DR. THORSTEN SCHNEIDER

THE BINARY AUDITOR"™

BEGINNERS GUIDE

WWW.BINARY-AUDITING.COM

Copyright © 2011 Dr. Thorsten Schneider
PUBLISHED BY WWW.BINARY-AUDITING.COM

AN UNIVERSITY EXERCISE COMPENDIUM FOR BINARY AUDITING, BINARY SOFTWARE ENGINEERING
AND CODE ARTS

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permis-
sion from the publisher. No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in thepreparation of this book, the publisher
and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. I cannot attest to the accuracy of this information. Use of a term in this book should
not be regarded as affecting the validity of any trademark orservice mark. Every effort has been made
to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The
information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the CD or programs accompanying it.

First printing, January 2011

Introduction

Many beginners ask how and where to start. In a time where information is
spreaded over the internet and information pieces started to get fragmented and
to have a loose coupling the aim of The Binary Auditor'"is to offer a comprehen-
sive guide. This guide (and the project) is aimed to help beginners in the field of
Binary Auditing and Reverse Code Engineering.

So if you are interested to learn this art I am sure that you know what this all is
about. Binary Auditing deals with the analysis of binary files - a world without
source code, a world build by compilers and messed up by exploitable code,
copy protectionists or virus writers. It is a fun and challenging world and The
Binary Auditor "is your sports market.

If you are here just because you want to learn how to crack this place might not
be the right choice. The Binary Auditor "tries to build up a solid background
knowledge for university students and other interested folks. As university
lecturer I have spended lot of time solving the "Table of Contents" problem.
Where shall we start? And can we offer a full practical course without spending
too much time with theory? Is it possible without learning theory first? And

if we need theory, which is necessary and how much? Additionally I had the
problem with the programming languages. Can you learn Binary Auditing
without being a C++ coder? In my opinion: yes. Most of my students joined my
Java lecture, a programming language which is quite different from what we
will do during The Binary Auditor . You can even start with all this without
having assembly language knowledge? Again: yes, but it will hurt. If you want
to enter this fascinating world you have to know that you have to invest lot of
your free time.

Understanding binary code is like learning how to ride a bicycle. You see people
riding a bike and you are fascinated. So you buy a bike, take your seat.. and you
will crash. After several attempts you are next to give up. But you have a friend
who recommends a good book for this. You read this book, you take your seat...
and you crash. As a result you realize that just watching others (like watching
YouTube videos) does not help at all, and reading (books or tutorials) is a nice
lecture. But when it comes to a problem slightly different from video or tutorial
you will be lost. Finally you realize that you can learn only by doing, so you
take your seat again and again... and suddenly things get better, the first curve
can be taken even you are not a trial bike or downhill rider yet. But if you train
hard enough and you invest your time you will get a perfect biker.

™
4 THE BINARY AUDITOR
BEGINNERS GUIDE

Do not get me wrong. But current young people are YouTube nerds thinking
just watching something brings them enlightenment. Forget about videos, DO
IT! If you are one of the lazy guys who are from the generation "feed me" then
close this document and drop the idea to learn this art.

Students in programming courses can be categorized as effective and ineffective
based on their effectiveness in programming. Effective students can write pro-
grams and they typically learn programming with moderate effort. Whereas,
ineffective students cannot write correct programs and need more personal at-
tention and cognitive support to learn programming. Since the failure rate is
high, the ineffective category plays a significant role in the effectiveness of pro-
gramming courses.

The results of psychological studies in computer programming expertise show
that turning a novice into an expert is impossible in a four year undergradu-
ate programme, but competence is possible by practice. Thus lab sessions play
a significant role because of the importance of practice in learning program-
ming. But in lab sessions also, some teachers will start giving large programs
as assignments to novices rather than starting from small and simple programs.
This non-systematic teaching will increase complexity in students’” mind, since
brain has a natural tendency to learn in an incremental way. In addition to that,
novices may not get sufficient individual-feedback during lab session. During
the programming task learners receive relatively high levels of feedback on low
level issues, such as syntax rules, but tend to receive low levels of feedback on
conceptually more difficult issues.

As a cognitive trainer I try to enhance students ability to learn. Typical students
have cognitive problems at various levels. Some of them have problems with

the very basic cognitive skill called memorization which is essential for knowl-
edge acquisition. Some others have listed cognitive difficulties to comprehend

a given problem and a given program, which needs comprehension and anal-
ysis skills. Yet another group finds it difficult to apply (‘application’ cognitive
level) the concepts learned to solve problems. Majority finds difficulty to arrive a
correct logic, to integrate modules to a working program and difficulty in algo-
rithm design. These are synthesis problems. It is obvious that students also have
difficulties in evaluation, which is the highest cognition level. The symptoms

for these are their difficulties to justify, defend and describe a program logic.
Therefore it is observed that, programming students have serious difficulties

in all the levels of Bloom's taxonomy in cognitive domain, independent of the
programming language they have used.

Since I am not able to use cognitive training methods during this "internet

homework exercise course" I will try to find a special style to train you task

driven. This includes special method I have developed such as Cognitive Debug-

ging and Speed Debugging®. By the way: The Binary Auditor "is the base for *You can read a sum-

mary of this method at
. . .) . http:/ /www.cognitive-
Engineering". It is now your choice: take the blue or the red pill. debugging.com.

my own university lecture "Ethical Hacking - Binary Auditing and Reverse Code

First steps

So let us start with all this. What do you need to learn Binary Auditing? First
you should be able to tolerate lot of frustration. You need some brain and most
of your free time. Some ability to think logical is absolutely necessary. By the
way, if you have never programmed before, please learn some programming
first!

Let us setup our working environment. We need a PC with Windows (later

we have a look at Linux and Mac OS X as well). At the moment any Windows
above XP is sufficient, so move on with XP, Vista or Windows 7. It is very im-
portant that you install a 32 bit system, 64 bit will not work since our debugger
is for 32 bit only! I highly recommend to install the operating system within a
virtual machine but a standard installed system is fine. We do not deal with evil
software pieces killing our working environment. Even when we move to mal-
ware analysis (later, later) I can assure that your machine does not get infected!
Next step is to download our weapon. I have included within the training pack-
age a binary debugger which is free to use. It is IDA Pro Free version 5.0. The
lack of this version is that it can only analyze 32 bit applications. Now you can
see why we need a 32 bit system. But trust me, it is good enough for us at the
moment. IDA Pro is a perfect tool for our course, it can load and analyze binary
files and even display it in a very cool graphical display (you will see this later).
Best is, that we can "debug" the application (target) which means that we can
step command by command through the target application and we can see what
it is really doing. By the way, IDA Pro is not really a debugger but a database.
But at the moment let us call it debugger.

Now we need enough material to get trained. The training package includes all
we need and I am sure that you have downloaded and extracted the package.
Inside the training package you can see various folders:

exercises/001 - c++ fundamentals

and

exercises/002 - assembly language fundamentals.

is meant for those students who still have to learn C++ and assembly language.
The folders contain exercise workbooks and if your C++ is very very rusty you
should really do them!

Let us start!

We will jump directly into the world of Binary Auditing. Let us examine folder
exercises/003 - hll pattern mapping. If you have not installed IDA Pro you
should do now! Now go and start IDA Pro. You will get the following screen:

Figure 1: Welcome
screen of IDA Pro Free
5.0. Note that we can
IDA - The Interactive Dizazzembler use the checkbox to

Freeware Version 5.0 disable the IDA 6.x
info next time.

[c) 2010 Hex-Rays 54

Welcome to the freeware edition of IDA Pra 5.0,
Thig wergion is fully functional but does not offer all the bells and
whistles of the commercial versions of (DA Pro.

Ty the commercial vergion of DA Pro today!

bt/ fwewnn. hes-rays.com

[] Da nat dizplay 1D& 6.2 info nest time:

The difference between the free IDA Pro and the commercial one is that we do
not have any support for 64 bit Windows, Linux, Mac OSX and other platforms.
Anyway this is fine for us, we just need to work with 32 bit and do not need
other platforms for now.

After clicking the OK button we see the start screen of IDA Pro. Two windows
get opened. The front window is to disassemble a new file or to open a recent
project. The help box is new with IDA 5.0 Freeware and can be helpful if you

get stuck.
= Figure 2: IDA Pro
5 & & o showing help system

Ausblenden Zuriick Drucken Optionen and aSkS Wthh flle to
IDA Pro commercial K open. You can see that

B - | || version: what are you I had opened 2 files

2] + ommand i evach ~ | || missing? before. For you this

[2] Abort DA .
] An enhanced graphical user might be empty at the
) WelcometoDAL. | leild= interface for all platforms moment.

Hew Disassemble a new fils The DA Pro 6.x provides new unified GUI
on all platforms We replaced outdated MDT
windows by window docking, which is
Il R € much easier to use and offer more

possibilities. It is faster too

Load the old disassembly

[
C:\lsershthorstent D ocuments\Wisual Studio 20104ProjectsT

http://www hex-
rays.com/idapro/60/index hitml

Support for more than 50
processor families

[T Don®t display this dialog box again

8 THE BINARY AUDITORTM
BEGINNERS GUIDE

Let us start with the first file we would like to analyze. After clicking the "New"

button you will get a dialog asking what kind of file you would like to analyze.

Most important for us are PE Executable and PE Dynamic Library?. Just click at

PE Executable, then click at the OK button.

intera

File Edit Jump Search View Debugger Options Windows Help

SE] -~ -ttt [0=

PIEEREENEE]

EE#BE 2 AS /0]

EX1E

Tem

A ED)

Ben[[o g -~ N x[[sn-#-v S MK~ /] :

EEIIIMIIEELE Y

FEEIEEREE Y]

E h .
j & New disassembly database E‘Eﬂ j |
FD#s/Handhelds/Phones I Consoles I Embedded | Various files |

Windows | Dos

Unix, I Mac

Java I HET | Warious 05's |

PE Erecutable

Drriver

PE Dipnaric Library

PEJLEJNE Device COFF/OMF Object File EEIFFf_EIMF Static

—

ot

ocx PE Activel!
Control

Library

oK

Cancel

Auto Down Disk

All you have to do now is to navigate to the folder where you have extracted the

training package. Move to the folder exercises/003 - hll pattern mapping.
Then move to the folder Part 1 - Common Code.
Select the file a@1_identify_variables.exe and hit the Open button.

P Select file to disassemble ° . [
Suchenin: || binary auditor - @& e
- Mame Anderungsdstum Typ
=p 57201 _identify_varizbles 04.08.2008 15:27 Anwendu
Zuletzt besucht
Desktop
=1
Bibliotheken
LY
Computer
=
‘H Q" 0 v
Netzwerk
Catanama -
Datsityp Alnown fle axtensions (385 ar app @ ~| [Aobrechen |
1!

Now IDA Pro opens another window. There are many options we can set when

we need to do more complex analysis. At the moment we just accept what

we see. Our file is a Portable Executable file (your .exe file) so we just click at

OK. Later, when you have played enough with IDA Pro you can open recents

projects via the shown menu. Otherwise, IDA Pro saves the analysis database in

the same folder where the file is located and your analysis is saved if you like to

pause your analysis.

> PE Dynamic Library
is nothing else than
DLL.

Figure 3: IDA Pro
asking what kind of
file we would like to
open.

Figure 4: Open a
specific file with IDA
Pro. Note that my
folder is quite empty
because I just have
copied this exercise file
to this folder.

File Edit Jump Search View Debugger Options Windows Help

|| -~ "'Hm“kmdanewme

FRIEEREYY: |

Benem g - = N

FEEIEIRERIEEY
4

Load file Z:\sharehbinary auditor\all_identify_variables exe as

0 FE
MS DOS executable [EXE) [dos. Idw]
Binary file

Processor type

Intel B0x8E processors: metapc '] Set |
Analysis
Enabled
Indicator enabled

Kemel optians1
Kemel options2
rT——

Loading segment 000000000
Loading offset 000000000

Options——————————]

Create segments

[Load resaurces

Rename DLL enties

[M arual load
Fill segrent gaps

Make imports segment

[Create FLAT group

262144 32 8192 allocating mj| -~
65536 8 8192 allocating M| System DLL directory C:Vwindows

262144 32 8192 allocating my =

589824 total memor! [ok] [Cancel] [Help

Loading IDP module C:%Program Fil}
Autoanalysis subsystem has been
Possible file format: MS-DOS exect [C:Prog
ble file format: Portable E‘(Etl.ltalﬂe Tm 80386 PEJ

{Toaders\dos. Tow)
s\, IDA Freehloaders'pe.1dw)

@:00000000 Down Disk

Now IDA Pro gives us some important information. It seems that the input file
was linked with debug information. You might be surprised but you will find
many files with this since many developers forgot about compiler settings. In
our case this is not a mistake, it was intended by me to simplify your analysis.
Let us load the corresponding PDB file from the server and we click as Yes.

File Edit Jump Search View Debugger Options Windows Help

| £ =% x||ma8m|2 =|
EETEEEYN Jme| B
[& & F & &

IR T Y RN
EERIIEEEETY FI 1
Ben[len® vy = Nx[[@- #-w SHKm~ 7] : s &%
FERIEEEEE Y

-
Please confirm u

A DA Pro has determined that the input file was linked with debug information.
' Do pou want to look for the coresponding PDE file at the local spmbol store
and the Microsoft Symbol Server?

[] Don't display this message again

Possible file format: Portable executable for 80386 (PE) (C: \Prngram Files\IDA Fr"ee\'luader"s\pe Tdw) ~
Loading file 'Z:\share\binary auditor‘a0ol_identify_variables.exe' into database.
Detected file format: Portable executable for 80386 (PE)

0. Creating a new segment (00401000-00401A00) ..x +.a 0K
1. Creating a new segment (00402000-00402600) 0K
2. Creating a new segment (00403000-0040338C) 0K

Reading imports d1r‘ec|:nr'y
Applying fixups..
3. Creating a nm segment 00402044 DD4DZEDD 0K

1 |

Fossible file format: PE executable (C

| @004014B8_ Down Disk

IDA Pro now opens the file and analyzes it. For this small file the analysis is
very fast. After analysis we see that IDA Pro opened many windows. Later
you might set your own settings but for me this is too messy. All these icons do
disturb me at smaller screen resolutions so let us disable all these nifty buttons
below the top menu.

LET US START! ¢

Figure 5: If you are
interested to know
more about the specific
settings I highly
recommend "The IDA
Pro Book".

Figure 6: IDA Pro has
detected that we can
use debug information
included.

10 THE BINARY AUDITORTM
BEGINNERS GUIDE

Figure 7: Note that the
File Edit Jump Search View Debugger Options Windows Help Screenshot has been
[s@«---[[thme(B[1(f=_ PR EELE done with only few
0“@ 13?:”{&515‘ Iga'%"'\@"""‘ "T“ -k & J..‘ pixels in size. Nor-
B[y -« Nx|[-#-vSHKm~- 7] : s m2|ub|asyis mally I do debugging

BES|SRB|F AL at a 30" display with
Il -4 N N O] | 2500 pixel width. But
104 Viewd, Hex Views | 3B Exponts I By Imports | N Mames I 3] Functions | . Stings | B[Stuctures | En Enums any resolution above

- 1024 pixel should be
21108 view-A BT TENEETE kP
me.
MName
[~
4 1 L3
: Line1 of 70 =
H
H This file is generated by The Interactive Dis:| . Stingswi. | o || = || 53
H
;! Copyright (c) 26818 by Hex-Rays SA, <support@h
HE Licensed to: Freeware ver Graph overview = I:
H
P e e — 1A
3

1

Executing function 'main’
Compiling file 'C: \Pr"ngr‘am FI'Ies\IDA Free\idc\onload. idc’
Executing Tunction 'OnLoad’

IDA is analysing the input File.

You may start to explore the inpu: file right now.

€an not set debug privilege!

Using FLIRT signature: Microsoft visualC 2-8/net runtime

Al: idle Down Disk: 165GB

Do a right click somewhere at this buttons bars. Here you can see that really ev-
erything has been enabled. We will change this to get more place at the desktop.
For this just disable the menu entry Main.

AL Figure 8: The right
File Edit Jump Search View Debugger Options Windows Help .

- - click menu shows us
JB”EH"""H“!&|@|1| '|§H"|'><-HEEED|F | what we can view or
EL T EIIEL e (e not.

J m%Hﬁ:&wm;ﬂ

Ben Wun® - = NX||2- - v SHKm~ §| = 5% #
s|Ans| A4 v war
j|) [
1DA View-4 Hex Views | B Exports | B Imports | N |7Wmdows

[v utilities
DA View-A |7 Analysis EI N Names wi.. EI.‘:_

Mavigation L3 MName

" Stings | i Stuctures | En Enums

Views r [

|7 Structures Line 1 of 70

m

____________ |T Enumerations
This i y The Interactive Disi| v Strings wi.. \E] b
g 3
Copyrig Wr=zzamasy ex-Rays SA, <support@he| ————————
Debugger " Bd to: Freeware ver{ Gopohovenview =P
————|7 Graphs
3
|7 Graphvlew EI.
1nn nnar £19 a1 m1g1s1 anoansnn | nnaninnn
< IDC scripts v
rDE;ktops i

Executing function 'main’
Compiling file 'C: \Prugram F1'Ies\IDA Free\idc\onloddryac==~
Executing function 'OnLoad’

IDA is analysing the input file...

You may start to explore the input file right now.

Can not set debug privilege!

Using FLIRT signature: Microsoft visualC Zz-8/net runtime
Propagating type informat

AU idle Down Disk: 165G8

LET US START! 11

You will see now the following screen. Note that this is just my preference. Do
this as you like but we do not need these buttons at the moment, really!.

0 0A - Zisharcbinary sudier oG Geniy arabis - = | e] Figure o: Better with-

File Edit Jump Search View Debugger Options Windows Help iftv b d
(21 104 View | 5 HewViews. | B Expors | B | [N Hames | "y Funtiors [=" stngs | 8 [Eninm] out nifty buttons an
e - 1 b \ T o n
e Wi wparts mparts ames | 7] Functions fings ruchures nums ore Place for the

IDA View-A =)= =S | N Names wi.. E-@ important things.
Narme
oL -
4 | [I 3
Linel of 70

This file is generated by The Interactive Dis:| ». Stringswi. | = | = | &2 |
Copyright (c) 2818 by Hex-Rays S$A, <support@he
Licensed to: Freeware versior || Addess Length v

W edn ooonnnnE ©
! [l

100.00% (-212,-41) (364,135) 00000400 00401000: _main Eni @]

Graph overview @

4| [+

Executing function 'main’ ~
Compiling file 'C: \Program F1]es\IDA Freeyidchonload.idc"’

Executing function 'OnLoad’

IDA is analysing the input f1]

You may start to explore the mput file right now.

Can not set debug privilege!

Using FLIRT signature: M1crosoft visualc 2-8/net runtime
Propagating type informati

Function argument imn agated
The initial autoanal has been finished.

‘AU: idle Down Disk: 165GB

This looks still a little bit messy, so let us resize the graphical window. It has the
title IDA View-A. After resizing you get the following screen.

79 IDA - Z\share\binary audtona0L_dentiy varoble <+ - 1O Ve N e Figure 10: With the

File Edit Jump Search View Debugger Options Windows Hel - &)= . . .
£l P oaer P il graphical view it

‘ 1D Miew-& ‘ [HexV\ew-Al B Expoils I lﬁ \mpurlsl N Namesl i#]] Functions | o Slnngsl ﬂ Shiuctures | En Enumsl) makes much more

fun to analyze and to

— debug applications.

This file is generated by The Interactive Disassembler (IDA)
Copyright (c) 2818 by Hex-Rays SA, <{support@hex-rays.com>
Licensed to: Freeware version

; Input HMDS : 7B53B89FFBOAB2B2DFADC3E2159C7D5Y
File Hame : Z:\share\binary auditor\a@1_identify variables.exe
Format : Portable executable for 88386 (PE)
Imagebase : hoeeea
Section 1. {(virtual address 00001008)
Uirtual size : 0OpOB3AD (2288 .)
Section size in file : B006BARDG 25608.)

Offset to raw data for section: B0BBE4AA
Flags 68808828: Text Executable Readable
Alignment : default

0s type : MS Windous
Application type: Executable 32bit

Graph overview IE

.686p
-mmx
-model flat

100.00% (-212,-41) (79.431) 00000400 00401000: _main

Executing fLIHCE'|OI’| ‘main’ -
Ccompiling file 'C: \F’rogram F1'Ies\IDA Free\idc\onload.idc"' il
Evarutina functian 'Onl

U: idle Down Disk: 165G8

The little small window at bottom right is the graph overview. You will find

it handy when it comes to more complex code. At the moment it looks quite
empty but this is OK. Now in full screen you can see the IDA Pro analysis of our
example exercise. Using your mouse you can pan the window to any direction
you like. I will leave now the screen shots and copy the code directly to this
tutorial.

O O oNUul B~ WN R

R O e e e =
Oy Ul B~ W N R O

=
e}

First exercise

The exercise is to identify variables. Let us have a look at the begin of the main
function of the application. You will see the following code:

; int __cdecl main(int argc,const char =**argv ,const char =eny
_main proc near

var_38= qword ptr —38h
var_2C= dword ptr —2Ch
var_25= byte ptr —2s5h
var_24= dword ptr —24h
var_20= word ptr —20h
var_1C= dword ptr —iCh
var_18= word ptr —i8h
var_14= word ptr —1i4h
var_F= byte ptr —oFh
var_E= byte ptr —oEh
var_D= byte ptr —oDh
var_C= dword ptr —oCh
var_8= qword ptr —8
argc= dword ptr 8
argv= dword ptr oCh
envp= dword ptr 10h

IDA has done a good job for us. A line 1 we can see the function signature, IDA
Pro detected the main function and tells us what parameters are expected3.
From line 4 to 19 we see that there have been defined many many variables. We
do not know their real names and understanding what they mean will be our
job. But what we can see is what kind of variables we have. Some are qword,
some are dword and some do have the type byte*.

p)

3 Note that this appli-
cation does not need
any parameters

+ Exercise: It is now
your job to find out
what qword, dword
and byte is!

O O ONUl B~ W N R

W W W W W W WWNDNDNDNNNNDNDNDNNDNRRFBERRR R R H R R ($
N QU A W NN R OO OoN U AW N R OO ON UL B~ W N R O

™
14 THE BINARY AUDITOR
BEGINNERS GUIDE

Let us check what the real code gives:

push ebp

mov ebp, esp

sub esp, 3Ch

mov [ebp+var_D], o

mov [ebp+var_D], oFFh

mov [ebp+var_25], 8oh

mov [ebp+var_25], 7Fh

Xor eax, eax

mov [ebp+var_18], ax

mov ecx, oFFFFh

mov [ebp+var_18], cx

mov edx, oFFFF8oooh

mov [ebp+var_14], dx

mov eax, 7FFFh

mov [ebp+var_14], ax

mov [ebp+var_1C], o

mov [ebp+var_1C], oFFFFFFFFh
mov [ebp+var_1C], 8oooooooh
mov [ebp+var_1C], 7FFFFFFFh
mov [ebp+var_24], o

mov [ebp+var_24], oFFFFFFFFh
mov [ebp+var_2C], 8oooooooh
mov [ebp+var_2C], 7FFFFFFFh
mov [ebp+var_F], 1

mov [ebp+var_E], o

fld ds: flt_g4o020Fo0

fstp [ebp+var_C]

fld ds:dbl_4020E8

fstp [ebp+var_8]

fld ds:dbl_4020E8

fstp [ebp+var_38]

mov ecx, 41h

mov [ebp+var_20], cx

Xor eax, eax

mov esp, ebp

pop ebp

retn

Have a look at lines 1 to 3. Strange things happen here. A register EBP gets
placed on the stack, then we copy some registers at line 2 and subtract the magic
value 3Ch from ESP.

Just three lines but this will be your first true and big exercise! To understand
what is happening here we have to check the Intel manuals. The document we
need is "Intel 64 and IA-32 Architectures Software Developers Manual Volume

1 Basic Architecture". Move to chapter 6 and read it carefully! This is a very
important step, do not override it. The first 3 lines are responsible to setup the
stack frame and you have to understand the stack!

O O ONUl B~ W N R

W W W NN NDNDNDNNDNDNDDNRR A B R R 3 3 2 (3
N R OO 0O U1 A~ W N R OOV ON Ul & W N R O

Now have a look at the lines 34 to 36. Those lines are again for the stack. Lines
1 to 3 build up the stack, lines 34 to 36 clean the stack. If you have read the Intel
manual carefully you should be now able to explain line 37 - the retn command.
If you can not explain this command go and check the manuals again!

Lines 4 to 33 seem to contain our valid code. This example is an easy one and
you see just a sequence of commands. Later you will meet more complex code
with branches inside and you will reach the point where you can not under-
stand the code without debugging it. But first go and try to understand the
code>. To make things easier for you I will provide the source code of this exam-
ple. Can you figure out which lines of the C++ code respond to the lines in IDA
Pro? Remember that it is very important that you are able to identify variables
within disassembly, else you will fail even when analyzing easy targets.

Listing 1: Ao1 - Variables

int main(int argc, charx argv|[])
{
unsigned char myChar; // 1 byte
myChar = o;
myChar = 255;

signed char mySignedChar; // 2 bytes
mySignedChar = —128;
mySignedChar = 127;

unsigned short int myShort;
myShort = o; myShort = 65535;

signed short int mySignedShort;
mySignedShort = —32768;
mySignedShort = 32767;

unsigned int mylnt; // 4 bytes
mylnt = o;
mylnt = 4294967295 ;

signed int mySignedInt; // 4 bytes
mylnt = —2147483648;
mylnt 2147483647;

unsigned long int mylong; // 4 bytes
myLong=o0;
myLong=4294967295;

signed long int mySignedLong; // 4 bytes
mySignedLong=—2147483648;
mySignedLong=2147483647;

FIRST EXERCISE 15

5 Exercise: have a

look at lines 26 to

31. These commands
are doing something
"different”". Check the
Intel manuals for these
commands and answer
the question what they
are doing!

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

16 THE BINARY AUDITORTM
BEGINNERS GUIDE

Listing 2: Continued Ao1 - Variables

bool myTrue; myTrue = true; // 1 byte
bool myFalse; myFalse = false; // 1 byte

float myFloat; myFloat = 5.3431243774; // 4 bytes
double myDouble; myDouble = 5.3431243774; // 8 bytes

long double myLongDouble;
myLongDouble = 5.3431243774; // 8 bytes

wchar_t myWChar; myWChar = "A’; //2 or 4 bytes

return o;

Let us move one more step beyond this dead code analysis. Maybe it would

be easier to step through the running code line by line. Mark line 1 with your
mouse, right click. In the context menu you will see a menu entry named "Add
Breakpoint F2". Click it. Line 1 get now colorized with red which means that
when you debug the application it will stop immediately at this point.

Now have a look at the top menu. There you will find "Debugger". Click it.
Then click at "Start the process".

€} IDA - Zishare\binary auditor\a01 identify variables.exe - DA View-A
File Edit Jump Search View | Debugger Options Windows Help NEE

DA View4, i £4 @ General registers Functions | ** Stings | J§_Stuclures | En Enums
[_main proc | # Segment registers
FPU registers
var_38= quol
: var_2C= duol
var_25= byt
:::—g'ﬂ'z 3“‘]':: P Stort process R
var_1C= dwol Attach to process..
var_18= WP Process options.
var 4= uori
i var_F= byte
H var E- byte
i var D= byte
var G- duor
| uar_8= quort
H argc= dword
1 argu= dword
§ enup= dword
4 S <> p] (1 Run to cursor 2]
: o E';": Breakpoints » I
H nou [eb] Watches »
i nov [eb] Tracing B Graph overview [5]
u mou [eb] =
1 mou [eb] Debugger options...
1 xor .
nou [ebp+uar_ 18], ax :
1 mou ecx, OFFFFh e
i nou [ebp+uar_18], cx
1 nou edx, OFFFF8006h
1 nov [ebp+var_14], dx
nov eax, 7FFFh
H nov [ebp+var_14], ax
1 nov [ebp+var_ic], 0
i nov [ebp+var_iC], BFFFFFFFFh
| nov [ebp+var_iC], 888060AGN
| nov [ebp+var_1C], 7FFFFFFFR
nou [ebp+uar_24], 0
nou [ebp+uar_24], OFFFFFFFFh
| nou [ebp+uar_2C], 800000000
nou [ebp+uar_2C], 7FFFFFFFh
nou [ebp+uar F1, 1
| nou [ebp+uar E], @
£1d ds:flt_4020F0
| fstp [ebp+var_C]
£1d ds:dbl_4020E8 |
|10000% (189,561) (2651) 00000400 00401000: main ‘
Executing function ‘main’... -
ESZ?]:D:Q z“"lsh‘gi\frfvg?:‘g’g‘FilES\IDA Free\idc\onload.idc’ ... i

AL idle Down_Disk: 16568

Figure 11: Debugger
menu. Important is
the Fg key to start the
process.

The following warning is for you to prevent running a malware target without
intention. We do not have any problems with this application so there is no

problem for us to click at Yes.

File Edt Jump Search View Debugger Options Windows Help

‘ 1D Viewr, | [HexViews | 28 Exports | B Imports | N Names | ¥ Functions | ** Stings | i _Stwctures | En Enums

_main proc near

var_38= quord ptr -38h

var_1G- duord ptr -1Ch
var_18= word ptr -18h
var_14= word ptr —14h

byte ptr -6Fh
byte ptr -6Eh
byte ptr -6Dh
dword ptr -0Ch
quord ptr -8

duord ptr 8

duord ptr och

[enup= duword ptr 10h Debugger waming

You are going to launch the dsbugger.
| noy ebp, esp C L imhereen el s e i e g ssEn

b

sub esp, 3Ch Be careful with malicious programs, vinises and trojans!
[nou [ebp+uar D], 0
nou [ebp+uar_D], OFFh REMARK: il you select 'No. the debugger will be automalicall disabled.
nou [ebp+uar_25], 80h
| nov [ebp+uar_25], 7Fh Are pou sure you want to continue?
xor eax, eax
nov [ebp+uar_18], ax || [Dorlt display this message again
[nov ecx, BFFFFh
nov [ebpsuar_18], cx veo | [we][coneel
| nou edx, OFFFF80D08h
nou [ebp+uar_14], dx
nou eax, 7FFFh
[nou [ebp+uar_14], ax
nov [ebp+var_1C], 8
| nov [ebp+var_1C], OFFFFFFFFh
nov [ebp+var_1C], 88088886h
nov [ebp+var_1C], 7FFFFFFFh
[nov [ebp+var_24], 0
nou [ebp+uar_24], OFFFFFFFFR
| nou [ebp+uar_2C], 80000006h
nou [ebp+uar_2C], 7FFFFFFFh
nov [ebprvar_F], 1
| nov [ebp+var E], 8
£1d ds:F1t_u626F0
[fstp [ebp+var_C]
£1d ds:dbl_u620E8

|10000% (189561 G3%69) 00000400 00401000: _main

Executing function ‘main'...
Compiling File 'C:\Program Files\IDA Free\idc\onload.idc'...
Everutina Functinn 'Aninad!

|AU: idie Down_Disk: 16568

You will notice that the complete screen is doing now weird things. Many new
windows appear, the old ones disappear. The big black window is our applica-
tion which is correct since we have to analyze a console application.

File Edit Jump Search
nm B} @8 EIEVA

v Debugger Options Windows Help

%) DA View-EIP [=[&] % 1 pa view-esp

TS TE

* Stack[POBOR7D 6] : 002GE 60O 3 i
Stack[BBB067D 8] : 8626E B8O
01:0026E000 ;

Warning

1. ol _iderkiy_variables.cve: Software breakpaint exceplion (0577ABEEEE)

I
.text:00821008 ; Section 1. {virtual address 99961008) -

0026E000 ;

0026E 000

0026E000 ;
00350000 ;

00350000

08350000 ;
00820000 ;

00820000

00820000 ;

00821000

[00001000 BY

; File Name
00821000 ;
00821000 ;
008210600 ;

Format
Inagebase

Section 1. (|-

hical user
atforms
e unified GUI

ed outdated MDI
fing, which is

FIRST EXERCISE 17

Figure 12: IDA Pro
warning. You can
disable this "nag" if
you like and click
the checkbox. Doing
this just disables

the warning for the
current project and is
not a global setting.

Figure 13: The IDA
Pro debug view. Many
windows but you will
need them for sure.

18 THE BINARY AUDITORTM
BEGINNERS GUIDE

Note: In my case I can see a warning at bottom left. I just click it away. The
debugger stops at some strange line (see the window "IDA View-EIP" at left
bottom). You can see that we have stopped somewhere inside ntdll.dll which is
definitely not our target. Just go to the menu "Debugger" and click "Continue
Debugging". Anyway, after continuing the debugging process I get nagged with

a warning:

Exception handling Figure 14: IDA Pro

bugs us with an
exception. There are
The execution will be resumed after the exception. some options to fix

. hoatB e : !
Do you want o pags the exception to the application’? this, one will be to
If you answer pes, the application's exception handler Cha'nge' the exception
i | will be executed if there iz one. definition.
The control of the application might be lost.

[Chanage exception definition l I

Figure 15: IDA Pro
showing the correct
debugging position.

IDA View-EIP

-text:@88210808 var_8= quword ptr -8
.text:06821888 argc= dword ptr 8
.text:06821888 argv= dword ptr 6Ch
.text:06821888 envp= dword ptr 16h
.text:00821060

.text:060821881 mov ebp, esp

.text:08821883 sub esp, 3Ch

.text:060821886 mov [ebp+var_D], @

-text:0082180A mov [ebp+var_D], BFFh

.text:0688218BE mov [ebp+var_25], 86h

.text:08821812 mov [ebp+var_25], 7Fh

text:@8821816 xor eax, eax -
4 I 2

00000400 00821000: _rnain

"IDA View-EIP" is now showing the correct position of our breakpoint and
marked it with purple. This means that the executable has been stopped at this
position. Note that the purple line mean, that this line has not been execute yet!

Go and resize this window to full screen.

*[Z] IDA View-EIP.
_text: quord ptr -8 P
! _text:00821000 argc= duord ptr 8]
| .text:00821000 argu= dword ptr 6Ch il
.text:00821000 envp= dword ptr 16h
.text:00821000

821008 u.

* . text:80821001 mou ebp, esp
* .text:80821003 sub esp, 3Ch
* .text:00821086 mov [ebprvar_D], ©
* .text:00821000 mov [ebp+var_D], OFFh
* .text:0082100E mov [ebpvar_25], 86h
* .text:80821012 mov [ebpsvar_25], 7Fh
§ * .text:00821016 %ot eax, eax
" .text:80821018 mou [ebp+uar_18], ax
* .text:8082181C mou ecx, BFFFFh
* .text:00821021 mov [ebpevar_18], cx
* .text:00821025 mov edx, OFFFF8000h
{ .text:0082102A mov [ebp+var_14], dx
i{ * .text:0082102E mou eax, 7FFFh
* .text:80821033 mou [ebp+uar_14], ax
" .text:80821037 mou [ebp+uar_1C], 8
* .text:0002103E mov [ebprvar_1C], OFFFFFFFFh
* .text:00821045 mov [ebprvar_1C], 806080800
* .text:0082104C mov [ebprvar_1C], 7FFFFFFFh
* .text:80821053 mov [ebpsvar_2u], 8
* .text:8082105A mou [ebp+uar_2u], BFFFFFFFFh
" .text:80821061 mou [ebp+uar_2c], 800008600
° .text:88821868 mou [ebpruar_2C], 7FFFFFFFh
* .text:0082106F mov [ebpevar F1, 1
* .text:00821073 mov [ebp+var_F], B
* .text:00821077 F1d ds:FLt_8226F0
* .text:8082107D fstp [ebptuar_c]
1 ' .text:00821080 fld ds:dbl_8220ES
1Program control flow(1 986 stp [ebpruar_8]
,—mrkuz[:. g 089 £1d ds:dbl_8220E8
| .text:0082108F fstp [ebpsvar_38]
* .text:00821002 mov ecx, 4ih
1 * .text:8e821097 mov [ebpsvar_20], cx
' .text:0082109B xor eax, eax
" .text:8082109D mou esp, ebp
* .text:0002109F pop ebp

° .text:00821000 retn
.text:008210A0 _main endp
.text:00821000
.text:-808210A0 ;

* .text:-868210A1 byte_8218A1 db 3Bh, GDh 5 DATA XREF: sub_821785+11}0

* .text:-B08210A3 dd offset dword_ 823888

* .text:008210A7 db 75h
.text:008210A8 ;

° .text:00821008 add dh, bl

* .text:008210AA retn
.text:808210AB ;

< m >
00000400 00821000: _main

This looks similar to the dead code analysis we have done before but this time
we can step line by line through the running code. Now we will do some cool
magic which you will really love when you start to analyze more complex tar-
gets. Just mark some line in the code and press this long bar at your keyboard
(hint: some call it "space"). Suddenly the layout looks different. You can see the
graph overview mini view again and the disassembly is placed in a window.

TNSTare\BITary WOTCor 3t TeTTIFy varTaoies oxe]
© Fortanle enccutable for $6336 (FE)
£ Laouon

hing, ssanothing, ds: dats, fsznothing, gsinothing

a0
omz1000 : Arcrivutes: bp-based frame
aus

;AAE _caech min(iAt arge,const char seargu,const char seup)

64.99% 637-21) (4512) 00000403 00821003: _main+3 I - J

Note that this does not look impressive yet since we do not have anything so-
phisticated to show, but latest at our exercises with loops and branches you will
understand why the graph layout really rocks.

FIRST EXERCISE 19

Figure 16: IDA Pro
shows our disassem-
bly this time in the
debugger window.

Figure 17: IDA Pro
shows our disassembly
this time as graph
view.

20 THE BINARY AUDITORTM

BEGINNERS GUIDE

Resize the window now to that size you like and that you can see the menus
again. At left you can see our code window. Right top shows "IDA View-ESP".
This window is very important for you at this moment and of course later as
well. It shows your stack with all necessary information. Do you remember
when we talked about setting up the stack and cleaning it? This is now your
chance to watch how the stack will be setup when an executable starts! Do
the following analysis again and again until you have understood 150% how
this works! The window "General registers" at bottom right shows you which
registers have which values stored. Check them when we debug through the

code.

Note: do this again and again. Watch the stack window and the registers win-

dow. Do it slowly and step through it line by line - slow!

File Edit Jump Search

View Debugger Options

Windows Help
DU BERDE Dt BR o wd
| # Generalregisters | B Threacs| (2] 1DA ViewEIP | 2] 1A ViewEsP|

Debugger: Breakpoint reached: 0x00821000

[E}A\ﬁw—ﬂ?

100.00%

(-185,586) (9.8)

88821608 argu= dword ptr BCh
80821008 enup- duword ptr 18R
00821008

60821061 mov ebp, esp
00821083 sub esp, 3ch

8082100A mov [ebp+var_D], OFFh
6082100E mov [ebp+var_25], &6h
80821012 mov [ebp+var 251, 7Fh

80821016 xor
80821018 mov [ebp+uar_18], ax
8082101C mov ecx, OFFFFh

808210621 mov [ebpsvar_18], ex
80821025 mov edx, OFFFF&000n
80821028 mov [ebp+uar_14], dx
8082102E mov eax, 7FFFh

60821033 mov [ebpsvar_14], ax
808210637 mov [ebp+var_1C], 0

eax, eax

8082103E mou [ebpsuar_1E], OFFFFFFFFR
80821045 mou [ebpsuar_1C], 80000000
80882164 mov [ebpsvar_1C], 7FFFFFFFh
80821053 mov [ebpsvar_24], 8

80821054 mou [ebpsuar_24], OFFFFFFFFR

80821061 mou [ebpsuar_2€], 80000000
[ebprvar_2C], 7FFFFFFFh

808821068 mov

6082106F mov [ebpevar_F], 1

80821073 mov [ebp+var E], 0
80821077 fld ds:f1t_8220F0
8082107D fstp [ebp+uar C]

60821080 1d ds:dbl_8220E8

00000406 00821006: _main+6

Let us finally debug this application! Click the menu point "Debugger" at top.
You will see 2 menu entries: "Step into F7" and "Step over F8". Step into means
that when we later analyze the call of functions we are able to step inside these.
Step over means that we execute a function but do not want to look inside these
functions and therefore stop over them. Click "Step over" 2 or 3 times and you
will see that the line which will be executed next gets colorized in blue. Now

* 8026FCES dd 182E7Ch
* 8B26FCEC dd 102EB3N
* 8826FCFB dd
* 0026FCF4 dd 82337Ch ;

26FDBAR

826FCF8 dd 8228A8h

0026FCFE var_38 db 8, 8, 0, 0, 33h, 0,
* 0026FDO4 dd 2

* 9026FDO8 var_2C dd offset unk_352308

* BB26FDOC db 10 ,BFDh ,26h ; &

* 0026FDOF var_25 db 0
* 0026FD10 var_24 dd offset unk_701C27BA
* 9926FD14 var_20 dw BFD38h
* BO26FD16 dw 26h ; &

* BO26FD18 var_1C dd 8216E6h
* 0026FD1C var_18 du 3020n

General registers

£4x|00161AB8 L, [aebug o1 00101ABS
£ 00000000

EDX 00080000
£/ 00880061
ED| |0882337C Ly | data:Destination

EIP |90821006/L,| main+6

watch how the registers change, watch the stack how it changes.

.data:Destinat|
B8626FCF8 ; [BEGIN OF STACK FRAME _main.

EC%|7023B6FB L nsucr90._dll :msucr9@8__ in

£8P 0026FD34 L[S tack[0600070 0] -saved_fp
ESP|8026FCF8 L [Stack[066067001 :0026FCF8 |DF|8

Figure 18: IDA Pro
shows our disassem-
bly, the stack window
and the general regis-
ters.

Conclusion

You now know how to start IDA Pro, how to analyze dead code and how to
start and use the debugger. Anyway there are many more features inside IDA
Pro and it is not the job of this tutorial to explain all of them. If you are in need
of a good book about IDA Pro I highly recommend "The IDA Pro Book". This
book explains well how to use IDA Pro in various contexts. We will focus on
practice, on how to analyze targets and how to deal with challenging problems.
IDA Pro is now your bike, "The IDA Pro Book" is your bike manual but I will
show you how to ride the bike and how to get a trial bike rider!

	Introduction
	First steps
	Let us start!
	Conclusion

