPC environment. And with Fortran’s ongoing evolution, its place at the heart of scientific computation is as secure as ever.

For more in-depth guidance, the High-Performance Computing Center at Stuttgart offers a comprehensive set of Fortran best practices: Fortran Best Practices. Additionally, explore the Fortran Wiki and communities such as r/fortran on Reddit for forums full of insights on optimization by both hobbyists and professionals.

Case Studies: Fortran in Action in Current HPC Projects

In the realm of High Performance Computing (HPC), Fortran remains a stalwart presence, continually proving its resilience and utility. I’ve witnessed firsthand how this venerable language has been the backbone of significant computational projects, and it’s exciting to share how researchers and engineers are actively harnessing its power in diverse fields.

One striking example is the ongoing work at the European Centre for Medium-Range Weather Forecasts (ECMWF). Their Integrated Forecasting System (IFS), which is critical for global weather prediction, is grounded in Fortran. Here, the high-level mathematical capabilities of Fortran shine, handling complex numerical methods with ease. The extensive use of Fortran ensures highly efficient execution, crucial for time-sensitive weather predictions.

subroutine compute_forecast(parameters, data, results)

! Use descriptive variable names and indent code for readability

real, intent(in) :: parameters(:)

real, intent(in) :: data(:,:)

real, intent(out) :: results(:)

! Insert numerical computations here

! Results are filled and ready for the next step

end subroutine compute_forecast
Similarly, at the U.S. Department of Energy’s Oak Ridge National Laboratory, researchers utilize Fortran in their simulations on the Summit supercomputer. The work involves modeling atomic structures and their behaviors under various conditions, instrumental in materials science. The lab’s scientists have optimized Fortran code to exploit the parallel processing capabilities of Summit, leveraging its immense processing power.

program atomic_simulation

use mpi

integer :: ierr, rank, size, i

real :: structure_data(100)

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

! Each processor handles a part of the structure data

call handle_structure(rank, size, structure_data)

call MPI_FINALIZE(ierr)

end program atomic_simulation
If you’re curious about real-world code, take a peek at the GitHub repository for the Quantum ESPRESSO project, a suite for electronic-structure calculations and materials modeling at the nanoscale. Quantum ESPRESSO’s kernels, primarily written in Fortran, demonstrate advanced techniques and performance-critical optimizations adopted in cutting-edge research.

module quantum_module

implicit none

! Define constants used in the module

real, parameter :: pi = 3.141592653589793, hbar = 1.054571800e-34

contains

subroutine calculate_band_structure(electron_config, band_structure)

real, intent(in) :: electron_config(:)

real, intent(out) :: band_structure(:,:)

! Implementation for band structure calculations

end subroutine calculate_band_structure

end module quantum_module
These case studies portray just a fraction of Fortran’s applications. As we hit the closing note on Modern Fortran for High Performance Computing (2024), I hope you’re inspired by Fortran’s adaptability and enduring presence in the HPC landscape. The language’s intrinsic focus on numerical computation, coupled with enhancements like coarrays and modernized parallel processing capabilities, position it uniquely for future scientific discoveries and innovation.

Whether a beginner or an experienced programmer, diving into Fortran is less about learning a new language and more about equipping yourself with a versatile tool for solving some of the most challenging computational problems. Looking at how actively Fortran is being used in HPC, I’m convinced it isn’t merely surviving—it’s thriving, evolving, and enabling researchers to push boundaries of knowledge.

