
D R . T H O R S T E N S C H N E I D E R

T H E B I N A R Y A U D I T O R ™

B E G I N N E R S G U I D E

W W W. B I N A R Y- A U D I T I N G . C O M

Copyright © 2011 Dr. Thorsten Schneider

published by www.binary-auditing.com

an university exercise compendium for binary auditing, binary software engineering

and code arts

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permis-
sion from the publisher. No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in thepreparation of this book, the publisher
and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. I cannot attest to the accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark orservice mark. Every effort has been made
to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The
information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the CD or programs accompanying it.

First printing, January 2011

Introduction

Many beginners ask how and where to start. In a time where information is
spreaded over the internet and information pieces started to get fragmented and
to have a loose coupling the aim of The Binary Auditor™is to offer a comprehen-
sive guide. This guide (and the project) is aimed to help beginners in the field of
Binary Auditing and Reverse Code Engineering.

So if you are interested to learn this art I am sure that you know what this all is
about. Binary Auditing deals with the analysis of binary files - a world without
source code, a world build by compilers and messed up by exploitable code,
copy protectionists or virus writers. It is a fun and challenging world and The
Binary Auditor™is your sports market.

If you are here just because you want to learn how to crack this place might not
be the right choice. The Binary Auditor™tries to build up a solid background
knowledge for university students and other interested folks. As university
lecturer I have spended lot of time solving the "Table of Contents" problem.
Where shall we start? And can we offer a full practical course without spending
too much time with theory? Is it possible without learning theory first? And
if we need theory, which is necessary and how much? Additionally I had the
problem with the programming languages. Can you learn Binary Auditing
without being a C++ coder? In my opinion: yes. Most of my students joined my
Java lecture, a programming language which is quite different from what we
will do during The Binary Auditor™. You can even start with all this without
having assembly language knowledge? Again: yes, but it will hurt. If you want
to enter this fascinating world you have to know that you have to invest lot of
your free time.

Understanding binary code is like learning how to ride a bicycle. You see people
riding a bike and you are fascinated. So you buy a bike, take your seat.. and you
will crash. After several attempts you are next to give up. But you have a friend
who recommends a good book for this. You read this book, you take your seat...
and you crash. As a result you realize that just watching others (like watching
YouTube videos) does not help at all, and reading (books or tutorials) is a nice
lecture. But when it comes to a problem slightly different from video or tutorial
you will be lost. Finally you realize that you can learn only by doing, so you
take your seat again and again... and suddenly things get better, the first curve
can be taken even you are not a trial bike or downhill rider yet. But if you train
hard enough and you invest your time you will get a perfect biker.

4 the binary auditor
™

beginners guide

Do not get me wrong. But current young people are YouTube nerds thinking
just watching something brings them enlightenment. Forget about videos, DO
IT! If you are one of the lazy guys who are from the generation "feed me" then
close this document and drop the idea to learn this art.

Students in programming courses can be categorized as effective and ineffective
based on their effectiveness in programming. Effective students can write pro-
grams and they typically learn programming with moderate effort. Whereas,
ineffective students cannot write correct programs and need more personal at-
tention and cognitive support to learn programming. Since the failure rate is
high, the ineffective category plays a significant role in the effectiveness of pro-
gramming courses.

The results of psychological studies in computer programming expertise show
that turning a novice into an expert is impossible in a four year undergradu-
ate programme, but competence is possible by practice. Thus lab sessions play
a significant role because of the importance of practice in learning program-
ming. But in lab sessions also, some teachers will start giving large programs
as assignments to novices rather than starting from small and simple programs.
This non-systematic teaching will increase complexity in students’ mind, since
brain has a natural tendency to learn in an incremental way. In addition to that,
novices may not get sufficient individual-feedback during lab session. During
the programming task learners receive relatively high levels of feedback on low
level issues, such as syntax rules, but tend to receive low levels of feedback on
conceptually more difficult issues.

As a cognitive trainer I try to enhance students ability to learn. Typical students
have cognitive problems at various levels. Some of them have problems with
the very basic cognitive skill called memorization which is essential for knowl-
edge acquisition. Some others have listed cognitive difficulties to comprehend
a given problem and a given program, which needs comprehension and anal-
ysis skills. Yet another group finds it difficult to apply (’application’ cognitive
level) the concepts learned to solve problems. Majority finds difficulty to arrive a
correct logic, to integrate modules to a working program and difficulty in algo-
rithm design. These are synthesis problems. It is obvious that students also have
difficulties in evaluation, which is the highest cognition level. The symptoms
for these are their difficulties to justify, defend and describe a program logic.
Therefore it is observed that, programming students have serious difficulties
in all the levels of Bloom’s taxonomy in cognitive domain, independent of the
programming language they have used.

Since I am not able to use cognitive training methods during this "internet
homework exercise course" I will try to find a special style to train you task
driven. This includes special method I have developed such as Cognitive Debug-
ging and Speed Debugging1. By the way: The Binary Auditor™is the base for 1 You can read a sum-

mary of this method at
http://www.cognitive-
debugging.com.

my own university lecture "Ethical Hacking - Binary Auditing and Reverse Code
Engineering". It is now your choice: take the blue or the red pill.

First steps

So let us start with all this. What do you need to learn Binary Auditing? First
you should be able to tolerate lot of frustration. You need some brain and most
of your free time. Some ability to think logical is absolutely necessary. By the
way, if you have never programmed before, please learn some programming
first!
Let us setup our working environment. We need a PC with Windows (later
we have a look at Linux and Mac OS X as well). At the moment any Windows
above XP is sufficient, so move on with XP, Vista or Windows 7. It is very im-
portant that you install a 32 bit system, 64 bit will not work since our debugger
is for 32 bit only! I highly recommend to install the operating system within a
virtual machine but a standard installed system is fine. We do not deal with evil
software pieces killing our working environment. Even when we move to mal-
ware analysis (later, later) I can assure that your machine does not get infected!
Next step is to download our weapon. I have included within the training pack-
age a binary debugger which is free to use. It is IDA Pro Free version 5.0. The
lack of this version is that it can only analyze 32 bit applications. Now you can
see why we need a 32 bit system. But trust me, it is good enough for us at the
moment. IDA Pro is a perfect tool for our course, it can load and analyze binary
files and even display it in a very cool graphical display (you will see this later).
Best is, that we can "debug" the application (target) which means that we can
step command by command through the target application and we can see what
it is really doing. By the way, IDA Pro is not really a debugger but a database.
But at the moment let us call it debugger.
Now we need enough material to get trained. The training package includes all
we need and I am sure that you have downloaded and extracted the package.
Inside the training package you can see various folders:
exercises/001 - c++ fundamentals

and
exercises/002 - assembly language fundamentals.
is meant for those students who still have to learn C++ and assembly language.
The folders contain exercise workbooks and if your C++ is very very rusty you
should really do them!

Let us start!

We will jump directly into the world of Binary Auditing. Let us examine folder
exercises/003 - hll pattern mapping. If you have not installed IDA Pro you
should do now! Now go and start IDA Pro. You will get the following screen:

Figure 1: Welcome
screen of IDA Pro Free
5.0. Note that we can
use the checkbox to
disable the IDA 6.x
info next time.

The difference between the free IDA Pro and the commercial one is that we do
not have any support for 64 bit Windows, Linux, Mac OSX and other platforms.
Anyway this is fine for us, we just need to work with 32 bit and do not need
other platforms for now.
After clicking the OK button we see the start screen of IDA Pro. Two windows
get opened. The front window is to disassemble a new file or to open a recent
project. The help box is new with IDA 5.0 Freeware and can be helpful if you
get stuck.

Figure 2: IDA Pro
showing help system
and asks which file to
open. You can see that
I had opened 2 files
before. For you this
might be empty at the
moment.

8 the binary auditor
™

beginners guide

Let us start with the first file we would like to analyze. After clicking the "New"
button you will get a dialog asking what kind of file you would like to analyze.
Most important for us are PE Executable and PE Dynamic Library2. Just click at 2 PE Dynamic Library

is nothing else than
DLL.

PE Executable, then click at the OK button.

Figure 3: IDA Pro
asking what kind of
file we would like to
open.

All you have to do now is to navigate to the folder where you have extracted the
training package. Move to the folder exercises/003 - hll pattern mapping.
Then move to the folder Part 1 - Common Code.
Select the file a01_identify_variables.exe and hit the Open button.

Figure 4: Open a
specific file with IDA
Pro. Note that my
folder is quite empty
because I just have
copied this exercise file
to this folder.

Now IDA Pro opens another window. There are many options we can set when
we need to do more complex analysis. At the moment we just accept what
we see. Our file is a Portable Executable file (your .exe file) so we just click at
OK. Later, when you have played enough with IDA Pro you can open recents
projects via the shown menu. Otherwise, IDA Pro saves the analysis database in
the same folder where the file is located and your analysis is saved if you like to
pause your analysis.

let us start! 9

Figure 5: If you are
interested to know
more about the specific
settings I highly
recommend "The IDA
Pro Book".

Now IDA Pro gives us some important information. It seems that the input file
was linked with debug information. You might be surprised but you will find
many files with this since many developers forgot about compiler settings. In
our case this is not a mistake, it was intended by me to simplify your analysis.
Let us load the corresponding PDB file from the server and we click as Yes.

Figure 6: IDA Pro has
detected that we can
use debug information
included.

IDA Pro now opens the file and analyzes it. For this small file the analysis is
very fast. After analysis we see that IDA Pro opened many windows. Later
you might set your own settings but for me this is too messy. All these icons do
disturb me at smaller screen resolutions so let us disable all these nifty buttons
below the top menu.

10 the binary auditor
™

beginners guide

Figure 7: Note that the
screenshot has been
done with only few
pixels in size. Nor-
mally I do debugging
at a 30" display with
2500 pixel width. But
any resolution above
1024 pixel should be
fine.

Do a right click somewhere at this buttons bars. Here you can see that really ev-
erything has been enabled. We will change this to get more place at the desktop.
For this just disable the menu entry Main.

Figure 8: The right
click menu shows us
what we can view or
not.

let us start! 11

You will see now the following screen. Note that this is just my preference. Do
this as you like but we do not need these buttons at the moment, really!.

Figure 9: Better with-
out nifty buttons and
more place for the
important things.

This looks still a little bit messy, so let us resize the graphical window. It has the
title IDA View-A. After resizing you get the following screen.

Figure 10: With the
graphical view it
makes much more
fun to analyze and to
debug applications.

The little small window at bottom right is the graph overview. You will find
it handy when it comes to more complex code. At the moment it looks quite
empty but this is OK. Now in full screen you can see the IDA Pro analysis of our
example exercise. Using your mouse you can pan the window to any direction
you like. I will leave now the screen shots and copy the code directly to this
tutorial.

First exercise

The exercise is to identify variables. Let us have a look at the begin of the main
function of the application. You will see the following code:

1 ; i n t _ _ c d e c l main (i n t argc , c o n s t c h a r * * argv , c o n s t c h a r * envp)
2 _main proc near
3

4 var_38= qword ptr −38h
5 var_2C= dword ptr −2Ch
6 var_25= byte ptr −25h
7 var_24= dword ptr −24h
8 var_20= word ptr −20h
9 var_1C= dword ptr −1Ch

10 var_18= word ptr −18h
11 var_14= word ptr −14h
12 var_F= byte ptr −0Fh
13 var_E= byte ptr −0Eh
14 var_D= byte ptr −0Dh
15 var_C= dword ptr −0Ch
16 var_8= qword ptr −8

17 argc= dword ptr 8

18 argv= dword ptr 0Ch
19 envp= dword ptr 10h

IDA has done a good job for us. A line 1 we can see the function signature, IDA
Pro detected the main function and tells us what parameters are expected3. 3 Note that this appli-

cation does not need
any parameters

From line 4 to 19 we see that there have been defined many many variables. We
do not know their real names and understanding what they mean will be our
job. But what we can see is what kind of variables we have. Some are qword,
some are dword and some do have the type byte4. 4 Exercise: It is now

your job to find out
what qword, dword
and byte is!

14 the binary auditor
™

beginners guide

Let us check what the real code gives:

1 push ebp
2 mov ebp , esp
3 sub esp , 3Ch
4 mov [ebp+var_D] , 0

5 mov [ebp+var_D] , 0FFh
6 mov [ebp+var_25] , 80h
7 mov [ebp+var_25] , 7Fh
8 xor eax , eax
9 mov [ebp+var_18] , ax

10 mov ecx , 0FFFFh
11 mov [ebp+var_18] , cx
12 mov edx , 0FFFF8000h
13 mov [ebp+var_14] , dx
14 mov eax , 7FFFh
15 mov [ebp+var_14] , ax
16 mov [ebp+var_1C] , 0

17 mov [ebp+var_1C] , 0FFFFFFFFh
18 mov [ebp+var_1C] , 80000000h
19 mov [ebp+var_1C] , 7FFFFFFFh
20 mov [ebp+var_24] , 0

21 mov [ebp+var_24] , 0FFFFFFFFh
22 mov [ebp+var_2C] , 80000000h
23 mov [ebp+var_2C] , 7FFFFFFFh
24 mov [ebp+var_F] , 1

25 mov [ebp+var_E] , 0

26 f ld ds : f l t _ 4 0 2 0 F 0

27 f s t p [ebp+var_C]
28 f ld ds : dbl_4020E8

29 f s t p [ebp+var_8]
30 f ld ds : dbl_4020E8

31 f s t p [ebp+var_38]
32 mov ecx , 41h
33 mov [ebp+var_20] , cx
34 xor eax , eax
35 mov esp , ebp
36 pop ebp
37 re tn

Have a look at lines 1 to 3. Strange things happen here. A register EBP gets
placed on the stack, then we copy some registers at line 2 and subtract the magic
value 3Ch from ESP.
Just three lines but this will be your first true and big exercise! To understand
what is happening here we have to check the Intel manuals. The document we
need is "Intel 64 and IA-32 Architectures Software Developers Manual Volume
1 Basic Architecture". Move to chapter 6 and read it carefully! This is a very
important step, do not override it. The first 3 lines are responsible to setup the
stack frame and you have to understand the stack!

first exercise 15

Now have a look at the lines 34 to 36. Those lines are again for the stack. Lines
1 to 3 build up the stack, lines 34 to 36 clean the stack. If you have read the Intel
manual carefully you should be now able to explain line 37 - the retn command.
If you can not explain this command go and check the manuals again!
Lines 4 to 33 seem to contain our valid code. This example is an easy one and
you see just a sequence of commands. Later you will meet more complex code
with branches inside and you will reach the point where you can not under-
stand the code without debugging it. But first go and try to understand the
code5. To make things easier for you I will provide the source code of this exam- 5 Exercise: have a

look at lines 26 to
31. These commands
are doing something
"different". Check the
Intel manuals for these
commands and answer
the question what they
are doing!

ple. Can you figure out which lines of the C++ code respond to the lines in IDA
Pro? Remember that it is very important that you are able to identify variables
within disassembly, else you will fail even when analyzing easy targets.

Listing 1: A01 - Variables

1 i n t main (i n t argc , char * argv [])
2 {
3 unsigned char myChar ; / / 1 b y t e
4 myChar = 0 ;
5 myChar = 2 5 5 ;
6

7 signed char mySignedChar ; / / 2 b y t e s
8 mySignedChar = −128;
9 mySignedChar = 1 2 7 ;

10

11 unsigned short i n t myShort ;
12 myShort = 0 ; myShort = 65535 ;
13

14 signed short i n t mySignedShort ;
15 mySignedShort = −32768;
16 mySignedShort = 32767 ;
17

18 unsigned i n t myInt ; / / 4 b y t e s
19 myInt = 0 ;
20 myInt = 4294967295 ;
21

22 signed i n t mySignedInt ; / / 4 b y t e s
23 myInt = −2147483648 ;
24 myInt = 2147483647 ;
25

26 unsigned long i n t myLong ; / / 4 b y t e s
27 myLong=0 ;
28 myLong=4294967295 ;
29

30 signed long i n t mySignedLong ; / / 4 b y t e s
31 mySignedLong=−2147483648;
32 mySignedLong =2147483647 ;

16 the binary auditor
™

beginners guide

Listing 2: Continued A01 - Variables

33

34 bool myTrue ; myTrue = t rue ; / / 1 b y t e
35 bool myFalse ; myFalse = f a l s e ; / / 1 b y t e
36

37 f l o a t myFloat ; myFloat = 5 . 3 4 3 1 2 4 3 7 7 4 ; / / 4 b y t e s
38

39 double myDouble ; myDouble = 5 . 3 4 3 1 2 4 3 7 7 4 ; / / 8 b y t e s
40

41 long double myLongDouble ;
42 myLongDouble = 5 . 3 4 3 1 2 4 3 7 7 4 ; / / 8 b y t e s
43

44 wchar_t myWChar ; myWChar = ’A ’ ; / / 2 or 4 b y t e s
45

46 return 0 ;
47 }

Let us move one more step beyond this dead code analysis. Maybe it would
be easier to step through the running code line by line. Mark line 1 with your
mouse, right click. In the context menu you will see a menu entry named "Add
Breakpoint F2". Click it. Line 1 get now colorized with red which means that
when you debug the application it will stop immediately at this point.
Now have a look at the top menu. There you will find "Debugger". Click it.
Then click at "Start the process".

Figure 11: Debugger
menu. Important is
the F9 key to start the
process.

first exercise 17

The following warning is for you to prevent running a malware target without
intention. We do not have any problems with this application so there is no
problem for us to click at Yes.

Figure 12: IDA Pro
warning. You can
disable this "nag" if
you like and click
the checkbox. Doing
this just disables
the warning for the
current project and is
not a global setting.

You will notice that the complete screen is doing now weird things. Many new
windows appear, the old ones disappear. The big black window is our applica-
tion which is correct since we have to analyze a console application.

Figure 13: The IDA
Pro debug view. Many
windows but you will
need them for sure.

18 the binary auditor
™

beginners guide

Note: In my case I can see a warning at bottom left. I just click it away. The
debugger stops at some strange line (see the window "IDA View-EIP" at left
bottom). You can see that we have stopped somewhere inside ntdll.dll which is
definitely not our target. Just go to the menu "Debugger" and click "Continue
Debugging". Anyway, after continuing the debugging process I get nagged with
a warning:

Figure 14: IDA Pro
bugs us with an
exception. There are
some options to fix
this, one will be to
change the exception
definition.

Just click at Yes and you can continue the debugging process.

Figure 15: IDA Pro
showing the correct
debugging position.

"IDA View-EIP" is now showing the correct position of our breakpoint and
marked it with purple. This means that the executable has been stopped at this
position. Note that the purple line mean, that this line has not been execute yet!

first exercise 19

Go and resize this window to full screen.

Figure 16: IDA Pro
shows our disassem-
bly this time in the
debugger window.

This looks similar to the dead code analysis we have done before but this time
we can step line by line through the running code. Now we will do some cool
magic which you will really love when you start to analyze more complex tar-
gets. Just mark some line in the code and press this long bar at your keyboard
(hint: some call it "space"). Suddenly the layout looks different. You can see the
graph overview mini view again and the disassembly is placed in a window.

Figure 17: IDA Pro
shows our disassembly
this time as graph
view.

Note that this does not look impressive yet since we do not have anything so-
phisticated to show, but latest at our exercises with loops and branches you will
understand why the graph layout really rocks.

20 the binary auditor
™

beginners guide

Resize the window now to that size you like and that you can see the menus
again. At left you can see our code window. Right top shows "IDA View-ESP".
This window is very important for you at this moment and of course later as
well. It shows your stack with all necessary information. Do you remember
when we talked about setting up the stack and cleaning it? This is now your
chance to watch how the stack will be setup when an executable starts! Do
the following analysis again and again until you have understood 150% how
this works! The window "General registers" at bottom right shows you which
registers have which values stored. Check them when we debug through the
code.
Note: do this again and again. Watch the stack window and the registers win-
dow. Do it slowly and step through it line by line - slow!

Figure 18: IDA Pro
shows our disassem-
bly, the stack window
and the general regis-
ters.

Let us finally debug this application! Click the menu point "Debugger" at top.
You will see 2 menu entries: "Step into F7" and "Step over F8". Step into means
that when we later analyze the call of functions we are able to step inside these.
Step over means that we execute a function but do not want to look inside these
functions and therefore stop over them. Click "Step over" 2 or 3 times and you
will see that the line which will be executed next gets colorized in blue. Now
watch how the registers change, watch the stack how it changes.

Conclusion

You now know how to start IDA Pro, how to analyze dead code and how to
start and use the debugger. Anyway there are many more features inside IDA
Pro and it is not the job of this tutorial to explain all of them. If you are in need
of a good book about IDA Pro I highly recommend "The IDA Pro Book". This
book explains well how to use IDA Pro in various contexts. We will focus on
practice, on how to analyze targets and how to deal with challenging problems.
IDA Pro is now your bike, "The IDA Pro Book" is your bike manual but I will
show you how to ride the bike and how to get a trial bike rider!

	Introduction
	First steps
	Let us start!
	Conclusion

