
Assembly Language
Programming Exercises

The Binary Auditor™

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

2

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

3

Table of Contents
1 Common Array Algorithms .. 5

1.1 Exercise – Acid Level of Coffee ... 5
1.2 Exercise – 64x64 Image 1 ... 6
1.3 Exercise - 64x64 Image 2 .. 6

2 StringBuffers and StringTokenizers ... 7
2.1 Exercise – Spam Mailer ... 7

3 File Input and Output .. 9
3.1 Exercise - File Splitting Program .. 9
3.2 Exercise - Text File Comparison Program .. 9

4 Writing Text Files ... 11
4.1 Exercise - Total Count ... 11
4.2 Exercise – Colored Java .. 11
4.3 Exercise – Frequency Analysis .. 13
4.4 Exercise – Simple Encryption ... 16

5 File Compression .. 17
5.1 Exercise – Run-Length Encoding .. 17
5.2 Exercise – Huffman Code .. 17
5.3 Exercise – Hash Table ... 17

6 Recursion .. 19
6.1 Exercise – Prime Number .. 19

7 Sorting ... 21
7.1 Exercise – Bubble Sort .. 21
7.2 Exercise - Quicksort .. 21

8 Searching ... 23
8.1 Exercise 1 – Word Search ... 23

9 Final Exam 1 ... 25
10 Final Exam 2 ... 27
11 Final Exam 3 ... 29
12 Final Exam 4 ... 31

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

4

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

5

1 Common Array Algorithms

1.1 Exercise – Acid Level of Coffee

Say that you are interested in computing the average acid level of coffee as served by coffee
shops in your home town. You visit many coffee shops and dip your pH meter into samples of
coffee. You record your results in a text file such as the following. The first line of the file
gives the number of values that follow.

13
5.6
6.2
6.0
5.5
5.7
6.1
7.4
5.5
5.5
6.3
6.4
4.0
6.9

Unfortunately, your pH meter is known to sometimes produce false readings. So you decide
to disregard the reading that is most distant from the average.

Create a text file containing the above or similar data. Now write a program that reads the
data into an array. Compute the average of all the data. Now scan through the array to find the
value that is farthest (in either direction) from the average. Set this value to -1 to show that it
is not to be included. Compute and print the new average.

Here is a run of the program:

% CoffeeAverage < CoffeeData.txt
data[0] = 5.6
data[1] = 6.2
data[2] = 6.0
data[3] = 5.5
data[4] = 5.7
data[5] = 6.1
data[6] = 7.4
data[7] = 5.5
data[8] = 5.5
data[9] = 6.3
data[10] = 6.4
data[11] = 4.0
data[12] = 6.9
average: 5.930769230769231
most distant value: 4.0
new average: 5.6230769230769235

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

6

1.2 Exercise – 64x64 Image 1

Write a program that creates a 64 by 64 image as a text file. The image will consist of eight
bands of increasingly higher values. Think of the image as 64 rows of 64 integers each, but
actually write out one integer per line. This is for the convenience of the programs the input
the image.

The image starts out with 8 rows of zero, so the program writes 8 times 64 zeros (as character
'0'). Next, the image has 8 rows of eight, so the program writes 8 times 64 eights (as character
'8'). Next, the image has 8 rows of sixteen, and so on. Write one value per line, without spaces
or commas.

Use output redirection to send the output to a file. Use this file as input for the image display
program (next exercise).

This is a very short program. The body consists of three lines: a double for loop with a one
line loop body.

1.3 Exercise - 64x64 Image 2

It would be nice to display your images by some means other than printing out integers.
Ideally, your programs should read and write images using standard image formats. But actual
image formats, like giff, tiff, and jpeg are very complicated. Instead, write a program that
displays an image by using rows of characters to represent brightness levels.

Write a program that reads in a file that contains one integer per line. Each integer represents
one location in the image. Assume that there are 64 rows and 64 columns in the image.
Assume that the integers are in the range 0 to 63.

For each integer, write out a single character depending on its value:

0 to 7: space
8 to 15: .
16 to 23: ,
24 to 31: -
32 to 39: +
40 to 47: o
48 to 55: O
above 55: X

Don't put extra spaces between characters. Start a new line after each row of 128 characters.
This is one place where the switch statement is convenient. To use it, divide the input value
by 8 to get the integer for the switch. Or you can use eight if-else statements if you prefer.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

7

2 StringBuffers and StringTokenizers

2.1 Exercise – Spam Mailer

Write a program that creates a "personalized" letter, given a form letter and a person's name.
The form letter will be an input file of text. The person's name will be a command line
argument. The file will normal text, but with a * wherever a person's name should be
substituted. For example:

Dear *,

I have exciting news for you, *!!! For just $49.99 plus postage
and handling you, *, can be the proud owner of a genuine leather
mouse pad! No more finger strain for you, *, as you surf the web
with style.

Act Soon,

Venture Marketing Corp.

Assume the above is in a file junk.txt. A run of the program outputs:

% JunkGenerator "Occupant" < junk.txt
Dear Occupant,

I have exciting news for you, Occupant!!! For just $49.99 plus postage
and handling you, Occupant, can be the proud owner of a genuine leather
mouse pad! No more finger strain for you, Occupant, as you surf the web
with style.

Act Soon,

Venture Marketing Corp.

%

Write the program so that it will substitute for any number of * on one line, and accepts any
number of lines as input. The main program loop will be a while loop that continues until the
input is null. If you wish to avoid the command line argument, ask the user for the occupant
name and input it in the usual way.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

8

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

9

3 File Input and Output

3.1 Exercise - File Splitting Program
Sometimes you have a file that you would like to put on a floppy disk but it is too big.
Perhaps you want to copy the file from one computer to another and floppy disks are your
only means of transfer. It would be useful to split the long file into several short files that each
fit on a floppy. After transfer to the other computer the short files can be concatenated into a
copy of the original. The command line for this program is:

./fileSplit bigFile baseName chunkSize

bigFile is the name of the big, existing file. Each small file will be named baseName with a
number appended to the end. For example, if baseName is "chop" then the small files are
"chop0", chop1", "chop2", and so on for as many as are needed.

chunkSize is the size in bytes of each small file, except for the last one.

For testing, use any file for bigFile, no matter what size, and any size for chunkSize. Use the
file concatenation program to put the file together again. See if there are any changes with a
file comparison program. (Such as Unix's dif or Microsofts Win's comp).

For preliminary testing, use text files. However, write the program so that it works with any
file (use byte-oriented IO). For advanced testing, split an executable file, then reassemble then
run it. Or split and reassemble an image file, and view the results.

3.2 Exercise - Text File Comparison Program
Write a program that compares two text files line by line. The command line looks like this:

./fileComp file1 file2 [limit]

Read in a line from each file. Compare the two lines. If they are identical, continue with the
next two lines. Otherwise, write out the line number and the two lines, and continue.
Frequently when two files differ there are very many lines that are different and you don't
want to see them all. The last argument, limit, is optional (that is what the brackets mean). It
is an integer that says how many pairs of different lines to write before quitting. If limit is
omitted all differing lines are written. Catch the NumberFormatException that may be
thrown if limit can't be converted.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

10

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

11

4 Writing Text Files

4.1 Exercise - Total Count

Write a program that creates a file containing TotalCount random integers (in character
format) in the range 0 to HighValue-1. Write PerLine integers per line. Separate each integer
with one space. End each line with the correct line termination for your computer.

The user is prompted for and enters HighValue, which should be an integer larger than zero.
Then the user is prompted for and enters PerLine, which is an integer greater than zero, and
TotalCount, which also is an integer greater than zero. Finally the user is prompted for and
enters the file name.

Construct a Random object and use its method nextInt(int Top), which returns an int in the
range 0..Top-1.

% RandomIntData
Enter HighValue-->100
Enter how many per line-->10
Enter how many integers-->100
Enter Filename-->rdata.dat

% less rdata.dat
4 12 54 10 38 97 40 11 80 16
36 41 67 67 93 58 62 12 50 99
18 42 9 28 45 6 68 72 80 28
86 63 22 17 68 18 59 50 6 50
90 8 68 61 9 24 77 34 62 61
63 8 15 17 67 58 34 56 12 50
43 85 39 77 30 68 89 88 65 68
84 29 42 74 48 55 19 82 95 3
39 27 25 96 41 39 18 84 39 88
82 58 84 90 74 35 24 89 85 92

4.2 Exercise – Colored Java

Write a program that inputs a Java source code file and outputs a copy of that file with Java
keyboards surrounded with HTML tags for bold type. For example this input:

public class JavaSource
{
 public static void main (String[] args)
 {
 if (args.length == 3)
 new BigObject();
 else
 System.out.println("Too few arguments.");
 }
}

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

12

will be transformed into:

public class JavaSource
{
 public static void main (String[] args)
 {
 if (args.length == 3)
 new BigObject();
 else
 System.out.println("Too few arguments.");
 }
}

In a browser the code will look like this:

public class JavaSource
{
 public static void main (String[] args)
 {
 if (args.length == 3)
 new BigObject();
 else
 System.out.println("Too few arguments.");
 }
}

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

13

4.3 Exercise – Frequency Analysis

First Part:

Letters of the alphabet occur in text at different frequencies. Write a program that confirms
this phenomenon. Your program will be invoked from the command line like this:

% freqCount avonlea.txt avonlea.rept -all

It will then read through the first text file on the command line (in this case "avonlea.txt")
accumulating the counts for each letter. When it reaches the end of the file, it will write a
report (in this case "avonlea.rept") that displays the total number of alphabetic characters "a-
zA-Z" and for each character the number of times it occurred and the relative frequency with
which it occurred. In counting characters, regard lower case "a-z" and upper case "A-Z"
characters as identical.

You will need an array of 26 long integers, one per character. To increment the count for a
particular character you will have to convert it into an index in the range 0..25. Do this by first
determining which range the character belongs in:"a-z" or "A-Z" and then subtracting 'a' or 'A'
from it, as appropriate:

 int inx = (int)ch - (int)'A' ;
 count[inx]++ ;

Discard characters not in either range without increasing any count.

Second Part:

Do the relative frequencies of the initial letters of words differ from the relative frequencies
for all letters in a text? Add logic to the program so that it examines only the first character in
each word. Allow the user to chose between the two options with a switch on the command
line:

% freqCount avonlea.txt avonlea.rept -first

 It is often true that handling the an-
 noying details makes up the large maj-
 ority of the statements in a pro-
 gram.

So, if the last token in a line (returned by StringTokenizer) ends with '-', don't include the
first letter of the first token on the next line in the count.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

14

Testing:

For testing, create some really simple files that demonstrate that your program is working. For
instance:

 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
 !*$#)#%$#) @##$%))!__ !#4241-432 !_#*%_@*(* !@%#*#.,?+

and:

 AAAAA AAAAA-
 BBBBB BBBBB-
 CCCCC CCCCC-

 DDDDD-DDDDD
 EEEEE-EEEEE

The first draft of your program will write its count to the monitor for easy debugging. Add
text file output later. It is probably wise to write the first part of the program and debug it
before moving on to the second option.

Download a text file of a novel of at least 400K bytes from Project Gutenberg. Use a file that
does not use HTML formatting tags (which would confuse the count). Delete the text at the
beginning of the file that is not part of the novel (the legalese and documentation). Run both
options of the program on the text.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

15

Example:

Here is a sample run of my program with the text "Ann of Avonlea" from project Gutenberg.

% freqCount avonlea.txt avonlea.rept -all

% less avonlea.rept
 Total alphabetical characters: 373267

 A: 31840 8.53%
 B: 5942 1.59%
 C: 7627 2.04%
 D: 17541 4.69%
 E: 45614 12.22%
 F: 7191 1.92%
 G: 7960 2.13%
 H: 22500 6.02%
 I: 25095 6.72%
 J: 733 0.19%
 K: 3443 0.92%
 L: 17534 4.69%
 M: 9324 2.49%
 N: 26516 7.1%
 O: 27344 7.32%
 P: 6083 1.62%
 Q: 275 0.07%
 R: 21285 5.7%
 S: 23398 6.26%
 T: 32579 8.72%
 U: 10720 2.87%
 V: 4201 1.12%
 W: 9063 2.42%
 X: 546 0.14%
 Y: 8745 2.34%
 Z: 168 0.04%

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

16

4.4 Exercise – Simple Encryption

Write an encryption program. Each byte of the source file is altered by reversing each bit. For
example,

input byte output byte

00110101 11001010

00000000 11111111

10000000 01111111

This operation is sometimes called a bit-wise complement. "Bit-wise" means that each bit is
treated independently of all the others. "Complement" is just another word for reversal.

All the bits in an integer can be reversed as follows:

int value;
value = ~value;

The "~" (tilde) is the bit-wise complement operator. Visually it looks like a reversal of up and
down. It reverses all the bits in value, even though you may be interested in only the low-
order byte. But since the operation is bit-wise, the result for the low-order byte is the same no
matter how many others are affected.

Encrypt a text file using your program. Now use the program again to encrypt the encrypted
file. Will you need to write a program to decrypt (decode) files?

This is not a very secure method of encrypting a file.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

17

5 File Compression

5.1 Exercise – Run-Length Encoding

Write a program which encodes the following string using run-length encoding.

 VVVNNDDDDDDDWJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

a) not using an escape character

b) using the escape character C

 A = 1 H = 8 O = 15 V = 22
 B = 2 I = 9 P = 16 W = 23
 C = 3 J = 10 Q = 17 X = 24
 D = 4 K = 11 R = 18 Y = 25
 E = 5 L = 12 S = 19 Z = 26
 F = 6 M = 13 T = 20
 G = 7 N = 14 U = 21

5.2 Exercise – Huffman Code

Write a program, Huffman, that has two public methods:

string Encode(string filename)
string Decode(string compressedFileContents)

The Encode method should read the contents of the file having the given pathname, and return
a string, consisting of '0' and '1' characters, corresponding to the Huffman encoding of the
contents of the file. The Decode method should be the inverse operation, taking, as its
argument, the result of a previous call to Encode, and returning the original contents of the
file as a string.

5.3 Exercise – Hash Table

Give the contents of the hash table when the given items are inserted in that order in an
initially empty table of size 17 using double hashing. Use the following hash functions:

h(k) = (k + 1) mod 17
h2(k) = 8 - (k mod 8)

Use the following coding for the alphabet:

 A = 1 H = 8 O = 15 V = 22
 B = 2 I = 9 P = 16 W = 23
 C = 3 J = 10 Q = 17 X = 24
 D = 4 K = 11 R = 18 Y = 25
 E = 5 L = 12 S = 19 Z = 26
 F = 6 M = 13 T = 20
 G = 7 N = 14 U = 21

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

18

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

19

6 Recursion

6.1 Exercise – Prime Number

A prime number is an integer that cannot be divided by any integer other than one and itself.
For example, 7 is prime because its only divisors are 1 and 7. The integer 8 is not prime
because its divisors are 1, 2, 4, and 8.

Another way to define prime is:

prime(N) = prime(N, N-1)

prime(N, 1) = true

prime(N, D) = if D divides N, false
 else prime(N, D-1)

For example,

prime(4) = prime(4,3)
prime(4,3) = prime(4,2)
prime(4,2) = false

Another example,

prime(7) = prime(7,6)
prime(7,6) = prime(7,5)
prime(7,5) = prime(7,4)
prime(7,4) = prime(7,3)
prime(7,3) = prime(7,2)
prime(7,1) = true

Write a program to calculate prime number in a recursive way. Keep it tiny and simple!

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

20

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

21

7 Sorting

7.1 Exercise – Bubble Sort
The first sort that many people learn, because it is so simple, is bubble sort: Keep passing
through the file, exchanging adjacent elements that are out of order, continuing until the file is
sorted. Bubble sort's prime virtue is that it is easy to implement, but whether it is actually
easier to implement than insertion or selection sort is arguable. Bubble sort generally will be
slower than the other two methods, but we consider it briefly for the sake of completeness.

Suppose that we always move from right to left through the file. Whenever the minimum
element is encountered during the first pass, we exchange it with each of the elements to its
left, eventually putting it into position at the left end of the array. Then on the second pass, the
second smallest element will be put into position, and so forth. Thus, N passes suffice, and
bubble sort operates as a type of selection sort, although it does more work to get each
element into position.

For each i from l to r-1, the inner (j) loop puts the minimum element among the elements in
a[i], ..., a[r] into a[i] by passing from right to left through the elements, compare–exchanging
successive elements. The smallest one moves on all such comparisons, so it "bubbles" to the
beginning. As in selection sort, as the index i travels from left to right through the file, the
elements to its left are in their final position in the array.

static void bubble(ITEM[] a, int l, int r)
 { for (int i = l; i < r; i++)
 for (int j = r; j > i; j--)
 compExch(a, j-1, j);
 }

Write an application which takes a list of n numbers as input. Sort this list using the Bubble
Sort algorithm and print out the result!

7.2 Exercise - Quicksort
The quicksort algorithm's desirable features are that it is in-place (uses only a small auxiliary
stack), requires time only proportional to N log N on the average to sort N items, and has an
extremely short inner loop. Its drawbacks are that it is not stable, takes about N2 operations in
the worst case, and is fragile in the sense that a simple mistake in the implementation can go
unnoticed and can cause it to perform badly for some files.

The performance of quicksort is well understood. The algorithm has been subjected to a
thorough mathematical analysis, and we can make precise statements about its performance.
The analysis has been verified by extensive empirical experience, and the algorithm has been
refined to the point where it is the method of choice in a broad variety of practical sorting
applications. It is therefore worthwhile for us to look more carefully than for other algorithms
at ways of implementing quicksort efficiently. Similar implementation techniques are
appropriate for other algorithms; with quicksort, we can use them with confidence, because
we know precisely how they will affect performance.

Quicksort is a divide-and-conquer method for sorting. It works by partitioning an array into
two parts, then sorting the parts independently. As we shall see, the precise position of the
partition depends on the initial order of the elements in the input file.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

22

The crux of the method is the partitioning process, which rearranges the array to make the
following three conditions hold:

The element a[i] is in its final place in the array for some i.
None of the elements in a[l], ..., a[i-1] is greater than a[i].
None of the elements in a[i+1], ..., a[r] is less than a[i].

Write an application which takes a list of n numbers as input. Sort this list using the Quicksort
algorithm and print out the result!

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

23

8 Searching

8.1 Exercise 1 – Word Search

Write a program that will play the game of Word Search. The game consists of an N x M
matrix of characters and a list of words. The object is to find each word in the matrix. The
words may appear in any direction (up, down, forward, backward, or any diagonal) but
always in a straight line.

Specifications
Input for this program will come from two sources: a file whose name is specified on the
command line and the keyboard (standard input). Information about the word puzzle will be
in the file. The words to be found will come from standard input.

Your program should begin by reading in the size of the puzzle. The information should
appear as the number of rows (numRows) followed by the number of columns (numCols),
both on the first line of the input file. The next numRows lines will each contain the numCols
characters for that row of the puzzle. You should allocate a matrix (two-dimensional array of
characters) that will hold a 20 by 20 word puzzle. Your program should terminate gracefully
if numRows or numCols is greater than 20 or less than 1.

Input from File Output Input from keyboard Result
10 8
 hptnrocr
 aeehkcra
 moaiauag
 itmupcni
 rauioibn
 gterfped
 lonfkgri
 ipumhera
 ptgravyn
 squashpi

h p t n r o c r
a e e h k c r a
m o a i a u a g
i t m u p c n i
r a u i o i b n
g t e r f p e d
l o n f k g r i
i p u m h e r a
p t g r a v y n
s q u a s h p i

turkey
 pumpkin
 pie
 thanks
 potato
 ham
 gravy
 cranberry
 indian
 pilgrim
 corn
 squash
 thanks
 stuffing

turkey at 4,2 SE
pumpkin not found
pie at 4,5 NW
pie at 4,5 SW
pie at 4,5 SE
thanks not found
potato at 8,2 N
ham at 1,1 S
ham at 10,6 NW
gravy at 9,3 E
cranberry at 1,7 S
indian at 4,8 S
pilgrim at 9,1 N
corn at 1,7 W
corn at 4,6 SW
squash at 10,1 E
thanks not found
stuffing at 10,1 NE

Print the puzzle before reading and trying to look up the words. Blank spaces printed between
the individual characters of the puzzle ease the readability of the output because the line
spacing is roughly twice the character spacing.

After the puzzle has been read and printed successfully, read input lines from standard input.
Each line will contain one word to look for in the puzzle. Your program should print the word
followed by the location (row, column coordinate of the first character) followed by the
direction used to find the word. The character in the upper left corner is at location 1,1. The
direction should be in compass coordinates (N, NE, E, SE, S, SW, W, NW) with N being up
and E being right. If a word occurs more than once in the puzzle, you are to print a line for
each occurrence. If it doesn't occur at all, you should say so.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

24

You should test the program extensively with your own data that have varying sizes and
characteristics.

Hints for Solution:

Give matrix useful edges to aid word search. Declare the matrix (a two-dimensional array) to
be 22 by 22 characters so it is big enough for the 20 by 20 possible data characters plus a
border all around of '=' (a non-letter). Initialize the matrix (all 22 rows and columns) to the
border character. With the border around the edge, you will not need to use any special tests
in the code to determine if you have 'run off the edge'. When you run into the border, the
characters will not match and you will stop the search.

Break problem into several smaller problems. The intermediate assignments will guide you
here. Design the solution carefully and use several functions. Each function should do one
conceptual action.

Check for word at a location and direction. It is strongly recommended that you construct a
function that takes the puzzle, the word, a location (row, column coordinates), and a direction
(the increment in the row,column coordinates to use for looking for the successive characters).
It should return a value indicating whether or not the word occurs in the matrix at that location
proceeding in that direction. In this assignment, do NOT nest loops more than two levels. We
will count off at least ten points.

Examine all directions at a location. You should also note that given a word and a location,
you can generate directions by using two nested for loops each running from -1 to 1. Be
careful to skip 0,0.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

25

9 Final Exam 1
A great deal of software is distributed in the form of executable code. The ability to reverse
engineer such executables can create opportunities for theft of intellectual property via
software piracy, as well as security breaches by allowing attackers to discover vulnerabilities
in an application. The process of reverse engineering an executable program typically begins
with disassembly, which translates machine code to assembly code. This is then followed by
various decompilation steps that aim to recover higher-level abstractions from the assembly
code. Most of the work to date on code obfuscation has focused on disrupting or confusing the
decompilation phase.

We can introduce disassembly errors by inserting “junk” bytes at selected locations in the
instruction stream where the disassembler is likely to expect code. An alternative approach
involves partially or fully overlapping instructions. It is not difficult to see that any such junk
bytes must satisfy two properties. First, in order to actually confuse the disassembler, the junk
bytes must be partial instructions, not complete instructions. Second, in order to preserve
program semantics, such partial instructions must be inserted in such a way that they are
unreachable at runtime. To this end, define a basic block as a candidate block if it can have
such junk bytes inserted before it. In order to ensure that any junk so inserted is unreachable
during execution, a candidate basic block cannot have execution fall through into it. In other
words, the basic block immediately before a candidate block must end in an unconditional
control transfer, e.g., an unconditional jump or a return from a function. Candidate blocks can
be identified in a straightforward way by scanning the basic blocks of the program after their
final memory layout has been determined.

For example the given C code (which contains Buffer Overflow vulnerability) can be
compiled with the GCC compiler.

int main(int argc, char **argv, char **envp) {
 char buf[256];
 strcpy(buf, argv[1]);
 return 0;
}

Using the command

gcc -S vuln.c

we receive the assembly code in a file vuln.s before it is finally linked:

 .file "vuln.c"
 .text
.globl main
 .type main, @function
main:
 pushl %ebp
 movl %esp, %ebp
 subl $264, %esp
 andl $-16, %esp
 movl $0, %eax
 addl $15, %eax
 addl $15, %eax
 shrl $4, %eax
 sall $4, %eax
 subl %eax, %esp
 movl 12(%ebp), %eax

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

26

 addl $4, %eax
 movl (%eax), %eax
 movl %eax, 4(%esp)
 leal -256(%ebp), %eax
 movl %eax, (%esp)
 call strcpy
 movl $0, %eax
 leave
 ret
 .size main, .-main
 .ident "GCC: (GNU) 4.0.3 (Ubuntu 4.0.3-1ubuntu5)"
 .section .note.GNU-stack,"",@progbits

Now consider a simple obfuscation. We take the following code snippet from above

main:
 pushl %ebp
 movl %esp, %ebp
 subl $264, %esp
 andl $-16, %esp
 movl $0, %eax

and then we fill it with simple obfuscating junk code:

main:
 pushl %ebp

 addl $15, %eax
 subl $15, %eax

 movl %esp, %ebp
 subl $264, %esp

 addl $15, %eax
 subl $15, %eax

 andl $-16, %esp
 movl $0, %eax

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

27

10 Final Exam 2
Write an application which takes a filename via command line, like:

./MyObfuscator myTarget.s

Then obfuscate the target by inserting junk code and fake instructions. Do not stay at the
simple level like the example given above. Be innovative by inserting more than this. For
example insert full junk blocks. Do some research on your own by searching the web. Try to
find options for a complicated obfuscation using anti-disassembly or anti-debugging tricks.

The application should then write the obfuscated target into a new file like myTarget.obf.

Try to link the resulting obfuscated file. The most important rule is that the resulting file is
still linkable.

Then run the resulting binary. The binary still has to work and your job is that it does not
crash due your obfuscation. Examine the resulting binary with a debugger such as GDB.

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

28

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

29

11 Final Exam 3
It is your job now to write a binary watermarking protector. Using the techniques from
examination task 1 the goal is to write an application which takes an unlinked input files (such
as vuln.s), an watermarking encryption file and additional a text parameter as secret text:

./MyWatermarker vuln.s watermarkingenc.txt MySecretWatermarkText

The binary watermarking protector has to do the following job process:

For each character of the secret text (MySecretWatermarkText) the protector looks up the
encryption code in the encryption table (watermarkingenc.txt). The encryption table can have
the following format but you are free to design your own one:

[M]
addl $15, %eax
subl $15, %eax

[y]
addl $15, %eax
subl $15, %eax
addl $12, %eax
subl $12, %eax

[S]
subl $13, %eax
addl $13, %eax
subl $14, %eax
addl $14, %eax

[e]
.....

Then the protector fills the target file (vuln.s) with the encryption sequence given by the
secret text (MySecretWatermarkText).

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

30

Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

31

12 Final Exam 4
Finally write an application as watermark checker, which uses the same encryption table as
used in examination task 2. The application takes parameters as following:

./MyWatermarkChecker myBinary watermarkingenc.txt MySecretWatermarkText

If the watermark is found print out a „Watermark OK“ message, if not a „Watermark failed“
message.

Submit your watermark detector as final examination at the Certification-Labs. Provide
examples with short explanations to show that your application is working!

