TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Informatics
Chair of Software Engineering

Wi-Food

Agent-Oriented Modelling and Multiagent Systems Project

Tallinn, 2016

Author’s Declaration

Herewith the authors of the work declare that this project is based on their own work. All ideas,
major views and data from different sources by other authors are used only with a reference to
the source. The project has not been submitted for any degree or examination in any other

university.

Inés Boski

Jodo Lobato

Roza Malbseva
Lizaveta Lasitskaya
Elina Muhhamedjanov

(date) (signature)

List of Figures

T U I R o T | I 4y o T =] I PSPPI 7
Figure 2 Role model. CUSTOMET FOIE ...cciiiuiiiei ittt e e e e s st e e e s e e s 8
Figure 3 Role Model. Profiler FOl@ocoouuiie ettt et e e e 8
Figure 4 Role model. Service Provider r0l€.......cco it e e e e e 9
Figure 5 Role model. Merchant role ... e e e e e 9
Figure 6 Organization MOGEL........oouiiiiiiiiiiee e e s e s aae e e s s aae e e e e nanees 10
T U T A 0 T oo - 112 T 0 o Yo 1= I PRSP 11
Figure 8 Agent model. Customer HUmMan ABENT..........uuiiiieiiiiiccccieeee e e 12
Figure 9 Agent model. Customer Software AeNntccocuvieiieiiiiee e e e 12
Figure 10 Agent model. Service Provider HUMan Agentcccccvviiieeeee e e eecvereeeee e, 13
Figure 11 Agent model. Service Provider Software Agentcccceevvciiieiieiiiee e 13
Figure 12 Agent model. Profiler SOftware Agent........c.uviveiieeiiciiee e 13
Figure 13 Agent model. Merchant Software AeNnt........ccoccueeeiiiiiiee e 14
Figure 14 Agent and Acquaintance MOdEl........ccooooiiiiiie i 14
Figure 15 KNoOWIEdZE MOMEIuveiiiiiie et e e e et e e e e e s e aneeeeeas 17
Figure 16 The registration process by the customer and sending data to profiler agent........... 18
Figure 17 Registration of new service by service provider........cccccceeevciieiiccieee e 19
Figure 18 Choosing process by the CUSTOMENccooviiiiiiiiiiee e 20
Figure 19 Customer selection is Not availablec...uviiiieiii e, 21
Figure 20 Notifying of the new modificationsccuvviiieiii i, 21
U R o AV 0 =T oo o ol E]S 22
Figure 22 Successful and Unsuccessful paymentccveeeeviiiiiiiiiiieeeeee e 23
Figure 23 The registration process by the customer and sending data to profiler agent........... 24
Figure 24 Registration of new service by service provider.........ccooeeeeeiieieccciiiieeeee e, 26
Figure 25 Choosing process by the CUSTOMErcoeeeeiiiiiiec e 27
Figure 26 Customer selection is Not available ..., 29
Figure 27 Notifying of the new modificationscccooviiieiiiiiecici e 30
T U I A o NV V= o o] o Yol <] 31
Figure 29 Successful and Unsuccessful payments.........ccceeeeiiieecciiiiieiee e, 32
Figure 30 Sequencing Chart of CPN MOdEl.......cocoooieiiiieeee et 33
FIgure 31 FUll CPIN IMOEL.... ... et et e e e e e e e et a e e e e e e e s e e nnaraneeeaeas 34
Figure 32 CPN MOAE] (PArt 1) c.uuuurieeiieeeeieiiiieeeeeeeeeeecirreee e e e e eeestrrreeeeeeeeseensbbraeeeeeeeeesnnnnrsanereeens 34
Figure 33 CPN MOAEI (PArt 2) c.uuuurieeiieiee ettt eeecirreeee e e e eeesrrre et e e e e e s sesnbbreeeeeeeeeessnsnrsaneeeeens 35
Figure 34 CPN MOAEI (PArt 3) .uuuuiieeiieieeieiiiiieeeeeeeeeeeeeitreeee e e e e eeesstbrrrereeeeeeseessbbsaeseeesseessnnsraneeeeens 35
Figure 35 CPN Model running (PArt 1)ccccueeeeecieeeeeieee ettt e e e et e e e aae e e e e e e e anns 37
Figure 36 CPN Model running (PArt 2)coccueee ettt e e e aae e e e e e e e e anes 38

Figure 37 CPN Model running (Part 3) cooccccveeeeeieeeieieiireeeeee e eeeiiirreeeeeeeeesesantreeeseeeessessnnrrenesesens 39

Table of content

ISR [0 1o Yo 11T o o RS 5
D |V oY 1Y 1 oY W I 1YY PSSP PPPRTPPRPPN 6
P20 R C o T-1 I 43 Vo Yo 1= TP TR R PR 6
2.2 ROIE MOAEIS ..t nn e e 7
DS T O 1~ 1 a1 - 14 (o] o T 4 VYo =1 SRR 10
PR S To Y0 o =11 I 44 Voo L] TSP 11
T Y2 = o (J D LYY 1= (s W I V=Y 11
 J0 A V= =Y oYl ' T Yo 1= SRR 11
3.2 Agentand Acquaintance MOAEl.......cooiiuiiiiiiiiie e e 14
3.3 KNOWIEAEZE MOUEI ... i e et e e e are e e e e e nraeeeeanns 16
3.4 INtEraction MOGEIS ...coo ittt e e rne e s ne e s s e s 18
3.5 BehaVvioUr MOGEIS.c..ciiiieieeiie ettt s b e n e neenane e 24
4. CPN Model and Simulationcoooiiiiiie e 33
LT Vo = YR =T Lo =YY U1 £ 37
LT (=Y =Y oY o ol PSPPSR 41

1. Introduction

For our Mini-Project we developed the idea of creating a bridge between customers and service
providers in the food/restaurant business, more specifically, a service that could primarily help
working people save more of the limited lunch time they have in their workdays and, at the
same time, increase restaurants’ customers and profitability.

Every day, working people have approximately 1 hour to have their lunch. If we take into
account the initial time needed to choose a restaurant, secondly, leaving the workplace to the
restaurant while hoping for free seats, thirdly, choosing a meal and waiting for it, fourthly,
eating, and lastly asking for the bill and paying can result into a stressful and unnecessary time
consuming experience. What if, with our app, we could save them at least half of that time,
meaning working people could have more time for themselves? Also, if to imagine a pressing
task coming up, requiring them not to leave the workplace until it's completed then the option
of getting their food delivered when and how they want it is available.

And for people who do not work? They can benefit from the same flexibility and time saving
features like for instance choosing the meal from a distance and setting a preferred Time of
Arrival. They can pay straight away from their phone, and even ask for home delivery or take
away.

This scenario would be a “win-win” situation for both customers and service providers
(restaurants), since these last ones would also benefit greatly from the app, by having
customer’s ratings on the web, having another chance to promote their service, georeference
possibilities for their restaurant with general information as well as more specific details about
meals, prices, seats available and working hours, and so on.

Time management would also be a very important feature for the service providers, since they
would know exactly how many customers they would have coming through the app and,
therefore, they could prepare the service in advance without compromising the “traditional”

service for regular customers who do not use the app. Ultimately, they could manage their free

seats almost perfectly without any blank spots, managing efficiently the amount of customers

and, therefore, their profit.

2. Motivation Layer

2.1 Goal model

Goals are objectives which a system should achieve through cooperation of actors in the
intended software and in the environment and our goal model consists of two types of goals:
functional and quality. Quality goals are divided also in two types: to-be goal and to-feel goal
(emotional goal).

The main goal of our project is to provide a trustworthy restaurant service for customers,
where convenience, satisfaction and comfort and available time maximization would be the
main emotional goals to be achieved with our app. The main objective is followed by the
number of other purposes which are needed to be achieved: avoid queues, plan budget (the
quality goal - minimize the restaurant budget), making payments through the app, with the
help of an external service provider - like a bank software, for example - (the quality goal -
maximize security), manage customer database in order to the restaurants best know their
clients, so they can be able to provide them an even better service(quality goals - attend
special needs of the customer and provide fast service), serve customers (the quality goal -
bigger profits), being this one for the service providers, where they can manage their free space
during peak hours, maximizing the amount of customers while at the same time, due to the
profiler’s work with the customer database, they can provide each and one of them a more

personalized and detailed service, according to their specific needs.

'\\/'

convenience,

~
maximize
comfort

trustworthy provide
7 rating

give
I recommendation

\ - . |
manage
au\;odis plan budget make payment customer ———i
: database
| \ Profiler
AN
attend special needs

/Cus mer

Provide
restaurant
service

TN
maximize
available

Merchant

Figure 1 Goal model

In the end, customers would also have the opportunity to give recommendations and provide
their ratings to the restaurant in the app, so that other users could choose not only also
because of the menus and prices the restaurants announce in the app but also because of other

user’s experiences.

2.2 Role models

In our project there are 4 different roles: the Customer, the Service Provider, the Merchant and
the Profiler, and for each and every one of these 4 roles, their responsibilities and constraints

are shown in detail below, as well as a more detailed description of the role itself.

Role name Customer

Description The Customer who wants to eat a meal at his restaurant of choice and
interacts with the Service Provider Agent
Responsibilities * Customer should create account

* Choose the restaurant

* Choose the meal

* Choose type of delivery

* Choose the time of arrival to the restaurant

* Pay the bill

* Register customer

* Provide customer data for profiler

* Provide restaurant list for customer

* Provide restaurant information for customer

* Provide menu of the restaurant for customer

* Provide meal in the menu for customer

= Notify Service Provider about customer selection
* Request to Service Provider about modifications (updated data)
» Connect to payment service

= Inform customer about successfully payment

Constraints * Beeing unable to access the app at all time

* Should be connected to the Internet

+ GPS must be on to choose a restaurant from the map

* The restaurant list have to be uploaded (at least one restaurant in
the list)

* The restaurant should have at least one menu

* The menu should have at least one meal

* The customer should be authenticated

* |t should be connected with payment service

« For successful order customer should choose restaurant

* For successful order customer should choose menu

= For successful order customer should choose meal

* For successful order customer should choose type of delivery
* For successful order customer should choose time of arrival

» For successful order customer should pay the bill

Figure 2 Role model. Customer role

Role name Profiler
Description Builds and analyze the customer database
Responsibilities » Creates customer profiles

* Manages the Database
* Helps service providers to improve their service quality

Constraints = Customers need to be inserted in the Database
* Profiler needs to have access to all the information provided by the
clients and the service providers

Figure 3 Role model. Profiler role

Reole name

Service Provider

Description

Provides the service to the customer

Responsibilities

= Register restaurant and its information

= Reqgister menu for restaurant

* Add meal and prices to the menu

* Keep restaurant information always updated

* Keep menu always updated

= Keep prices always updated

= MNotify about changes

* Provide opportunity to choose type of delivery

* Provide opportunity to choose time of reservation

* Make available what time there are free places (and how many)
= Send invoices and bills to Restaurants

* Check payments and display balance for restaurants
* Make order in time

* Deliver arder by chosen delivery type

Constraints

= Service Provider should be authenticated

= Beeing unable to access the app at all time

* Should be connected to the Internet

* Possible shortage of ingredients

* Possible shortage of places available due to other customers who
dont use the app

* Inaccurate information should not be exsist

Figure 4 Role model. Service Provider role

Role name

Merchant

Description

Service dedicated specifically to bank transactions and billing systems.

Responsibilities

* Provide secured payment service

* Notify customer software agent about successful payment

= Notify service provider software agent about successful payment

* Notify customer software agent about unsuccessful payment

= Notify service provider software agent about unsuccessful payment

Constraints

* Payment process should be secured

+ Notification about payment status should be sent for both sides at the
same time

= All transactions should be complete or not started at all

* Internet connection

Figure 5 Role model. Merchant role

2.3 Organization model

Merchant
isControkedBy isC olledBy

isBenevolentTo

-

Sarvice Provider
Customer N _
isCani[olledBy isControledBy

Profiler

Figure 6 Organization model

On the above diagram are shown the types of interactions between the roles, and if the
relationship between the Customer and Service Provider is more intuitive and easy to
understand, with the 2 relations who involve the Profiler it might not be the case.

With these interactions we demonstrate that the type of service the service provider gives to its
customers is affected by the profiler’s work. He is the agent responsible to create a “customer
profile” for every single customer who registers on the app, and the information he provides at
the beginning, as well as the information he keeps providing during the usage of the app is
carefully analysed by the profiler, who later transmits it to the service provider, so that he can
upgrade and personalize his service according to every customer’s needs.

On the other hand, the Profiler’s “job” is “controlled” by the user, since it will depend on the
info the users provide. The more data users insert and the more they use the app, bigger it will
be the Profiler’s job and, consequently, bigger it will be the accuracy of the information he

provides to the service providers, making this service almost optimal after some time of usage.

10

2.4 Domain model

provides service N

Merchant

Payment

Bill

Restaurant

Service Provider

Menu

Customer

9

Meal

Reservation

Profile

¢ manages

Figure 7 Domain model

Profiler

On the above Domain Model we describe the connections between the roles and the Domain

Entities.

These can be observed in individual detail.

3.System Design Layer

3.1 Agent model

On our System Design Layer we have 6 different agents, each one of them with its own

roles and responsibilities within our system.

11

These agents are the Customer Human Agent and Customer Software Agent, the Service
Provider Human Agent and Service Provider Software Agent, the Profiler Software Agent

and the Merchant Software Agent and, below, are shown they’re specifications within our

system.

Agent name Customer Human Agent
Description Person who want to order meal
Roles Customer

Responsibilities = Customer should create account

* Choose the restaurant

* Choose the meal

* Choose type of delivery

* Choose the time of arrival to the restaurant
= Pay the hill

Figure 8 Agent model. Customer Human Agent

Agent name Customer Software Agent

Description Maobile application which connects Customer Human Agent with
Service Provider

Roles Customer

Responsibilities * Register customer

* Provide customer data for profiler

* Provide restaurant list for customer

* Provide restaurant information for customer

* Provide menu of the restaurant for customer

* Provide meal in the menu for customer

= Motify Service Provider about customer selection

* Request to Service Provider about modifications (updated data)
* Connect to payment service

* Inform customer about successfully payment

Figure 9 Agent model. Customer Software Agent

12

Agent name

Service Provider Human Agent

Description

The restaurant administrator and manager

Roles

Service Provider

Responsibilities

* Reqgister restaurant and its information

* Register menu for restaurant

* Add meal and prices to the menu

* Keep restaurant information always updated

* Keep menu always updated

* Keep prices always updated

* Provide opportunity to choose type of delivery

* Provide opportunity to choose time of reservation

* Make available what time there are free places (and how many)
* Make order in time

= Deliver order by chosen delivery type

Figure 10 Agent model. Service Provider Human Agent

Agent name Service Provider Software Agent
Description Maobile application for managing restaurants
Roles Service Provider

Responsibilities

» Reqister restaurant and its information

* Reqgister menu for restaurant

* Add meal and prices to the menu

« Motify about changes

« Send invoices and bills to Restaurants

* Check payments and display balance for restaurants

* Make available what time there are free places (and how many)

Figure 11 Agent model. Service Provider Software Agent

Agent name Profiler Software Agent
Description Builds and analyze the customer database
Roles Profiler

Responsibilities

» Creates customer profiles
* Manages the Database
* Helps service providers to improve their service quality

Figure 12 Agent model. Profiler Software Agent

13

Agent name

Merchant Software Agent

Description

Service dedicated specifically to bank transactions and
billing systems

Roles

Merchant

Responsibilities = Provide secured payment service

= Notify service provider software agent about
successful payment

= Notify customer software agent about successful
payment

= Notify customer software agent about unsuccessful
payment

= Notify service provider software agent about
unsuccessful payment

Figure 13 Agent model. Merchant Software Agent

3.2 Agent and Acquaintance model

Customer Human Agent > Customer Software Agent <€ > Profiler Software Agent
Customer T T
Customer Profiler
Merchant —————Merchant Software Agent< » Service Provider Software Agent +——Service Provider

|

Service Providef———»Service Provider Human Agent

Figure 14 Agent and Acquaintance model

In this model are presented the roles mapped into agent types and the general outlining of the

interactions between the agents. As shown above, there are roles mapped into more than one

agent type but, on the other hand, there are no agents with more than one role. One can notice

the several interactions between various agents meaning that, in our case and for our app, the

service provider, the profiler and the customer only interact with each other with the help of

the software i.e. the app. For the purpose of our project, and as presented on this diagram, we

considered 3 roles - Customer, Service Provider and Profiler - and 6 Agents - Costumer Human

14

Agent, Customer Software Agent, Service Provider Human Agent, Service Provider Software
Agent, Profiler Software Agent and Merchant Software Agent. This last one is not shown on the
diagram because it is an external service that would help our app with payment and secure
payment features and therefore, for the purpose of the acquaintance model we considered it
as a Service Provider that is connected to a Service Provider Software Agent.

For the purpose of this diagram, we took the example of a Customer - Customer Human Agent -
that uses the app - Customer Software Agent - first, to register himself, and later on to access
the list of restaurants within his proximity. After that he would continue to use his app until he
chooses the pretended menu and pays. On this stage, the Customer Software Agent (CSA)
reaches the Service Provider Software Agent (SPSA), the bill is issued and the payment is done.
After the payment done and the money reception acknowledge from the SPSA, the SPSA sends
an alert through the app to the Service Provider Human Agent (SPHA) and only afterwards is he
ready to prepare the customer’s meal, with every detail possible. In this “details” part, the
Profiler - Profiler Software Agent (PSA) has a big role both for Customer and Service Provider.
If, in one hand, the service provider can know in advance what things the customer “X” likes or
dislikes the most and therefore, is able to provide him a better service, on the other hand, if the
service provider the customer first chose doesn’t have his regular meal, due to the choices he
previously made, the PSA will suggest him other similar restaurants nearby, for a similar
budget, through the CSA.

Another important feature of the app that is shown to be possible with this diagram is the
possibility of “automatic” restaurant updates in the app. For example, if a certain meal is no
longer available, if there is a new one in the menu, or if there are no more seats available for
the time the customer chose to have his meal, the SPHA updates the SPSA and this last will

send a pop-up message to the CSA, letting the customer know about the new changes.

15

3.3 Knowledge model

On the knowledge model shown below we show which pieces of information each agent can
access and we can also clearly see that the two most important Agents are the Customer
Software Agent (CSA) and the Service Provider Software Agent (SPSA) due to the amount of
information they both deal with.

If in one hand the SPSA only knows about reservations, billing, payments and all of the specific
information about the restaurant like its description, location, ratings users provide, the menus
and the meals each menu has, the CSA, on the other hand, besides accessing all of the
information the SPSA accesses, for the Customer Human Agent to access it, it has to first create
a profile with first and last names, date of birth, contact details like email and cell phone
number and also his address. After the first orders, a new field is added to this profile with the
name “OrderHistory”.

The Profiler Software Agent is the 3rd most important agent of this model, since it deals with all
of the information within the fields of the “Profile” entity; Essential to create an accurate
profile which will be used in benefit of both customer and service providers.

Every time a customer uses the app, it has to choose a restaurant from the list through the CSA.
Each restaurant can have several menus, and each menu can have several meals, and it’s the
customer's choice what he is going to have. He can choose the menu either from it’s name or
type, or the meal by name, type or description.

After this process is done, payment can be carried out and therefore, Total Price, Price without
taxes, number of the order (so there can be a track on the request) and its date, as well as the
account number information is provided to the customer by the CSA. The “Payment” entity has
a payment date and status as attributes, and when this last one is filled with a “Done” string,
the reservation is successful and the description of it is filled, a time of receiving is issued and

the type of delivery set.

16

Meal

Q}name - String 1.

price - Decimal
&ydescription - String

Restaurant
&location - String

knows about

Customer Software Agent

uses

Customer Human Agent

n Menu
Esname - String
&type : String |
Profiler Software Agent

knows| about

Profile

Exfirsthame - String
Q}IastName - String
%binhdate: Date
Esemail - String
&pphone - Stiing
Q}address - String
&orderHistory - Object

Q}rating Sint
%nwner - String
1|&name - String

&ydescription - String

Payment

knows| about

&paymentDate - date
Estatus - String

knows about

Figure 15 Knowledge model

Service Provider Software Agent

Reservation

&ydescription - String
&typeOfDelivery - String
%ﬂmeDﬁQeceiving - Date

knows about

knows about

Bill

Sewice Provider Human Agent

17

%mtall:'rice - Decimal

%priceWithoutTax - Decimal
&accountMumber - String

Q}createdDate - Date
%nrder - String

Merchant Software Agent

3.4 Interaction models

The 7 figures (Figure 16-22) below show us 7 different interaction sequence diagrams, providing
us a different overview of several types of interactions covered by the app. There are a lot more
functionalities covered by this innovative service, but due to the complexity of some of them

and the lack of time to cover all aspects of the project, we decided to replicate only a few in this

repo rt.
Customer Human Customer Software Profiler Software
Agent Agent Agent

1. Have desire to use
Application

3. Register me >

A4 Confirm 30elt 7
N successfuly /
.. [egistration _ .y

5. Notify about new

e
- 6.Request data

“. about new user "

W7 Inform about use_}-_
’ data !

Figure 16 The registration process by the customer and sending data to profiler agent

The first one depicts the registration process by the customer, starting with the desire of using
it and, after a successful registration, the PSA is notified by the CSA that a new user is registered
leading to a request about the new data from the PSA to the CSA. The CSA complies with this

request, and provides the information, letting the Profiler know the details about the new user.

18

Service Profider Service Provider
Human Agent Software Agent

1.Request to register
restaurant

~
2 Irform about f

! restaurant
i successiull
4 registration

.. 3

3. Register new menu

;4 Inform about
i successfull menu !
registration \

5. Add new meal to
menu

Figure 17 Registration of new service by service provider

On the other hand, if it is a restaurant owner who wants to register his services, the interaction
sequence is the one shown in the upper figure. After a request to register the restaurant and
provide all the data about it, the restaurant owner has to insert the menus with the data

requested by the app, and after a successful menu registration message he can finally add the

meals, ending the registration process.

19

Customer Human Agent

Customer Software
Agent

Service Provider
Software Azert

1. Reguest to restaurant Ii5t>

2. Inform about restaura nt,”
list R

3. Seled specific resturant
from restaurant list

/4. \nform about restaura n,”

" information A

5. Reguest restaurant rnenu>

6. Inform about restaurant,”
" menu "

A ———

7. Select meal from menu >

8. Notify about customer™
selection N

Figure 18 Choosing process by the customer

Figure number 18 shows us the restaurant and menu choosing process by the customer,

starting with a request from the CHA to the CSA for a list of restaurants near his position,

followed by the choice of the desired one, the menus available, and finally the meal of his

choice. After the choice is made, the CSA sends a notification to the SPSA letting him know

what the customer’s selection was.

Choosing process by the customer was added alternative solution for situation if menu is not

available. Such alternative solution is suitable for all cases, if user request of selection is not

available (for example: selection of restaurant, selection of menu, selection of meal). If

selection is not available, customer software agent request for alternative solution which is

based on analyses made by profiler software agent.

20

Customer Human Agent Cuiofzresnct)ftware Profiler Software Agent

1. Request restaurant menu

/" 3. Inform about new ,.
suggestion

S .

Figure 19 Customer selection is not available

Service Provider

Software Agert Custo r::r;zfrw are
oo -
.':| 1. Motify about -
. updates 4
o —— == —
.-FE. Request about
g changes '

3 Inform abnut_“-
changes A

Figure 20 Notifying of the new modifications

Knowing that real time changes can happen without previous notice, the app needs to have the
capability of notifying its customers of the new modifications, and so, figure 20 shows us the

interaction process briefly described above between the SPSA and the CSA.

21

The last interaction model depicts the payment process recurring to the Merchant Software

Agent (MSA). This is a very important agent, even though an “external” one, since it makes the

bridge between customer and service provider, offering a payment safeguard with banking

security and encryption features which guarantees the payment was indeed made and that

there were no “hackings” within the system. This way, the customer has his data secured and

the service provider is 100% sure the payment was made in a proper way.

Payment process was divided in two. First model describes the payment process and the

second describes two cases -
1) When payment was successful

2) When payment was not successful

Customer Human Customer Software
Agent Agent

1. Reguest to make
payment

2 Provide list of

s sz e ~
¥ Redirectto bank ;

L. = B otk . ;
' - S € a e gy s b N 6 et - b s — ¥
< 5. Send payment form <
YO i 0 A e i e A i e Y 5 3 [~

Figure 21 Payment process

22

> 6. Make payment /

Bank Software Agent

Customer Human Customer Software
Agent

Agent

._r' 2. Inform about ,"
\. successful payment‘-A

/~ T7Inferm abodt
. unsuccessful !

Merchant Software

Service Provider
Software Agent

Service Provider
Human Agent

\ successful £

(.

\ 3. Inform about .
‘successful payment

. Prepare order for the
customer

Figure 22 Successful and Unsuccessful payment

3.5 Behaviour models

The 7 diagrams below represent the system behaviour models of the functionalities described

on the previous interaction models.

Customer Software Profiler Software

Customer Human Agert Agent

Agent

F{e%eztc;c{iszmg % 1. Have desire o use Launch Application
a Application

AT . . ;

- 2. 0Openregister i Open registration
il form ' form

Request to -

Receive . ..
confirmation about .""_4'- Confirm Joodt .

successful % successfully &
registration . [eagistration, _ ..

M ake confirmation
about successfully
registration

Ty

5. Notify about new Recigve notifcation
: user | aboutnewusar
Lo — = — registtration

Get user data from _-FE,RequeQdata £l Request data about
database % about new user | newuser

¥
L e r —— -
Inform about new | [7. Infarm about user Create customer
user data N data i profile
S/ -
Analyze customer

profile

Notify that new
uger was registered

Figure 23 The registration process by the customer and sending data to profiler agent

24

% R1 - The first rule means that application should be launched. It describes the process how

customers request for using app.

% R2 - Customer Human Agent has to be registered in the application. This action describes

the registration process.

+* R3 —The third rule considers that case when Customer Software Agent notifies the Profiler
Software Agent about new customer in the system. In this action is described the process of
how the Profiler Agent creates and collects customer information in and from the first step

(directly after registration)

Below is presented a behaviour model of the new service registration scenario.

There could be considering following rules:

+ R1 - The first rule considers the action of registration of the new restaurant in the system.

The precondition has to be that the restaurant was not identified before in this system.

* R2 - The second rule is responsible for menu registration process. The menu could be

registered only after successful restaurant registration.

+* R3 - The third rule corresponds to adding a meal to the menu. In one single menu can be
added a few meals. The meal could be added to the menu only after successful menu

registration.

The service provider could update all this information by following the same scenario and

behaviour.

25

Service Profider
Human Agent

Reguest o
register in the
system
r)
Register menu for
restaurant
L.

ServiceProvide
Software Agent

- 1.Heguest to register
restaurant

/|

(.

Receive
restaurant data

)

=
2. Imform about /

) .
X restaurant f
h successfull 7|] E'b”;” ﬁﬁﬁfﬂ"?
3 registration =
e — e 1

(" Receive N

>3. Register new menu > Fﬁtﬂudma;lat meny
A

"'r.1 ake confirmatio nq“'I

| e — -

J

4. Inform about

successfull menu &
registration \

b
i — 1

(Add meal to menu }

2. Add new meal to
menu

Receive
confirmation about
successful adding

6. Inform about

. successfull adding '._'\.

h

'rr.'lake u:::lnﬁrmatil:lrr'
about successfully
Menu adding y

fﬂemm mE.lﬂIi:Iﬂtﬂ"'I

., A

:

"r.'l ake n:unﬁrmatiunw'
about successiully

meal adding y.

Figure 24 Registration of new service by service provider

26

Customer Human Agent

Customer Software
Agent

Reguest to
restaurant list

Request
infarmation about
spedfic restaurant

Familiarize with
restaurant
information

Familiarize with
meal in menu

Select meal

>1. Request to restaurant list »

Precondition:
More than zero

restaurants in the
list

4 Ty
Get restaurant list

A A

Inform about restaurant,”
list b

E

3. Seledt specific restaurant
from restaurant list

—

Inform about
restaurant list

| ——

Get information
about selected

_ restaurant)/

/4. Inform about restaurart,”
information

5. Reguest restaurant menu

Inform about restaurant,

— :
B ’
ment -

7. Select meal from menu

Inform about
selected restaurant
information

Get information
about selected
menu

Inform about
selected menu

Recsive data

Generate

notification about
customer selection

Send notification

i selection
L

Service Provider
Software Agent

8. Motify about customer"

Figure 25 Choosing process by the customer

27

Receive notifcation

Create order

Above is presented the behaviour model of the selection scenario by the customer. Here are
the corresponding 5 main rules and sub-actions:

O
L X4

O
L X4

R
L X4

R
L X4

R1 - First of all the customer requests to see the list of restaurants near him. The mandatory

precondition is that some restaurants should be already added to the system.

R2 - The second step describes the process of how the customer chooses the most suitable

restaurant for him/her and requests additional information about it.

R3 - Like the second rule, the menu of the restaurant has to be chosen so the customer

chose the menu.

R4 - To make an order, the meal should be selected. The fourth rule is responsible for meal

selection.

R5 - Service Provider Software Agent should be informed about customer selection to

provide next actions. This rule describes how Service Provider Software Agent is notified by

the Customer Software Agent.

28

Customer Software

Customer Human Agent Agent Profiler Software Agent
Select menu 1R e tiidn Get information
d . Reguestrestaurant menu M Sbout Solectad

menu

Menu is not
available

oo —
Request new \ 2 Requestnew | (Analyze profile data)
suggestion) : suggestion __f‘
Detect the most

suitable varant for

_newsuggestion)

__________ iy

P /3% S .
" 3 Inform about new o nform about new

1 suggestion : N Sgestion

Receive new
suggestion

Receive new
suggestion

Provide new
suggestion

Figure 26 Customer selection is not available

Above is presented the behaviour model of the customer selection, which is not available.
There are two rules:

¢ R1 - First rule is that the customer selects the menu of the restaurant.

¢ R2 - If the selection is not available, then the customer software agent send request to

profiler software agent to suggest new selection.

The model below illustrated the behaviour of two agents: Service Provider Software agent and

Customer Software agent in such scenario as notification of modifications.
29

There is only one rule:

% R1 - For the purpose of updating the Customer Software Agent there will always be updated
information, to know when some updates or changes were made. For this reason, the
Service Provider Software Agent should send notifications to the customer software agent

to inform that new data is available.

S;T;LEE PFD‘-'I':';':' Customer Software
vare Age Agent

Generate

notification about
updates

updates) about updates

F‘.eq.l est news

database b, changes updated data

(Get updates fam } 2. Reguest about

-------------- R tification)
Send notification _'.3 1. Motify about { ecieve notification

h

Inform about . 3. Inform about " U pdste data
changes ’.- changes o

Show updated data
for customer

Figure 27 Notifying of the new modifications

Payment process behaviour model could be described by two main sub-actions and rules.

30

+» R1 - The first rule is to check if the bill was created which then enables the Customer

Software Agent to provide the opportunity to the Customer Human Agent to select a

payment method.

2
0‘0

This rule is for successful payment.

R2 - The second action involves the Merchant Software Agent in the process of payment.

Merchant Software
Agent

-\

Customer Human Customer Software
Agent Agent
Precondition:
Bill was created
CQequest to maktj» > 1. Request to make >_ prg:.;ienz of
payment payment methods
Select payment 7" 2. Provide list of L e
method \ payment methods _\1
Inform about \ 3. Inform about Redirecttobank || - o _
(payment method } l. payment method ./'P “ Redirectto bank_,-
: . 7 e S~ -1 - - - — — - — -
(Fill payment form } \/. 8 Send payment form
R R R R e S RS v A ~
(Make payment } = 6. Make payment
Figure 28 Payment process

Precondition:
Userhas
successfully
authenticated

Generate
payment form
Send payment
form
A Processing
payment

31

Customer Human
Agent

Receive notification
about successful

payment

Receive notification
about unsuccessful

payment

Customer Software
Agent

/" 2 Informabout

. successful payment*J‘

/ Tinform about
i unsuccessful &
“—.._payment _ .

Receive notification
about successful

payment

Send notification
about successful
payment

Receive notification
about unsuccessful
payment

Send notification
about unsuccessful
payment

H

unsuccessful (]

Figure 29 Successful and Unsuccessful payments

Merchant Software
Agent

Precondition:
Payment
precessing is OK

Conim payment

Inform about
successful
payment

Precondition:
Payment
processing is

NOK

Unconfirm
payment

Inform about
unsuccessful
payment

32

Service Provider
Software Agent

Service Provider
Human Agent

Receive notification
about successfully
payment

Send notification
about successiul
payment

Receive notification
about news order
which is successfully
paid

\§. Prepare order for the
customer

Successful and unsuccessful payments behaviour model have two rules:

% R1 - The first rule checks if payment processing is OK. After this checking, the Merchant

Software Agent confirms and informs about the successful payment.

% R2 - The second rule checks if payment processing was Not OK. If not, then the

Merchant Software Agent informs about the unsuccessful payment.

4.CPN Model and Simulation

Sarvice Pruvid+r H\l Sarvice PrDvid*r SEI Profiler SDf‘twa}'e L\l Merchant Soft\}/ar4 Customer Suﬁlvar:{ Customer Hurrlan Agent

-’ EEQUIEST
£

MEMU: [3,M3]

MERL MOT AVAILARIE: [3 M?

QUE SELECTION \Wns NOT AVAILABLE.

MEML AVATI ARLE: [3,M7 MT-"CI;

HERE IS YOUR INWVOICE: f?'ﬁ}? M7]

MERL AATI APLE: [3,M2 M'J’J’_..

-’ EEQUIEST
£

HERE ARE SOME MEW SUGGESTIONS: [3, M7]

MERNLU: [3,M2]

CHOOSE 4 PAYMENT METHORU[35,3,M7, Paypal]

W SELECT PAYMENT

-’ EEQUIEST
£

METHOD: [35,3,M7, Paypal]

MEMU: [1,M1]

m COMPLETE YOUR RAYMENT: [35,3,M7,

YOUR PAYMENT WAS SUCCESSFUL: [35,3,M7, Payp

YOUR PAYMENT EAILED, PI EAGE TRY AGAIN! [35,3/

(- -

3

HERE IS YOUR INWVOICE: rong M2]

3

Figure 30 Sequencing Chart of CPN Model

33

(-

aypal]

al]

M7, Paypal]

P

M o N
3 ke

e O P

TR e

Figure 31 Full CPN Model

Available menu

[mid=aid]

(cid, mid} (cid, mid]

Customer Check if zvailable

logged in

Select menu Menu selected

INTxSTRIN

input [cid,mid);
output [J;

action (cid, nmid}
select_menu(cid, m|d);

(cid, mid]

Mew suggestion

{according to profiler) ot gyalah|s

INTxSTRING

input [cid, nmid};

output [J;

action
new_suggestion(cid, nmid);

(cid, nmid]

s Sl 125 5')++
1°(1,"M5)4+ M%)+ +
Prnfl‘(z'.MﬁIH"'hTJ

datatl (3,/M7°] |

INTxSTRING

Figure 32 CPN Model (part 1)

34

{oid,mid]

(cid,mid)

Menu available

input [cid, mid, aid);
output [}

action
check_avallability(cid, mid,aid);

Check frnot available

o

1°35++

204+
‘14

17 14++

Invoice amaunts 3 1204+

L1738
INT

(cid, mid]

Present invoice

{i,cid, m

INTxSTRING

input (cid, mid);

output [J;

action
check_unavailability(cid, mid);

input (i, cid, 1
output [J;
action
present_invc

1°35++

1 "Paypal"++
172044+

1" "Swedbank”

17144+ payment methods (2 BYPdih‘ 'i:"
Invoice amounts (39 1° 204+ wedban

1735

STRING

mid) (cid, mid]

. . X fi,cid, mid) (i, cid, mid)
Menu available Present invaice

3 (i, cid,mid,pm)
Confirmation Prupoge pagment i

ayment method

methods proposed
: : i i, i id}; INTxINTxSTRING
d, mid, aid)} INTXSTRING :‘Lft';‘ug"[;f'd' iy ik TRRUT [o, i) INTXINTXSTRINGXSTRING
% action ‘ uut_put i
= i % action
availability(cid, mid,aid); BIRSEIIErNG et oy payment_methods(i, ci¢, mid, pm)j (i, cid, mid, pm}
A b
—{ Check if not available

Select payment
input [cid, mid);

method
output [];
action input (i, cid, mid, pm});
check_unavailability(cid, mid); ”“ctt"“t[];
action
salect_payment(i, cid, mid, pm);
(i, cid, mid, pm]}
r
(cid,mid,pm] . . (i,cid,mid,pm) Payment 2 {i,cid, mid, pm) Fill out paymant | (i, cid, mid, pm) Payment method
aymentproceszing data sent e form \ selected
AT ML S TR TR S TR TR

Figure 33 CPN Model (part 2)

Customer follow s (cid. mid]

order status

i.dd,mid, Sand notification
Tracking arder status bcodomid] about succeschul

payment

(i.cad.mid.pm})

Process arder

(i.od.mid.pm)

i.dd.mid.
Payment succe ssful (i.dd,mid.pm}

INT=STRING

Payment pracessing

i cid,mid.pm)

input {i, cid, mid, pm); INTRINT=STRINGHSTRING 1 < :
nuptpuE (] i P_HIGH input (I, cid.mid, pm):
arctisn

sutput ()
arder_status(i cid, mid, pm); actian

natflcation_succsss(l, eld, mid, pm}

INTINTASTRING:STRING,

Payment unsuccessful

IMTHINT45TRINGHSTRING
(i.cd,mid,pm)

Send notification about

{i.cid,mid.pm)
un successful payment

Mew payment methed
sroposed

input [, cid, mid, pm);
autput [

action
naotification_fallure(l cd, mid, pm};

INTRINT=STRING=STRING

Figure 34 CPN Model (part 3)

35

On the above figures is displayed our CPN Model.

The first one is our sequence chart, followed by a general overview of the entire model and,
due to its complexity, the Model is not totally understandable as show on that figure, so we
decided to split it into 3 parts, all of them zoomed in, in order to be fully understandable and
well explained on this report.

For simulation purposes we have 3 customers, 3 different “Suggested Menus” (M1, M2 and
M3), 5 types of available menus (M2, M4, M5, M6 and M7), 3 types of invoices (14, 20 and 35€)
and 2 payment methods available (Paypal and via SwedBank). Also, all of the 3 users are on the
“profile database” with the meals they already ordered, so that the profiler can better fit his
responsibilities and create the best profile possible for both customers and service providers.
When the simulation begins, one of the customers selects one of the menus, and through the
Menu ID - “mid” the system will check if that specific menu is available. If not, a new suggestion
is made by the profiler, recurring to the database, and the customer will have the possibility to
select another menu at his own choice. On the other hand, if the menu is available, the billing
process is initiated, and through the “mid” combined with the Customer ID - “cid”, the invoice
will be presented to the customer, subject to confirmation, and the 2 payment methods are
proposed. After selecting the payment process type, a payment form is filled, and the payment
itself is processed.

At this stage, two things may happen: Either the payment is successful or not. If there is no
success, the system will send a notification saying the payment was unsuccessful and a new
payment method is proposed, but if the payment is completed accordingly, the order is finally
processed, it is sent an information to the customer about the order status, and when it is

ready the customer only has to relax and enjoy the new service.

36

5. Analysis and Results

After running the CPN Model, we visualized the correct functioning and some of the procedures

we expect our app is able to run.

1'"M2"++
1" "M4"++
3 M1+ 1°"MS"++ 1'35++
5TIMB Y+ 17 "MB"++ 1° 204+
2 M3 LM ‘14
1 "M2"++
3 M] 17 "M4"++ : Yen [T
Menu suggestad 49 5 M2 Available menu 5 1:"M5"++ Invoice amounts (1 1" 14
g "MB"++
1°"M7" INT
STRING STRING i

17(1,"M1")d=aid]

Customer

(cid, mid) 3 . (cid,mid) (cid, mid) 3 3 (i,cic
7 s oy Select menu Menu selected (1 Check if available » Menu available Present invoice
logged in -

; . o input (i, ¢
input (cid,mid); . . input (cid, mid, aid); INT%STRING OLIJJtpuE:’(}
autput (); {cid, mid) °UcttP“t 0: action
action [[ELed el
Se|ect_mf,§'r?d(2}'3‘,d% dl; check_availability(cid, mid,aid); prpaank |

MNew suggestion

(eid,mid)
(according to profiler)

Not available Check if not available

inptut ﬂ? nmid); INTASTRING inptut E:CE? mid);

output (); output (J;

(ad, nmid) action action
new_suggestion(cid, nmid);

check_unavailability(cid, mid);
1°(1,"M3")++
1°(1,"M5") 4+ [MEJ++
Profy® (2,"M&"] }*’17")
databrase—

INTxSTRING

Figure 35 CPN Model running (part 1)

37

T 354+
T 20++
14

i
!
1

Invoice amounts (1 _114'

INT

4, mid) . (i,cid, mid)
———— Present invoice
ING input (i, cid, mid);
output ();
action
present_invoice (i, cid, mid);
{cid, mid);
ut ()

n
<_unavailability (cid, mid);

(i,cid, mid, pm)

(i,cid,mid,pm) @,

a255ing e

1

payment methods

mirl

)) o F 115
Confirmation '1-} (20,3,'_'%") ropose payment

methods

INTXINTxSTRING

INTHINT®STRINGXSTRING

Figure 36 CPN Model running (part 2)

Fill out paymeant

“M"Paypal’++
1

"Swedbank"

s 1" "Paypal"++
o 1" "Swedbank"

STRING

(i, cid,mid,pm)

ayment method

input (i, cid, mid, pm);
output ();
action

payment_methods(i, cid, mid, pm)

(i, cid, mid, pm)

) 4

proposed

INTHINTxSTRINGxSTRING

(i, cid, mid, pm)

Select payment
method

input (i, cid, mid, pm);

output (J;

action

select_payment(i, cd, mid, pm);

(i, cid, mid, pm)

L 4

@t methaod

farm

38

\selected
TRITwThTvETRTAGVETRTRIG

NeW SUJJesTion
(according to profiler)

| Check if not available |

INTxSTRING

input {cid, nmid);

input (eid, mi
output (); output ();
(cid, nmid) action action

new_suggestion(cid, nmid); check_unava

17 (1,"M5")++
17(1,"M5")++ ME")++
Profy (2 'me") M7")

database

INTxSTRING

. mid) . (1,cid,mid pm) /\ _ {i,cid,mid,pm) Send notification
Tracking order status Process order (1 ————— ahout succassful
\—/ 1'(35,3,"M7","Paypal") paymeant
G input (i, cid, mid, pmJ; INTxINTHSTRINGXSTRING
» cid, mid, B i

(i, cid,mid,pm)

(i,cid,mid,pm)

Payment successful Payment processing

INTRINTHSTRINGXSTRING

o P_HIG input (i, cid,mid, pm);
i autput (); T
order_status(i, cid, mid, pm); action (i.cid,mid,pm)

notification_success(i, cid, mid, prm);

Payment unsuccessful

INTRINT®STRING®STRING
(i,cid,mid,pm)

Send notification about (i,cid,mid,pm] New payment method . T "
unsuccessful payment \mfed/l 1°(35,3,"M7","Paypal”)
input (i, cid, mid, pm); INTRINTHSTRING®STRING

output ();
action
notification_failure(i, cid, mid, pm);

Figure 37 CPN Model running (part 3)

As shown on the 3 above models, customer 3 logged in and chose menu 3.
After checking for availability, the SPSA sent a notification to the CSA saying the menu was not

available. At the same time, the PSA sends new suggestions to the costumer and he follows the

suggestion, choosing menu 7, which is available.

At this stage, an invoice is sent to the CSA.

At the same time, another customer logs in and chooses menu 2 which, after checking, is
shown as available by the SPSA. In the meantime, the first customer already chose a payment
method to pay its 35€ bill. PayPal method was selected, and while this customer was
completing the payment, another client logged in and requested menu 1 and an invoice was
sent to the second customer stating he would have to pay a 20€ bill.

This process would go on until the restaurant runs out of meals or some interruption is made

on their service which, in both cases, the customers and app users will be always notified.

39

Overall, the system works within the initial specifications and produced the expected results,
even though some of the aspects we considered for our project could not be considered due to
its complexity.

The amount of features we wanted to fit within our app would turn this project into something
too complex for the time we had available, therefore, we were advised not to do all of it, but
instead, only some parts in order to have a functional and working project.

The figures above, depicting the motivation and system design layers, as well as the CPN Model
show a methodic approach to the system where nothing was left by chance.

The 2 well designed layers helped to develop the correct CPN Model, giving a better
understanding of the system and its functioning and functionalities, all of them well
represented on the model itself and on this report.

Nevertheless, after the CPN Model was completed, some changes were needed to be done in

our initial models, so that the 3 models would match accordingly.

40

6. References

International Conference on Applications and Theory of Petri Nets, AALST, W. V. D., & BEST, E.
(2003). Applications and theory of petri nets 2003: 24th international conference, ICATPN 2003,
Eindhoven, the Netherlands, June 23-27, 2003 : proceedings. Berlin, Springer.

Jensen, K., Kristensen, L.M. and Wells, L., 2007. Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. International Journal on Software Tools for
Technology Transfer, 9(3-4), pp.213-254.

Mahunnah, M., Norta, A., Ma, L. and Taveter, K., 2014, July. Heuristics for Designing and
Evaluating Socio-technical Agent-Oriented Behaviour Models with Coloured Petri Nets. In
Computer Software and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th
International (pp. 438-443). IEEE.

Roubtsova, E., 2015. Chapter Two-Advances in Behavior Modeling. Advances in Computers, 97,
pp.49-109.

Sterling, L., & Taveter, K. (2009). The art of agent-oriented modeling. Cambridge, Mass, MIT
Press.

Taveter, K. and Wagner, G., 2001, September. Agent-oriented business rules: Deontic
assignments. In Proc. of Int. Workshop on Open Enterprise Solutions: Systems, Experiences, and
Organizations (OES-SE02001).

Course resources (for orientation purposes):

Mini-Project Sample 1: http://maurus.ttu.ee/sts/wp-
content/uploads/2016/02/Sample_MiniProject_1_Spring_2015.pdf

Mini-Project Sample 2: http://maurus.ttu.ee/sts/wp-
content/uploads/2016/02/Sample_MiniProject_2_Spring_2015.pdf

Mini-Project Sample 3:

http://maurus.ttu.ee/sts/wp-
content/uploads/2016/02/Sample_MiniProject_3_Spring_2015.pdf

41

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Informatics

Smart Office

Mini-project report in IDY0303 “Agent-oriented Modelling and Multiagent Systems”

Tallinn

2016

Table of Contents

I 101 (o o [V T3 (o) TR 2
2. Motivational [aYer...........c.uiiiiiiiiiiiiieii i 2
2 I CTo Y= 1 1 o o (=Y IR T 2
2.2. ROIE MO oo 3
2.3. Organization MOAEl........ouuuiiiiiiieiiieeeeeeeeeeeeeeeeeeee e 4

2 B B Lo)0 g =110 T 0 0100 (= 5

3. System deSIAN [AYENo 7
3.1. Agent and acquaintance MOdel............oouuuiiiieeuiiiiiiieiiiiieeeeeeeeeeeeeeeeeeeaann 7
3.2. Interaction MOAEIS.........iiiieiiiiiiiieiiiiiee e 8
3.2.1. Customer service request interaction...............oooeeeeieieeeeieiiiieieeieiiieeeeeeeene. 8

3.2.2. Customer support request interaction...............oooveeeeiiiieeeeiiiiiiieiiiiiiceeeiiiieenne 8

3.2.3. Customer order interaction...............oooouueeeeuueeieiiiiiiiieieeeeeeeeeeeeeeeeeeeeeaeea 9

3.2.4. Customer order failed interaction..............oooevueeeiiieeeiiiiiiiieiiiiiieeeiiieeeeeeiens 9

3.2.5. Customer room status request interaction..............ccccoeeeeeeeieeiiiieieiieieeeeeeeen.. 10

3.3. Knowledge MOAEN......ooveeeeniiiiiiieeeeeeeeeeeeeeee e 11
3.4. Behaviour MOdelS.ccovvuuuiiiiiiiiiiiieei e 11
3.4.1. Administrator Agent behaviour model.............ocoovvveeiieiieiiiiiiiieeeeeiieeeeeeenn 14

3.4.2. Controller Agent behaviour model............oooeueeeiiiiieeeiiiiiiieiiiiiieeeiiieeeeeeeenn 15

oS To1=) A - | [0 1 T T 17

ST el=) a7 4o N 17
SCENAIMO 2. 17

ST el=) AT T 18

ST o= AT 10 N SO 19
SCENANO 5. 20

4. Validation and VerifiCation................eiiiiiueiiiiiiieiiiiiieeeieeeeeeeeeeee e 20
4.1.Validation......oouuiiiiiiii i 20
4.1.1. Customer is arming rOOMuiiieeieiieeeeeeee e 20

4.1.2. Customer is diSarming rOOMooovieeeeiiiiiieieiieeeeeeeee e 21

4.1.3. Customer is requesting SUPPOIt.........oovieeeeiiiiiieieeiieeeeeeeeeeeeeeeeeeee 22

4.1.4. Customer is trying to disarm room that is already disarmed............................ 23
=111 1o L (10 o T U 24

LT O 0] o 11 11 () o T 24

1. Introduction

The purpose of this mini-project is to model a smart office system. Office rooms are rented out
to clients who have full control over each room (limited to their room only) - lighting, heat,
ventilation, alarm system etc. Doing so, each of those clients can regulate their own work
environment to fulfill their needs at best. Rooms may be scheduled and automated based on
needs or the client can have full real-time manual control over everything.

2. Motivational layer

This section contains the following models from the motivation layer of conceptual space:
Goal model

Role model

Organization model

Domain model

2.1. Goal model

The goal model shows functional goals and gives an overview of correspondence between
goals and roles responsible for achieving them.

The main goal is to create a office room rental service that is able to provide several required
technical functionalities for rooms and also real-time much needed technical assistance in case
something goes wrong or something new is needed. For technical functionalities to behave
properly the customer should have full control over the room devices and is able to send
constant reports whether there is something missing or wrong or simply broken. Therefore the
customer can feel comfortable and satisfied.

If the customer chooses to automate some of the devices based on activities or schedule (for
example: if a room needs to be heated to some specific temperature in order to start working),
there is a controller who is able to automate room devices and also start actions based on
activities done in the room.

The owner of the office building may also send in reports if he sees something going wrong. An
administrator is the one who should monitor everything in real-time and provide assistance if
needed. Assistance falls into two categories: first is to respond to problems reported by
customers and owners and second if the customer has requested a new functionality or device,
the administrator should look over whether it could be done and implement it if possible.

S o / \ o

-~
________________/ . Prgvide technicll__ _ @ e o e = i
_Service functionality
Apbly request ' onitor roon)/ Cgntrol roo / Send rovide /
/functienalitigs Fivitylscheghile /_device: / reports /_suppo

A

Owner

Q@r&an@ @sﬂy
e v

oty

Automate ire actions
Péom devicés sed on actiyity

Figure 1. Goal model

2.2. Role model

The role model describes the roles in more detail. There are four different roles in the system:
Owner, Administrator, Customer and Controller.

Role name Owner
Description Owner of the property
Responsibilities Provide additional support

Report problems

Constraints Conditions for Customer must be proper
Provide support constantly

Role name Administrator
Description Virtual assistant in the building
Responsibilities Assist Customer

Apply requested functionalities
Request additional support

Constraints Respond to Customer’s requests in time

Role name Customer

Description Tenant in the room of the building

Responsibilities Specify requirements for the environment of the room
Inform Administrator about changes and problems
Utilize requested functionalities

Constraints Requirements must not cause conflict

Role name Controller

Description The role of a device monitoring activity in the room
Responsibilities Monitor Customer’s activity

Register card presented to the reader when accessing room
Perform functionalities based on Customer’s orders and
preferences

Send status of the room to Owner and Customer

Constraints Follow the parameters specified by Administrator
Monitor activity constantly

2.3. Organization model

Organization model describes the relationships between the roles in the agent organization. The
Administrator role and the Controller role is being controlled by the Customer role. Meaning that
customer is the one who controls the behavior of the administrator and controller roles. The
controller role is controlled by the administrator who benevolent to the owner.

Admij

isContrplledBy

isBenevolentTo

Y

rator

isControlledBy

e
y

Controller

Figure 2. Organization model

2.4. Domain model

The domain model explains which roles use what resources. The Customer uses the room and
asks for services. He also sends orders, either access orders or alarm orders to the controller.
Access orders are entry/exit orders. Alarm orders are arm/disarm orders. The Administrator
gives service to the customer and applies list of functionalities which contain needed
functionalities that are requested by the customer. If needed the administrator automated
schedule and can request additional support from the owner. The owner has an overview of the
rooms occupants. He can read the services that the customer uses and in addition provide
additional support to the administrator. The Controller performs the list of functionalities that
have been applied by the administrator. Follows the automated schedule if created and receives

orders from the customer.

Owner

Customer

Owner

Views occupancy of N

Room

ads Uses
Support
_Gves | Service |«2Ske—
Admirfstator Custpmer
. .| Contai List of '
Fumtlona“ty_&functionalities Creptes
Sepds
Perfprms Schedule
Follg
Receives > Order

Controller

Figure 3. Domain model

/ N\

Access order

Alarm order

3. System design layer

This section contains the following models of the system design layer:
e Agent and acquaintance model
e [nteraction models
e Knowledge model
e Behavior models

3.1. Agent and acquaintance model

Agent and acquaintance model represents a mapping of roles to agent types and outlining the
interactions between the agents.

Owner Assistant Agent- » Administrator Agent = PCustomer Assistant Ageni——Customer Human Agent

NG I S

Controller Agent
Owner Human Agent g

Owner Owner Administrator Controller Customer Customer

Figure 4. Agent and acquaintance model

3.2. Interaction models

Different interactions between agents are shown on the following models below. The first one
shows message flow between Administrator and Customer agents where Customer requests
functionalities to execute based on Customer’s orders. In case something unexpected happens
(malfunction of device, something is broken) then Customer turns to Administrator the same
way as previously described but which is handled over to Owner who provides support (in this
case human must interfere in order to solve problems). The third one describes situation where
functionalities are executed based on Customer’s orders. The fourth model is similar to previous
one except that executing it is failed because of not meeting a rule (move to section 3.4.2 for
rules). Finally, the fifth model shows Customer making request in order to get the status of the
room (armed/disarmed).

3.2.1. Customer service request interaction

Customer is requesting service from Administrator Agent.

Administrator Agent USIomer AESISTant Agen .

Bequest /
service N

Apply
functionality

Figure 5. Interaction model. Customer service request

3.2.2. Customer support request interaction

Customer is requesting support from Administrator Agent.

Fdministrator xgenf TSI Mer AESIStant Agen] [e |

fReaues%
—, service
)

—--(: Request senvice ¢— -

_ /Request’
" support’,
“Provide',
/support;”|
| B
support
Support
provided

Figure 6. Interaction model. Customer support request

3.2.3. Customer order interaction

Customer is sending order to Controller which results in performing requested functionalities.

Controller Agent CUSTomer ResIstant Agent [Customer Human Agen
Send
order
— L Send order &= -
Perform
functionali
= > Send status D=
___'_,}'"é'é'r{d'"'})
status

Figure 7. Interaction model. Customer gives order and Controller performs functionality

3.2.4. Customer order failed interaction

Customer is sending order to Controller which results in displaying ‘Activity failed’ message.
Activity can be arm room, disarm room, enter room or exit room.

Controller Agent USTOMET ASSISTant Agen [Customer Human Agen

Send
order
" Tsend |
"{- order <.
T —-—e—
Display ‘Activity "

Figure 8. Interaction model. Customer gives order and Controller displays ‘Activity failed’
message.

3.2.5. Customer room status request interaction

Customer is requesting status of a room. Owner can also request status of a room.

TUStomer REsietant KQEI'IE CUStammer numan Kg&n!

Request
status N

Controller Agent

Figure 9. Interaction model. Customer requests the status of a room

10

3.3. Knowledge model

Knowledge model gives an overview of what pieces of information are accessible for each type
of agent. Only the most relevant attributes are included with the data objects.

Support

Administrator Agent
Requests &supportlD : Integer

\%momm - Integer _
& supportType - String Provides

Applie Cregtes Owner Assistant Agent

& supportContent : String

Q}creationTime: Date

&deadline : Date

List of functionalities Schedule SocompleteTime - Date Views ocqupancy of
Q;type”j *Integer &schedulelD : Integer
&ty peOf - String & date - Date Serice
SroomiD - Integer &psenicelD : Integer Customer Assistant Agent
&roomiD :Ir-1teger Receives|&customeriD : Integer Uses Room
1 0.* &creationTime - Date [<——|&»name : String &roomiD : Integer
Corftain rforrs Eollbws &senviceType : String &roomiD : Integer
serviceContent : String

Functionality 03 Controller Agent

&typelD - Integer
roomlD : Integer eceives
&state : Integer

™ - Order Alarm order
1 CESS order & orderD - Inte &orderlD - Inte
:Integer - Integer
&orderlD - Integer L1 &orderType - Sting =~ ———&date : Date
&date - Date &localAction : Boolean
&customerlD - Integer &customerlD - Integer

Figure 10. Knowledge model

3.4. Behaviour models

Here we give the main activities and pre- and postconditions for them.

Figures 10 and 11 illustrate the behavior models of the more complex agents in our system.
They are based on interaction models. Behavior models differ from interaction models in the
way that they focus on explaining how does the agent work. Designing behaviour models is the
last step before moving to software implementation.

Nr | Pre-condition(s) Activity name Post-condition(s)

1 e Customer Request service e Service requested
e Service request

2 e Service requested Receive request e Request received

11

Request received Request support e Support requested

Support requested |Receive support request e Support request received
Support request Provide support e Support provided
received

Request received Request functionality e Functionality requested

7 Functionality Apply functionality Functionality applied
requested
8 Customer Send order Order sent
9 Order sent Receive order Order received
10 Order received Check room status Room status checked
Counted
Room status
11 Room status Exit room Room exited
checked Order executed
12 Room exited Decrease counted Counted
13 Room status Disarm room Counted
checked Order executed
14 Room status Arm room Counted
checked Order executed
15 Room status Enter room Room entered
checked Order executed
Customers in the room
16 Room entered Increase counted Counted
17 Room status Display 'Exit without Exit failed
checked entry' Room status
Counted
18 Room status Display 'Already armed Arm failed
checked or room occupied' Room status
Counted
19 Room status Display 'Disarm first' Entry failed
checked Room status
Counted
20 Room status Display 'Already Disarm failed

checked

disarmed'

Room status
Counted

12

21 e Order executed Switch lights on Lights on
Lights switched
22 e Order executed Switch lights off Lights off
Lights switched
23 e Lights switched Turn ventilation on Ventilation on
Ventilation controlled
24 e Lights switched Turn ventilation off Ventilation off
Ventilation controlled
25 e Ventilation controlled | Turn heating on Heating on
Heating controlled
26 e Ventilation controlled | Turn heating off Heating off
Heating controlled
27 e Heating controlled Prepare send status Room status
Send status prepared
28 e Send status Send room status e Room status sent
prepared
29 e Room status sent Receive room status e Room status received
30 e Customer Customer to request e Requester checked
31 e Owner Owner to request e Requester checked
32 Room status Request status e Status requested
Requester checked
33 e Status requested Send status e Status sent
34 |Status sent Receive status Status received

Return transitions are excluded from the table.

13

3.4.1. Administrator Agent behaviour model

This behaviour model encompasses interactions 1 and 2 (customer service and support
request). It shows Administrator Agent behaviour in greater detail. If customer request can be
satisfied by applying a functionality then it is done. If Administrator Agent cannot resolve request
by applying some functionality (i.e. something is broken), then support request is sent to Owner.

Owner Human Owner Administrator Customer Customer Human
Agent Assistant Agent Agent Assistant Agent Agent
Reguest
B service
e ;
- Request ;| |
N senvice
o - =
e - © Request ;| Hequest
i—vmo—|.— Request i R support - additional
\osupport ¢] e a support
Frovide S 2
Support
pon Furgtonainy® T -
Suppert run“ll'J:nfality s} AT ﬂlj-nzl ¥ = y Functionality "
i - A 2
provided i aEple__ .f: applied
ey
Support " pemscsar -
L X t + s X e
© provided s e Support \ Support j
R oL © provided [-3 : 7
;SRR = e provided

Figure 11. Administrator Agent behaviour model

Rules:
e R1: Check request type (either support or functionality request)

14

3.4.2. Controller Agent behaviour model

This behaviour model encompasses interactions 3 and 4 (customer order). It shows Controller
Agent behaviour in greater detail. Customer gives order. Controller detects order type (either
access or arm order). Then it detects if order is applicable for given situation (status of the room
and number of people in room). It responds with order filled or denied.
If order was filled and room has automation rules, then additional functionalities are applied. By
default lighting is switched on, ventilation and heating turned up upon disarm. By default lighting
is switched off, ventilation and heating turned down upon arm. Room status is then also sent to

Customer Assis

tant Agent.

Controller Agent

Customer
Azzistant Agent

Customer Human
Agent

Access order
denied

Perform additional
functionalities (lights.
ventilstion)

Armn order
denied [[T T

Sand room
status

- -t Send order

'1 Arm :-rcar_|l'.
I '!- denied _-f_)

..} order

| \Armorder'
i filed

Figure 12. Controller Agent behaviour model

15

Rules:

R2: Check order type (either access or arm order).

R3: Check room status (if it is armed then restrict entry).

R4: Count number of Customers in the room (if it is 0 then Customer can arm room).
R5. Check if room lighting/heating/ventilation needs to be changed upon arm or disarm.

16

3.5. Scenarios

Scenarios are given to describe the interactions of our system in greater detail.
Scenario 1

Goal: Room is armed

Initiator: Customer human agent
Trigger: Room status checked
Failure: Room stays unarmed

Description:
Condition | Step | Activity Agent types and roles | Resources Quality
goals
1 Send arming | /Customer agent Alarm order, Order is sent
order Order
/[Controller agent
2 Receive Controller agent Access order | Order is
arming order received
3 Display /Controller agent Status_display | Arming
arming message is
message /[Customer agent displayed
4 Arm room /Controller agent Functionality, Room is
Room, armed
//Customer agent Alarm_status
5 Send arming | /Controller agent Alarm_status | Status is sent
status
//Owner agent
Scenario 2

Goal: Lights are switched on
Initiator: Customer human agent
Trigger: Order executed

Failure: Lights stay switched off

17

Description:

Condition | Step | Activity Agent types and roles | Resources Quality
goals
1 Send order | /Customer agent Functionality, | Order is sent
to switch on Order
lights //Controller agent
2 Receive /Controller agent Access order | Order is
order to received
switch on
lights
3 Display lights | /Controller agent Status_display | Lighting
status message is
message /[Customer agent displayed
4 Switch on /Controller agent Functionality, | Lights are
lights Room, switched on
/[Customer agent Light_status
5 Send lights /Controller agent Light_status Lighting
status status is sent
//Owner agent
Scenario 3

Goal: Ventilation is turned off
Initiator: Customer human agent
Trigger: Ventilation turned on
Failure: Ventilation stays on

Description:
Condition | Step | Activity Agent types and roles | Resources Quality
goals

1 Send order | /Customer agent Functionality, | Order is sent
to turn off Order
ventilation /[Controller agent

2 Receive /Controller agent Access order | Order is
order to turn received

off ventilation

18

3 Display /Controller agent Status_display | Ventilation
ventilation turn off
status /[Customer agent message is
message displayed

4 Turn off /Controller agent Functionality, | Ventilation is
ventilation Room, turned off

/[Customer agent Ventilation_sta
tus

5 Send /Controller agent Ventilation_sta | Ventilation
ventilation tus status is sent
status //Owner agent

Scenario 4

Goal: Heating is turned on
Initiator: Customer human agent
Trigger: Ventilation controlled
Failure: Heating stays turned off
Description:

Condition | Step | Activity Agent types and roles | Resources Quality
goals

1 Send order | /Customer agent Functionality, [Order is sent
to turn on Order
heating //Controller agent

2 Receive /Controller agent Access order | Order is
order to turn received
on heating

3 Display /Controller agent Status_display | Heating turn
heating on message
status //Customer agent is displayed
message

4 Turn on /Controller agent Functionality, Heating is
heating Room, turned on

/[Customer agent Heating_status

5 Send heating | /Controller agent Heating_status | Heating

status status is sent

19

//Owner agent

Scenario 5

Goal: Room status is checked
Initiator: Customer human agent
Trigger: Order received

Failure: Room status is not received

Description:
Condition | Step | Activity Agent types and roles Resources Quality
goals
1 Request /Customer agent Room, Order | Requestis
room status sent
/IController agent
2 Receive /Controller agent Access order | Room status
room status request is
request receiver
3 Send room /Controller agent Room_status | Room status
status is sent

/[Customer agent

4. Validation and verification

4.1. Validation

Ideas and thoughts modelled are implemented in CPN Tools. Data flows have been carried
according to models given in this document. After modelling and CPN simulation, we adjusted
interaction and behaviour models to achieve compliance.

4.1.1. Customer is arming room

Customer is sending order to Controller to arm room. Controller receives order (Order ID e.g.
oid = 1), compares it to room status which is disarmed (armed status ID e.g. aid = 2) and arms
room. After that functionalities are being switched/turned off due to rule (oid = arm) and room
status is sent from Controller to Customer.

20

age

| Owner human Owner assistalﬂt a

Administrator 4ger| Controllar agelﬂt

Customer assilgtari Customer hun’lan agent

m OWNER TO REQUEST: [0, 100]

SEMD OROER: [10, 100, 1]

£
i

m RECEIVE ORDER: [[10, 100, 1]
W CHECK ROOM STAT
W ARM ROOM: [10, 1p0, 1, 0]

W SWITCH LIGHTS OFF: [10, 100, 1, 0]
® TURM WENTILATION OFF: [10, 100, 1, O

m TURM HEATIMG OFF: [10, 100, 1, 0]

SEND STgUs: [10, 100, 1]

EQUEST QTﬂTlJQ'\’[. 100]

SEND STATUS: [0, 100, 1]

~

W RECEIVE STATUS: [0, 100, 1]

(- a
Figure 13. Scenario 1: Customer is arming room

4.1.2. Customer is disarming room

SEMD QROER: [10, 100, 2

m RECEIVE STATUS:

oL
=

(-

m RECEIVE ORDER: [[10, 100, 2]

B CHECK ROOM STAT

us: [2, 10, 100, 1, 0]

Us: [1, 10, 100, 2, 0]

10, 100, 1]

This scenario describes Customer sending order to Controller to disarm room. Controller checks
that room is armed (armed status ID e.g. aid = 1) and disarms room. After that functionalities
are being switched/turned on due to rule (oid = dis) and room status is sent from Controller to

Customer.

21

age

| Owner human Owner assistalﬂt a

Administrator 4ger| Controller agelﬂt

(-

m RECEIVE STATUS: [0, 100, 1]

m OWNER TO REQUEST: [0, 100]

3

SEND OROER: [10, 100, 2

i
x

m RECEIVE ORDER: [[10, 100, 2]

W CHECK ROOM STAT

m DISARM ROOM: [10, 100, 2, 0]
W SWITCH LIGHTS ON: [10, 100, 2, 0]
B TURN WENTILATION ON: [10, 100, 2, 0]

B TURN HEATIMNG OMg [10, 100, 2, 0]

SEND STgUS: [10, 100, 2

(-

Figure 14. Scenario 2: Customer is disarming room

4.1.3. Customer is requesting support

m RECEIVE STATUS:

us: [1, 10, 100, 2, 0]

10, 100, 2]

1 -

Third scenario shows Customer requesting support from Administrator who redirects it to
Owner. Data flow results in Owner providing support.
Every scenario here shows also Owner requesting room status which can be concurrent action

that can happen all the time.

Customer assil;tarl Customer hurrlan agent

22

age

| Ownear human Owner assistalﬂt al Administrataor 4ger| Controller agelﬂt Customer assil;tarl Customer hurrlan agent

EQUEST SERVICE: [10, 100, &, suppart

3
-~

m RECEIVE REQUEST]: [10, 100, &, suppoft]

< REQUEST SUPPORT: [10, 100,|6, support]
m RECEIVE STATUS: [0, 100, 2]
m OWNER TO REQUEST: [0, 100]

m RECEIVE SUPPORT|REQUEST: [10, 100} &, support]

EQUEST QTﬂTlJQ'}[. 100]

SEND STATUS: [0, 100, 2]

~

PEOVIDRSUPPORT: [10, 100, B, suppart]

(- - _a (- - _a
Figure 15. Scenario 3: Customer is requesting support

4.1.4. Customer is trying to disarm room that is already disarmed

In this scenario Customer wants disarm room but it is already disarmed. After sending disarm
order to Controller, it is checked that room is already disarmed (disarm order equals to room
status) and Controller displays corresponding message.

age

| Owner human Owner assistalﬂt al Administrator +ger| Controller agel‘rt Customer assilstarl Customer hurrlan agent

< SEND OROER: [10, 100, 2
m OWNER TO REQUEBEST: [0, 100]
m RECEIVE ORDER: [0, 100, 2]

m CHECK ROOM STATUS: [2, 10, 100, 2, 0]

DISPLAYSAI READY DISARMED: (2,10, 100, 2]

EQUEST STATUS: L0, 100]
F

(- (- (- (- (- (-
Figure 16. Scenario 4: Customer is trying to disarm room that is already disarmed

23

4.2. Verification

Verification is done by state-space analysis (SSA) export from CPN Tools. Net model has
currently 1481 dead markings which leads to 1481 routes that will stop net running. Since the
model contains states like “Lights on”, “Lights off”, which are dead ends, we get to see that initial
marking is not a home marking. Having no live transition instances announces that net will not
run infinitely.

SSA report shows that net model is not live which means that it is not completed yet.

We created new page “Request support verification”, trying to achieve SSA full status which we
did. This branch does not have any dead markings which means the net is live.

There are some actions in CPN that are not implemented:

e Current CPN counts number of Customers in the room but does not locale concrete
Customer (e.g. when one Customer enters then another can exit without entry which
should not be allowed);

e Functionalities are working by default parameters. The idea is to send message (msg in
string type) and then extract it and parse parts of it to integer to combine rule which is
not working;

e Schedule is intended to function by using timestamps (e.g. to switch functionalities on
and off in time specified by Customer). Since time is not fully implemented, it can not be
made use of.

5. Conclusion

Considering SSA result and also pointing out missing actions, current net requires further
development in case we want to compare it to real working system.

Still, taking into account the progress we have made, CPN has given us additional approach
how to design systems like this.

Speaking of SSA in general, it is quite complex to achieve it's full status if constructed net is
large enough. In our opinion, that would be the hardest part in verification.

Validation process indicated that CPN implementation may differ from modelling and that's why
it would be necessary to modify models. We modified interaction and behaviour models.

To sum up, building systems in CPN gives new approach of how to design desired system.
Since we do not have enough experience in CPN, it's design is not remarkable.

24

Talinn University of Technology
Faculty of Information Technology

Department of Informatics

Agent-Oriented Modelling and Multiagent Systems (IDY 0303)
Project

Smart Loan Provider Service

Tallinn 2016

Table of Contents

314 0T [T T 4T o 1O 3
Requirements analysiS....cccciiiiieuiiiiiinniiiiineniiiiiieniiiiiemiieemiiienissiienssmensssnees 4
[CToT: 1INy 4 Lo Yo [=] [P RN 4
[0 1=y 1 o e [DO 5
(017 Ta TR 14 To T 0 Ty o Lo T L] 6
[0 4 F- 113 T 30 Lo =1 Rt 6
SyStem desSigN [aYer iiieiiiiiiiiiiiiinrirrir e s rea e s e s s a et sssa e senesesenesssansesannnsnen 7
Agent and acquaintance MOdElceeeeiiieeeiiiie e e e e e s e e e a e s s e e nn s e e nnnnanns 7
Knowledge Model iiiiiiiciiereccreeereeee et creenerenserennesensessnssesnssessnsesensesenssesnssssansesannans 8
INteraction MOAEISccuuiiiiiiiiiiiiicrrrc e rre e seresae s s sesasssssennsssssenasssssenessssaanenes 9
Behaviour MOdEISceeeeiiiieciiiiicccreicesrcreeeereras e s senas e seennsseseenssssseennsssseennssssesnsssssennnnsnnennn 10
ANAlYSIS iN CPN TOOIS...cccuiieeniireeereeenerteneereaernnseereaserenssereaseesensessassssansessnsssssnsesssnsessnssenen 11
AV 11T F- 4o o TSP PPP 11
RUIES.. ettt ittt e s re e s sesae e st e sae e s senasssssenssssssenssssssensssssssnsssssesnsssssssnsssssssnnsssnanns 13
LY=L) ToF 1 [T PP 13
0o T 0 1o 11T o T 14
Table Of fiGUIES.ccuuieeiiieieieiecrecereeerreeereeerree e renenereaseressesensessensessnssesenssssensesenssssnsanen 15
APPENAIX L...eiiiiiiiiiiiiiiiiiiiieieitneiereneistensertnsietsnsesenssesenssstsnssssnsssssnssssnssssensssssnsassnssssen 15

Introduction

The idea of this mini-project is to model a smart loan provider service. Banks are already
using similar solutions but our purpose is to make the processes more automated by using different
agents, which may be different systems or persons.

The purpose is to make client-friendly loan applying system with quick process so that client
should give just his identification number and a sum he/she wants to loan (in some cases some extra
info is asked if necessary). By getting client's personal identification number Profiler makes client's
profile by getting most (if not all) of the necessary information (income, education etc.) about the
client from different agents and so the Analyst can make the final decision about providing loan. The
system is meant for smaller loans (without collateral).

This service could also be rather general so that not only banks but everyone (individuals,
companies etc.) could use it for calculating lending capacity and providing loan, but the problem is
that for getting this kind of personal data about the client some kind of rights and licenses are
needed that only banks can get. Individuals could use this service but in this case agents should ask
the information straight from the client.

Requirements analysis

Goal model

Goal model is a part of agent organization behaviour analysis. It contains functional goals
and also quality goals for agent roles. The goals are described hierarchically. The goal model for
current project is shown in Figure 1. In current project the main goal is to provide loan with agents
to help with automated decisions and the whole process will be more fluent for the client. In order
to achieve this goal providing loan is defined to sub- goal - Calculate lending capacity.

Sub-goals to calculate lending capacity is to get client profile and make decision upon profile.
Analyst will make decision only with complex cases or where loan is no longer "small-loan". As risk
for loan provider rises, the more personalized the process will get. To gather all necessary
information about client's personal data, requests to several registers to get marriage info, age info,
supported persons and education info.

Second and important information for profile is client's credit data. Information will be
gathered with the same logic — requests to registers and loan provider own credit rating.

Client

ety ———

Analyst
Clént's personal géta Cllent's credit data

E%l age Wé/aupponed persy(Euucation imé %\armcome}ﬂé C/Amdeb\ednesaﬁ

Profiler

ét marriage ipfo

Car leasing balepte %H loan bal% %ace\%nba‘?ﬂé %ernb\igaﬁ fs

Figure 1 Goal model

Role model

There are 4 different roles in the system: Client, Loan manager, Analyst and Profiler. These

roles are described in detail below.

Edlt, \iDetets
Role name Client
Description Loan application provider
Responsibilities Give proper information as input for the system
Constraints * Give loan application to the Loan Manager
Table 1 Client role
Edit Delete
|Hole name Loan manager
|Description Giving final decision 1o the customer, receiving decisions from credit analyst
Responsibilities * Decision from credit analyst override all other decisions
* To give customer final decision
Constraints * Receive loan application from Client
* Request decision from Analyst

Table 2 Loan manager role

Edit

Delete

|Role name

Analyst

|Descriptic|n

Receiving lending capacity of customer, making final decisicns

Responsibilities

» Making fair decision on giving loan.
» Calculating loan capacity

Constraints » Request profile from Profiler to be usad in decision
» Provide decision to the Loan manager
Table 3 Analyst role
Edit Delete
|F|ole name Profiler
|Description Manages client's profile

Responsibilities

» Generate client profile based on client's personal data.
* Cenerate client profile based on client's credit data

Constraints

s Generate profile for Client ussed by Analyst

Table 4 Profiler role

Organisation model
Figure 2 shows the organisation model which captures types of interactions between
different roles. The model is rather simple, but it describes the interactions very easily.

Loan Manager first receives the loan application from the Client, so the Loan Manager has to
be benevolent to the Client, Loan Manager requests decision from Analyst, so he is controlled by
Analyst. Analyst requests the full profile from Profiler, who then generates profile about the client so
that Analyst could use the profile in making the decision, so the Profiler is also controlled by the
Analyst, because after getting the profile Analyst makes the decision and provides the decision to
the Loan manager who then gives the decision to the Client.

Clifnt

isBenedolentTo

isControlledBy _ isControlledBy

|
Loah manager .-ﬁﬁl"]ah.,rst Profiler

Figure 2 Organisation model

Domain model

Figure 3 shows the domain model. Its purpose is to describe which roles use which
resources. There are four different domain entities in the current project: Loan offer, Profile, Lending
capacity and Decision.

Client asks Loan offer by filling loan application. Loan manager generates initial Profile with
the loan application information from client so that Profiler would have input to collect all the other
needed data.

Profiler manages Profile, which is the basis of calculating Lending capacity. Analyst receives
Lending capacity and makes decision, after that Loan manager receives the Decision and approves
the Loan offer.

i asks

Client

mandages

Loan offer |«

k

Profiler

Figure 3 Domain model

Profile

T

Lending capacity

k4

System design layer

Agent and acquaintance model
The agent and acquaintance model is a part in agent organization interaction design. The

agent and acquaintance model for the current project is shown in Figure 4 and describes

relationships between agent roles and agent types.

approves
Loan njanager
gener.
recdives
W
Decision
mages
iVes
Analyst

The Client role is mapped to Applicant Agent type.
The Loan manager role is mapped to Loan Manager Agent.
Roles Analyst and Profiler are both mapped to Credit Analyst Agent.
The model on Figure 4 also shows the interaction pathways between the agent types:
Loan Manager Agent interacts with both Applicant and Credit Analyst Agent but Applicant Agent and
Credit Analyst Agent doesn't interact with each other.

Loan manager

&

Applicant Agent <€

!

Client

> Loan Agent <€

Figure 4 Agent and acquaintance model

P Credit Analyst Agent

Profiler Analyst

Below is also shortly described the responsibilities of the Agents.

Agent name Applicant Agent
Description
Roles Client

Responsibilities

» Give proper information as input for the system

Table 5 Applicant Agent

Agent name Loan Manager Agent
Description

Roles Loan manager

Responsibilities

* Decision from credit analyst override all other decisions

* To give customer final decision

Table 6 Loan Manager Agent

Agent name Credit Analyst Agent

Description

Roles Analyst, Profiler

Responsibilities * Generate client profile based on client's credit data
» Generate client profile based on client's personal data.
* Making fair decision on giving loan.

Table 7 Credit Analyst Agent

Knowledge model

Knowledge model is a part in agent organization information design. It represents the
knowledge that agent types have about their environments and about themselves. The knowledge
model for current project is shown in Figure 5. The knowledge model is already a more elaborate
model of information available for agent types, it has the same relationship framework as the
domain model but here the information is represented in a more structured way to explain the basis
of providing loan.

oo ooy s aton_, toovsoun | S

Client decision:boolean Loan manager

loan_amount:float
period_in_months:integer Kknowd about
monthly_payment:float
interest_rate:float
<<AgonType>>
Credit Analyst Agenv——mq"—s——'—w’decision:boolean
Analyst, Profiier max_loan_amount:float
about max_monthly_payment:float
interest_rate:float
reg_no:string
ageinteger
no_of_supp_persons:integer
marital_status:string
education:string
net_income:ficat
debt_amount:fioat
obligations_amount_sum:float
Figure 5 Knowledge model

Interaction models

The basic interactions required by the agents are shown in Figure 6.

IAppiicant Agen

Toan Nanager Agent

-+ —-"3Send loan application »+-—

Figure 6 Interaction models

Behaviour models
Behaviour model is shown in Figure 7.

Loan Credit

Applicant manager analyst

Create loan
application

e - = Receive loan —— ————— - Get client's
N Send loan L application personal data

| _.\ . . -
application } Request decision _."'_

L= —

Calculate
income
based on

supported
persons

Calculate
income

based on age

Calculate
income

based on

education

Calculate
income

based on
debts

Calculate
income
based on
obligations
\

_
3
Receive loan T = - Compose = = Make

final loan B / Loan offer gomd final decision -/ Give decision T || decision
offer . . .) about giving
: | P = loan

—

Figure 7 Behaviour models

Analysis in CPN Tools

Analysis in CPN Tools, focused on validation and rules are under this chapter.

Validation
In this section we are using CPN tools to validate our models. This tool helps us to visualize
and validate our proposed models and run rules against it.

In order to do this, we have described the following scenarios:
1. A positive result on loan request

a. Theloan request is satisfied to the fullest
2. Anegative result on loan request

a. Theloan request is rejected fully

CPN model is in Figure 8. It is showing our flow in high-level. All kind of different rules
(relations between applicant's profile and decision) are not in the place in our current model. It's
mainly because we have many complicated rules in our system and it was hard to implement that
logic in CPN Tools. So in Figure 8 and 9 we have basic working version of CPN model.

e - ‘
o -
sgesaazs ganana aksiete

Figure 8 CPN model

¥ Standard declarations
¥MSC setup
¥val msc = MSC.createMSC("sequence diagram")
Tval applicant = "Applicant™;
¥val manager = "Loan Manager Agent";
¥val analyst = "Credit Analyst agent";

¥val _ = MSC.addProcess{msc, applicant);

¥val _ = M5C.addProcess(msc, manager);

¥val _ = MSC.addProcess(msc, analyst);
¥ colset

¥colset UNIT = unit;

» calset BOOL

»colset INT

» colset INTINF

» colset TIME

» colset REAL

»colset STRING

¥colset STRIMGXINT = product STRING*INT;

¥colset STRINGxSTRIMG = product STRING*STRING;

¥ colset STRINGx®BOOL = product STRING*BOOL;
¥var

¥yar amount: INT;

¥yarregno: STRING;

¥yar supp_pers, age: INT;

¥var education, marital: STRING;

Tvarincome, debts, obligations: INT;

¥var decision: BOOL;
rfun

¥fun submit_info({regno,amount)

=MSC.addEvent(msc,applicant,manager, "SUBMIT APP
¥fun request_decision(regno,amount)

L INFO: [" - regno ™~ "," ~ INT.mkstr{amount)~"]1");

=MSC.addEvaent(msc,manager,analyst, "REQUEST DECISION: [" ™~ regno -~ "," ™ INT.mkstr(amount)™"]");

rfun make_decision(regno,decision)

=MSC.addInternalEvent{msc,analyst, "MAKE DECISION: [~ regno ™ "," ~ BOOL.mkstr(decision) ~"]");

¥fun give_decision(regno,decision)

=MSC.addEvaent(msc,analyst,manager, "GIVE LOAN DECISION: [" ~ regno ™ "," ™~ BOOL.mkstr{decision) ~"]");

¥fun give_loan_coffer{decision)

=MSC.addEvent(msc,manager,applicant, "GIVE LOAN OFFER: [" ~ BOOL.mkstr(decision) ~"]");

Figure 9 CPN model - declared variables

Simulation were done based on Figure 8. We had two examples, one person who gets loan

and other don't. So we have simulated two possible scenarios. They are visible in generated message

sequence chart (Figure 10)

[Applicant J [L-:-an Manageqﬂ\ga[Credit Analyst}-gent

L SUBMIT 44

'PL INFO: [b]

REQUESE.DECISION: [b]

SUBMIT 48PL INFO: [a]

W MAKE DECISION: [b false]

REQUES3.PECISION: [a]

®m MAKE DECISION: [a,false]

Le——GIVE LOAN DECISION: [a,true]

Figure 10 Message sequence chart

4_GD£F_LQAT OFFER: [true]

12

Rules
In this section are described rules which are missing from CPN model, most of them should
have under "MAKE DECISION".

We need to make decision (if we can give loan in requested amount or not) based on
applicant's profile. Biggest relation with amount is applicant's income. So we are getting applicant's
income as initial amount and we are changing it based on other info which belongs to applicant.

Here are described some examples of rules, they are showing how initial income is impacted:

e Supported persons
o If applicant has more than 3 children, then we are decreasing income amount by
some %
o Age
o If applicant is too old (going soon to retirement), then we are decreasing income
amount by some %
e Education

o If applicant got higher education (probably can make career and get higher salary in
future), then we are increasing income amount by some %

e Debts

o If applicant has some debts (getting overall amount), then depends on amount we
probably cannot give a loan at all

e Obligations

o If applicant has some obligations (getting overall amount), then we are dividing
amount by average loan period and can decrease initial income by that amount

Then we need to take into account that applicants cannot use all his income for loan
payment, then we are taking some % of final income (average that how much usually people are
spending their income on their household etc.). After that we got final income amount which can be
used for loan payments in every month.

Finally, we calculate see how much loan (and for how long) we can give to applicant based
on this monthly payment.

Verification
Verification results from Coloured Petri nets application is in Appendix 1.

13

Conclusion

It was interesting to investigate and deal with our smart loan providining system, but it
seemed to be a little bit complicated for this mini-project. We understood that when we tried to
create different scenarios and rules for them (especially when tried to visualize them).

It was hard to implement complicated system in CPN Tools. Is seemed to be more suitable
for smaller systems - to visualize process, simulate, verify and validate them. Otherwise it seemed to
be too time-consuming and hard to use for fancy things. Even MSC creation process was complicated
(too much writing, copy-paste etc.). In positive side, the simulation part was really good and it can
be very helpful to see bottlenecks in new systems.

In conclusion, visualizing process flow in CPN Tools can be very useful but it is too time-consuming if
you are not CPN-expert.

14

Table of figures

FIUIE 1 GOl MOEL......iiiiiiieee ettt et e e sttt e e s sbte e e s sbteeessbteeessabeaeessseenessnnes 4
Figure 2 Organisation MOEL..........ciiiiiiiiiiiiiie e e st e e s s sbte e e s sbree e s snreeeesanes 6
Figure 3 Domain model........ccccceeevveeeecnieeeennne.

Figure 4 Agent and acquaintance model

Figure 5 KNOWIEAZE MOUEIoooineiieie et e e e e e e e e et e e e s e bte e e s sntaeeeentaeeesanes 8
Figure 6 INTeraction MOEISviiiiciiiee ettt e e e et e e e et e e e e e bte e e s enraeeeenraeeesanes 9
Figure 7 BENaVIOUr MOEISccoiuiiiiiiiiie ettt s et e e et e e s saee e e e sabae e e sanbseeesnnnneeeeas 10
FIUIE 8 CPIN MOMEL......eiiiiiiieie ettt e e e et e e e ettt e e e e ataeeeeaeseeesnsaeeesnsaeeesnanseeaans 11
Figure 9 CPN model - declared variablesoo i 12
Figure 10 Message SEQUENCE CRalT.....c..uiiiiciiieiciiie et ee ettt e e e e st e e st e e e ssstaeeessnseeeesnnnseeeens 12

Appendix 1

CPN Tools state space report for:
/cygdrive/D/Kool/IDY0303 - Agentorienteeritud/loan_draft (2).cpn
Report generated: Mon May 23 00:03:57 2016

Statistics

State Space
Nodes: 72
Arcs: 144
Secs: 2
Status: Full

Scc Graph
Nodes: 72
Arcs: 144
Secs: 0

Boundedness Properties

Best Integer Bounds

Upper Lower
New_Page'Age 1 1 1
New_Page'Age_received 1 1 0
New_Page'Applicant1 2 0
New_Page'Credit_score_received 1

1 0
New_Page'Debts 1 1 1
New_Page'Debts_received 1

1 0
New_Page'Decision_calculated 1

1 0
New_Page'Decision_given 1

1 0
New_Page'Decison_equest_received 1

2 0

New_Page'Education1 1 1
New_Page'Education_received 1
1 0

15

New_Page'lncome1l 1 1
New_Page'lIncome_received 1

1 0
New_Page'Info_received 1

2 0
New_Page'Loan_offer_received 1

1 0
New_Page'Marital_info 1 1 1
New_Page'Maritial_info_received 1

1 0
New_Page'Obligations 1 1 0
New_Page'Obligations_received 1

1 0
New_Page'Personal_data_accessed 1

1 0
New_Page'Profile_retrived 1

1 0
New_Page'Profile_storage 1

1 0
New_Page'Profile_updated 1

1 0
New_Page'Regno_received 1

2 0
New_Page'Supported_persons 1

1 1
New_Page'Supported_persons_received 1

1 0

Best Upper Multi-set Bounds
New_Page'Age1 1°("a",25)
New_Page'Age_received 1

1'("a",1,25)
New_Page'Applicant 1
1™"a"++
1"p"
New_Page'Credit_score_received 1
1'("a",3100)
New_Page'Debts 1 1°("a",400)
New_Page'Debts_received 1
1'("a",5000,400)
New_Page'Decision_calculated 1

1°("a",true)
New_Page'Decision_given 1
1°("a",true)
New_Page'Decison_equest_received 1
1™"a"++
1"p"
New_Page'Education 1
1°("a",3)

New_Page'Education_received 1
1'("a",1,25,3)

New_Page'lncome 1 1°("a",5000)

New_Page'lIncome_received 1

1°("a",5000)
New_Page'Info_received 1
1™"a"++
1"p"
New_Page'Loan_offer_received 1
1'true
New_Page'Marital_info 1
1°("a",0)

New_Page'Maritial_info_received 1
1'("a",1,25,3,0)

New_Page'Obligations 1
1'("a",1500)

New_Page'Obligations_received 1

1°("a",5000,400,1500)
New_Page'Personal_data_accessed 1
1™"a"
New_Page'Profile_retrived 1
1'("a",3100)
New_Page'Profile_storage 1
1'("a",3100)
New_Page'Profile_updated 1
1'("a",3100)
New_Page'Regno_received 1
1™"a"++
1"p"
New_Page'Supported_persons 1
1°("a",1)
New_Page'Supported_persons_received 1
1°("a",1)

Best Lower Multi-set Bounds
New_Page'Agel 1°("a",25)
New_Page'Age_received 1

empty
New_Page'Applicant 1

empty
New_Page'Credit_score_received 1

empty
New_Page'Debts 1 1'("a",400)
New_Page'Debts_received 1

empty
New_Page'Decision_calculated 1

empty
New_Page'Decision_given 1

empty
New_Page'Decison_equest_received 1

empty
New_Page'Education 1

1°("a",3)
New_Page'Education_received 1

empty
New_Page'lncome 1 1°("a",5000)
New_Page'lIncome_received 1

empty
New_Page'Info_received 1

empty
New_Page'Loan_offer_received 1

empty
New_Page'Marital_info 1

1°("a",0)
New_Page'Maritial_info_received 1

empty
New_Page'Obligations 1

empty
New_Page'Obligations_received 1

empty
New_Page'Personal_data_accessed 1

empty
New_Page'Profile_retrived 1

empty
New_Page'Profile_storage 1

empty
New_Page'Profile_updated 1

empty
New_Page'Regno_received 1

empty
New_Page'Supported_persons 1

1'("a",1)
New_Page'Supported_persons_received 1

17

empty

Home Properties

Home Markings
[72]

Liveness Properties

Dead Markings
[72]

Dead Transition Instances
None

Live Transition Instances
None

Fairness Properties

No infinite occurrence sequences.

18

SAVE THE

Project Report
May 2016

A mini-project in the course

,2Agent-Oriented modelling and Multiagent Systems*

= TALLINN UNIVERSITY OF
| TECHNOLOGY

Table of content

Introduction
1. Motivation layer
1.1. Goal model
1.2. Role model
1.3. Organisation model
1.4. Domain model
2. System design layer
2.1. Acquaintance model
2.2. Agent model
2.3. Interaction models
2.3.1. Interaction Model of Handling Shop Pick up Order
2.3.2. Interaction Model of Handling Distribution
2.3.3. Interaction Model of Handling the Food Delivery
2.4. Behaviour models
2.4.1. Behaviour Model of Handling Shop Pick up Order
2.4.2. Behaviour Model of Handling Distribution
2.4.3. Behaviour Model of Handling the Food Delivery
2.5. Knowledge model
3. Implementation
3.1 CPN model
3.1.1 Scenario 1
3.1.2 Scenario 2
3.1.3 Scenario 3
3.1.4 Scenario 4
4. Conclusion

5. References

Introduction

Our purpose is to create a sociotechnical system that would allow
unused and leftover food to be provided to those in need of
nutritious food...

The end objective goal is to mitigate food waste, provide a helping
service and overall improve the communities we live in.

We are taking on an issue within society’s complex infrastructure in
relation to human behavior.

The process of our system, mainly supply and demand is reliant
upon software to organize, notify and also promote human
interaction for the common good.

1. Motivation layer

This section contains the following models from the motivation layer
of conceptual space:

1.1 Goal model
1.2 Role models
1.3 Organizational model

1.4 Domain model

1.1. Goal model

The goal model describes the goals and connects them to specific roles. The model also
connects the goals with specific quality requirements that the system is trying to achieve.
Goal model is a part of agent organization behavior analysis. It contains functional goals
and also quality goals for agent roles. In current project the main goal is to make people in
need happy by receiving food from the supermarkets. There are also sub-goals marked
with heart symbols.

o lE
%
’

Distribute
Leftover food Culinarily
acceptable

Handle [/ J- . . = Collectand [/ f | . M\ Deliver
Logistic Prepare

Pick up Deliver Collectmg Sortlng Pockmg Pick up Create
Order Order Food Food Food Order Order

o ® @ ®
Shop Order Logistic Logistic Distributor Shelter
Manager Analyser Handler

Create
Pick up
Route

Collect Manage
Food Orders
|
Packaging Order Leftover
Leftover Food Pick up

Improving
the world

1.2. Role model

There are three different roles in current project: “Shop”, “Shelter”, “Distributor”, “Order
Manager”, “Logistic Handler” and “Logistic Analyser”.

The roles are described in detail below.

Role Name

Shop

\

Role Name

~

Order Manager

Description
Responsibilities

Constraints

The role of providing food for the service
e Packs leftover food

e Creates pick up order

e Food appropriable for consuming

e Pick up order is created when suitable
amount of food is collected

/

Role Name

Shelter

~

Description

Responsibilities

Constraints

The role of people in need represented
by Shelter

¢ Creates food order

e Receives delivery

¢ Stores food

e Distributes the food to people in need

Description
Responsibilities

Constraints

The Role of receiving and managing orders
e Receives food orders from Shelters

e Receives pick up orders from Shops

e Receives pick up orders from Ditributors
e Sends notification to Logistic Handler

e Sends notification to Shop

e Sends notification to Shelter

e Communicate with Logistic Analyser

e Keep history of orders and data of Shops

N

Role Name

~

Logistic Handler

/

Role Name

Distributor

~

Description
Responsibilities

Constraints

The role of Distributing the food packages
e Receiving the delivery

¢ Sorts food

e Packs food

e Orders pick up of ready packs

e Follow quality standards

e Sorts Food by type

e Sorts Food by date of appropriability

e Sorts Food by Order created by Shelter

/

Description
Responsibilities

Constraints

The role of picking up and delivering food

e Receives notification from Order Manager
e Picks up leftover food from Shop

e Uses Pick up route

e Delivers leftover food to Ditributor

e Picks up packs from Distributor

e Delivers packs to Shelters

e Quality communication

e Fast response

e Abide by business standards

N

Role Name

/
\

Logistic Analyser

Description

Responsibilities

Constraints

The role of selecting the most effective
delivery method by stored datadelivery plans
e Analyses pick up points

e Creates pick up route

e Analyses delivery points

e Creates delivery route

e Calculate the shortest route

e Decides about the pick up way

/

1.3. Organization model

The Organization model describes the relationships between the roles in the agent
organization. There are two standard types of relationships used: “control” and
“benevolence”. These are the roles that are represented within our system:

w Benevolent t
S enevolent to

Shop
[] []
Controlled by Benevolent to
Order "
Manager

1 Distributor Shelter
II Controlled by
Controlled by
Logistic
Handler
w
Logistic
Analyser

1.4. Domain model

Domain model represents the knowledge within the system that our sociotechnical system
has to be equipped to handle. The model is mostly self-explanatory: the leftover food will
be packed in the shop, picked up from there, sorted and then delivered to the shelters.
The shelters will create food orders based on their actual needs. Shops after collecting

some amount of leftover food will create pick up order.

I.I
Logistic
Analyser

Analyses

Leftover
Food w
Creates

Analyses Creates

Distributor
Packs
Receives Packs
Sorts
[)
Creates Pick u Picl . ,
T, P — ICKup ; o . Pick up Delivery Food
w Leftovers Order Route Delivery Food Package Packs Order Route Order
Shop
Makes Picks up

Picks up

Creates

Receives

Picks up

Uses

Receives

Receives

I.I
Logistic
Handler

Sends I
[)

I

Order
Manager

Makes

Receives

Shelter

2. System design layer

This section contains the following models

of the system design layer:

2.1. Agent and acquaintance model
2.2 Interaction diagrams
2.3 Knowledge model

2.4 Behavior model

2.1. Acquaintance model

Acquaintance Model Describes Roles and Agent Types and who interacts with who.

i .

Order

1 Logistic Analyser «
Manager Software Agent
Logistic
Analyser
1
1 Order Manager 1
Software Agent
m m
Shop Manager Shelter Manager
\ /
1 1

Human Agent Human Agent

Logistic Handler

[] Human Agent []
w \ o lnl
m w
Shop Shelter
1 Logistic
[] Handler
Distributor
Human Agent
Distributor

11

2.2. Agent model

Agent Models show who the agents are (4 human agents and 2 software agents in our
case).

-

Agent Name

~

Shop Manager Human Agent

-

Agent Name

~

Order Manager Software Agent

Description
Roles
Responsibilities

Representative person from the shop
Shop
e Packs leftover food

e Creates pick up order

J

Agent Name

Shelter Food Manager Human Agent

Description

Roles
Responsibilities

Representative person from a shelter who
takes care of food resources

Shop

¢ Creates food order

e Receives delivery

e Stores food

e Distributes the food to people in need

J

Agent Name

~

Distributor Human Agent

Description

Roles
Responsibilities

Distributor who can be a volunteer or
a worker of our organization
Distributor

e Receiving the delivery

e Sorts food

e Packs food

e Orders pick up of ready packs

J

12

-

Description

Roles
Responsibilities

The Intelligent Digital System which handles
orders

Order Manager

e Receives pick up orders

» Receives food orders

e Sends notifications

J

~

Agent Name

~

Logistic Handler Human Agent

Description
Roles
Responsibilities

Driver who can be our worker or volunteer
Logistic Handler

e Receives routes and requests

e Picks up orders

e Delivers food

Agent Name

Logistic Analyser Software Agent

Description

Roles
Responsibilities

Analyses Data and creates pick up and
delivery plans

Logistic Analyser

e Analyses pick up points

e Creates pick up route

e Analyses delivery points

e Creates delivery route

2.3. Interaction models

The basic interactions required by the Human and Software agents are shown in the
following 3 models grouped by functionality and sub goals. These diagrams illustrate
common examples of communication between different agents. Main interaction pathways
are pickup, distributing and delivery and the requests that are associated with them.

2.3.1. Interaction Model of Handling Shop Pick up Order

Shop Manager (Human Agent) packs the leftover food and creates pick up order. Order
Manager (Software Agent) requests a Pick up Route from Logistic Analyser (Software
Agent). When the Route is provided Order Manager will send it to Logistic Handler (Human
Agent) that will pick up the Shop Package from Shop Manager (Human Agent).

In case of a failure or error, there will be no route calculated. SO the Logistic Handler
(Human Agent) has to compile it by himself.

Shop Manager Order Manager Logistic Analyser Logistic Handler
Human Agent Software Agent Software Agent Human Agent

Pack: -
Leftover Food

Create: L
Pick up Order

A\ Request: .
/ Pick up Route

4 Provide: 7

Y no Route v

: |
L Compile:
Pick up Route
{ Pick up: Leftover Food

e
- - - -

13

2.3.2. Interaction Model of Handling Distribution

Distributor (Human Agent) gets the Leftover Food from Logistic Handler (Human Agent)
who got it from a Shop, then the food will be sorted and packed for the Shelter and when
they are ready the Delivery Order will be sent to Order Manager (Software Agent).

In case of a Scrap Food the Distributor (Human Agent) will cancel the Food Order.

Order Manager Logistic Handler Distributor
Software Agent Human Agent Human Agent

Deliver:
Leftover Food

Sort:
Food

Pack:
Food

Scrap:
Food

NN NS

Cancel: Food Order

A N\

Create: Delivery Order e

14

2.3.3. Interaction Model of Handling the Food Delivery

Shelter Manager (Human Agent) needs food and will create Food Order for Order Manager
(Software Agent). When the Food will be ready and packed for Delivery to Shelters Order
Manager (Software Agent) will request the Logistic Analyser (Software Agent) for Delivery
Route and after getting the Delivery Route, Order Manager will sent the Delivery Route to
the Logistic Handler (Human Agent) who will pick up Packaged Food from Distributor and
deliver it to the Shelter Manager (Human Agent).

The shelter cannot receive the food and the food order should be cancelled by Distributor.

[

Order Manager Logistic Analyser
Software Agent Software Agent

Logistic Handle
Human Agent

)

Distributor
Human Agent

Shelter Manager
Human Agent

Create: Food Order

l l

Notify: Food Order Cancel

e
}

.......................

no Route N

_,l- Send: Delivery Route

:;.'_'._.'_'._.'_'._.'_'._.'_'._.'_'._.'_'._.'_'._.'_'._]'_'._.L._.'_'._.'_'._]L._.'_'T'_'._.L._.'_'Ti‘

----- = Send: Delivery Orders, no Route

Compile:
Delivery Route

)

L

Pick up:

Packaged Food >

%

Deliver Packaged

Food

15

N

Needs Food <

2.4. Behaviour models

Behaviour model represents more specifically what is

process and what duties of the agents are.

2.4.1. Behaviour Model of Handling Shop Pick up Order

/
Shop Manager
Human Agent

N

Pack:
Leftover Food

Pack Leftover Food

Create
Pick up Order

v
A F e

Give out
Leftover Food

i

/

~

Create: o
Pick up Order

Ve
Order Manager

Software Agent
N

Request
Pick up Route

Receive
Pick up Order

|

~

/

PR
Send Pick up o
Orders, no Route

s Provide: /

Send S N
Pick up Route '

S no Route \
\

-

N

\

Logistic Analyser
Software Agent

|

Pick up: Leftover Food

|

16

4)
Logistic Handler
Human Agent
N J
®
A
4 N

Receive Pick up
Order, no Route

R3 ¢

happening at each step of the

~(2)

Compile Pick
up Route
G J

v

Pick up
Leftover food

Compile:
Pick up Route

Shop Manager

- R1- makes sure that the leftover food is packed and Pick up
Order created

- R2- gives out leftover food

Order Manager
- R2- receives Pick up Order and requests Pick up Route
- R3- sends Pick up Route out

- R4- sends Pick up Route but will not receive any Route

Logistic Analyser
- R1- analyses Pick up points and provides Pick up Route

- R2- provides Pick up Route or in case of error will not

Logistic Handler

- R1- receives and accepts the Pick up Route and picks up
packages from the Shop

- R2- receives Pick up Order, but no Route

- R3- compiles new Pick up Route

17

2.4.2. Behaviour Model of Handling Distribution

-

N-

Order Manager
Software Agent

~

J

-

Food Order
Canceled

-

_

\

Logistic Handler
Human Agent

)

Deliver
Leftover Food

}

%

Deliver: \

/

_

~

Distributor
Human Agent

)

Leftover Food /

+.._.<

Create: Delivery Order

Cancel: Food Order

Receive
Leftover Food

:
o

\4

TN

18

N) /lxm/—\

Cancel
Food Order

Sort \‘ Sort:

Leftover Food j‘ Food
y

Pack \‘ Pack:
Leftover Food j‘ Food

Create
Delivery Order

N
Scrap \‘ Scrap:
Food /‘ Food

Distributor
- R1- receives Leftover Food

- R2- makes sure that the food will be sorted and packed for the
shelter and the delivery will be ordered, but in case of Scrap
Food, will cancel the Food Order

Logistic Handler

- R4- delivers Leftover Food

Order Manager

- R5- in case of Scrap Food, will cancel Food Order

19

2.4.3. Behaviour Model of Handling the Food Delivery

-

N

~

Order Manager
Software Agent

/

Send .
Delivery Route

I

S 1

Send Delivery .
Orders, no Route

'

4 N 4 N 4 N
Logistic Analyser Logistic Handler Distributor
Software Agent Human Agent Human Agent
N /| N /| NS /|
® ® T
Create: Food Order
Notify: Food Order Cancel

\
\ Request: \

s Provide: :
\. Delivery Route .
\

/ Delivery Route |

Send: Delivery Route

Analyse
Delivery points

Ohan
- Provide
Delivery Route

o e .|

Output
Error, no Route

Receive Delivery
Order, no Route

Compile:
Delivery Route

Pick up
Packaged Food

\|_/

%

Pick up:
Packaged Food

T—®

A4

Give out
Packaged Food

(

Deliver
Packaged Food

o

Deliver Packaged Food

-

20

4 N

Shelter Manager
Human Agent

N)

Create

A

Food Order

Receive Notification
Food Order
Canceled

Receive
Packaged Food

Needs Food g

Shelter Manager
- R1- creates Food order

- R2- receives notification that the Food Order is cancelled or if
there are no failures, receive Packaged Food

Distributor

- R3- gives out packaged Food

Logistic Handler
* R5- receives Delivery Route
- R6- receives Delivery Order but no Route

- R7- Compiles own Delivery Route

Logistic Analyser
- R3- analyses Delivery points

- R4- provides Delivery Route or in case of an error doesn’t

Order Manager

- R1- accepts Food Order (in case of an error, the Food Order is
cancelled)

* R6- receives Delivery Order and requests Delivery Route

21

2.5. Knowledge model

This model shows what the knowledge of every agent is. Information about themselves
and their environment. Only the most relevant attributes are included with the data objects

* 1 <<Agent Type>>

Leftover food «— Consists of Delivery Is based on —m8M > Delivery Route Shelter Manager

Human Agent/
* * Shelter
1
/]\ * * 1 Creates * % \)
Packs
| 1 Is based on Creates
1
Makes Knows about
<<Agent Type>> E<69te_“tl.\TY|:e>> .
Shop Manager Consists of Is based on ogistic Analyser
Human Agent/ Soﬂ_:w?re Agent/ 1 1 *
Shop Logistic Analyser
<<Agent Type>>
1 / 1 Logistic Handler Food Order
Creates / Human Agent/
Creates / Knows about Logistic Handler
1 « B
b3
Is based on)
Pick up Route Knows about
Pick up Leftovers Order
* 1
Food D S—— Package 1
Consists of

*x
Distributor
Knows about Human Agent/
: Distributor
Consists of
Knows about Knows about

!

Creates

« T <<Agent Type>>

<<Agent Type>>

Order M K b * Pick up /
rder Manager nows about

Software Agent/ Packs Order

Order Manager

*

22

3. Implementation

3.1 CPN Model Validation

3.1.1. Scenario 1

The perfect scenario when all the services are up and running and the food is OK to
package and deal. Figure 1 shows perfect interaction flow in the Sequence Diagram.

CREATE: FOOD ORDER(Kesklinn)

[Shop Manage} [Order Manag% EogisticAnaly}r [Logistic Handgr [Distributor] [She|ter Mana%r
-

m PACK: LEFTOVER ROOD(RIMI,10101)

CREATESAICK UP ORDER(RIMI)

REQUESTI PICK UP ROUTE(arder)

——EROVIDEUPICK UP ROUTE(order, Autom. Route)

END: PICK UIP ROWITE(arder,Autom. Royte)

L PICK UP: LEFTOVER FOOD(RIMI,10101)

DELTVER;) EFTOVER FOOD(delvery)

m SORT: FOOD(1010f)

m PACK: FOOD(Kesklinn,10101)

g CREATE: BELIVERY QRDER(Kesklinn)

REQUESTY DELIVERY ROUTE(delivery)

¢ PROVIDEUDELIVERY ROUTE(dglivery, route)

END: DELIVERY RQUTE(delivery route)

PICK UPS,PACKAGED FOOD(arder)

ELIVER: PACKAGRD FOOD(Kesklinn,10101)

= = - =8 - =

24

3.1.2. Scenario 2

This scenario has a failure in Logistic Analyzer request when asking Pick up Route.
Alternative scenario is to output error from Logistic Analyzer and send orders from Order
Manager to Logistic Handler without route. If route is not provided, Logistic Handler will
compile suitable route itself. Figure 2 shows interaction flow with alternate pick up route
calculation in the Sequence Diagram.

[Shop Manag% (Order Manag% [LogisticAnaly%er E_ogistic Han%r [Distributor] Ehelter Mana}r

» REATE: FOOD ORDER(Kesklinn)

® PACK: LEFTOVER ROOD(RIMI,10101)

CREATE SBICK UP ORDER(RIMI)

REQUESEY PICK UP ROUTE(order)

» QUTPUT: FRROR, NO ROUTE(ofder)

END: PICK UP ORDERS, NO ROUTE(order)

m COMPILE: PICK UR ROUTE(order, Mandal Route 1)

< PICK UP: [EFTOVER FOOD(RIMI,10101)
DELIVER,] EFTOVER FOOD(delivery)
®m SORT: FOOD(1010()
m PACK: FOOD(Keskhnn,lOlOl)
< CREATE: DELIVERY QRDER(Kesklinn)

—BEQ.UES.;; DELIVERY ROUTE(delivery)
¢ PROVIDEDELIVERY ROUTE(dglivery, route)

END: DEI IVERY RQUTE(delivery, route)

PICK LIP3, PACKAGED FOOD(ardler)

ELTVER: PACKAGRD FOOD(Kesklinn,10101)

]]] 1 (- -

25

3.1.3. Scenario 3

This scenario has a failure in Logistic Analyzer request when asking Delivery Route.
Alternative scenario is to output an error from Logistic Analyzer and send orders from
Order Manager to Logistic Handler without route. If route is not provided, Logistic Handler
will compile suitable route itself. Figure 3 shows interaction flow with alternate delivery
route calculation in the Sequence Diagram.

(hop Manag% [Ordet Manag} [LognsttcAna%e [LOQIStIC Han% Glstnbutor] [Shelter Mana%a

REATE: FQOD QRDER(Kesklinn)

m PACK: LEFTOVER AOOD(RIMI,10101)

CREATESHICK UP ORDER(RIMI)

REQUESEY PICK UP ROUTE(order)

» PROVIDEPICK UP ROUTE(order, Autom. Route)

END: PICK UP ROUITE(arder,Autom. Royte)

< PICK UP: [EFTOVER FOOD(RIMI,10101)

DELIVER, EFTOVER FOOD(delvery)

m SORT: FOOD(10104)

m PACK: FOOD(Kesklinn,10101)

< CREATE: DEIIVERY ORDER(Kesklinn)

REQUESYI DELIVERY ROUTE(delivery)

< QUTPUT: ERROR, NO ROUTE(ofder)

END: DELIVERY GRDERS, NO ROUTE(or{ler)

m COMPILE: DELIVERY ROUTE(arder, Manual Route 2)

PICK UP3PACKAGED FOOD(ordler)

ELIVER: PACKAGRD FOOD(Kesklinn,10101)

= 3 - 3 (- (-

26

3.1.4. Scenario 4

This scenario has an alternate flow when food is scrapped, not packed in Distributor. This
means that shelter cannot receive the food and the food order should be cancelled by
Distributor. Order Manager then notifies Shelter Manager about order cancellation. Figure 3
shows interaction flow with alternate order cancellation flow in the Sequence Diagram.

[Shop Managﬁ [Order Manag% E_ogisticAnaI\%er [Luglstlc Hand} [Dlstubuto J [Shelter Mana%r

m PACK: LEFTOVER R

CREATESH

TE FOOD ORDER(Kesklinn)

OOD(RIMI,10101)

ICK UP ORDER(RIMI}
REQUESE! PICK UP ROUTE(arder)
< PROVIDE:IPICK UP ROUTE(ord

2, Autom. Route)

SEND: PICK UP ROJITE(order,Autom, Route)

< PICK UP: LEFTOVER FOQD(RIMI,10101)
DELIVER] EFTOVER FOOD(dehvery)
m SORT: FOOD(1010f)
m SCRAP: FOOD(101D1)
» CANCEL: FOOD ORDER(Kesklidn)
QTIEY: FOOD ORDER CANCE| (Keskling
= BN = L=} 3

27

B

3.2. Verification

It was possible to calculate State Space when CPN model had only three tokens (1 shop,
1 food, 1 shelter). State Space status was Full.

Home Properties

Home Markings
Initial Marking is not a home marking

* There is no terminal strongly connected component.
Liveness Properties

Dead Markings
[33,42]

* There are dead markings, probably because empty lists implementations.

Dead Transition Instances
None

Live Transition Instances
None

Fairness Properties

No infinite occurrence sequences.

28

4. Conclusion

CPN is very good tool to validate AOM methodology, more exactly
interaction and behavior models. It enables validating different
scenarios quite easily. In our CPN we used lists and timed tokens to
simulate more real behavior. At the end it seemed overkill, because
State Space was not able to fully calculate with so many tokens.

All different scenarios played out nicely, but still there are Dead
Markings. Sadly State Space To Sim did not reveal anything.

If State Space verification is so important, it should be looked more
closely in lectures.

State Space report result

CPN Tools state space report for:
/cygdrive/C/Users/Silver/Desktop/#Leftover Food Distributing.cpn
Report generated: Mon May 16 23:36:24 2016

Statistics

State Space

Nodes: 42
Arcs: 57
Secs: 27

Status: Full

Scc Graph
Nodes: 42
Arcs: 57
Secs: 0

Boundedness Properties

Best Integer Bounds

Upper Lower
CPN Diagram'DISTRIBUTOR food received 1
1 0
CPN_Diagram'LOGISTIC ANALYSER 1
1 1
CPN Diagram'LOGISTIC HANDLER 1 1
1 1
CPN Diagram'LOGISTIC HANDLER 2 1
1 1
CPN Diagram'LOGISTIC HANDLER delivery order received 1
1 0
CPN Diagram'LOGISTIC HANDLER pick up order received 1
1 0
CPN Diagram'ORDER MANAGER delivery order created 1
1 1
CPN Diagram'ORDER MANAGER food order created 1
1 0
CPN Diagram'ORDER MANAGER pick up order created 1
1 1
CPN Diagram'SHELTER 1 1 0
CPN Diagram'SHELTER package received 1
1 0
CPN Diagram'SHOP 1 1 0
CPN Diagram'arrived to distributor 1
1 0
CPN Diagram'delivery orders sent 1
1 0
CPN Diagram'delivery route ready 1
1 0
CPN Diagram'delivery route requested 1
1 0
CPN Diagram'dumster 1 1 0
CPN Diagram'error sent no delivery route 1
1 0
CPN Diagram'error sent no pick up route 1
1 0
CPN Diagram'food has been scrapped 1
1 0
CPN Diagram'food order is canceled 1
1 0
CPN Diagram'food ready for deliver 1
1 0
CPN Diagram'food ready to pick up 1
1 0
CPN Diagram'food sorted 1
1 0
CPN Diagram'leftover food 1
1 0
CPN Diagram'leftover food is collected 1
1 1
CPN Diagram'leftover food packed 1
1 0
CPN Diagram'next delivery order selected 1
1 0
CPN Diagram'next pick up order selected 1
1 0
CPN Diagram'package ready for shelter 1
1 0
CPN Diagram'pick up orders sent 1
1 0
CPN Diagram'pick up route ready 1
1 0
CPN Diagram'pick up route requested 1
1 0
CPN Diagram'shelter has been notified 1
1 0

CPN Diagram'shelter packages collected 1

30

Best Upper Multi-set Bounds
CPN Diagram'DISTRIBUTOR food received 1
17 []++
1° [("RIMI","10101")]
CPN Diagram'LOGISTIC ANALYSER 1
1" "Autom. Route"
CPN Diagram'LOGISTIC HANDLER 1 1
1" "Manual Route 1"
CPN Diagram'LOGISTIC HANDLER 2 1
1" "Manual Route 2"
CPN_Diagram'LOGISTIC HANDLER delivery order received 1
1" ([("Kesklinn","10101")], "Autom. Route") ++
1" ([("Kesklinn","10101")], "Manual Route 2")
CPN Diagram'LOGISTIC HANDLER pick up order received 1
1° ([("RIMI","10101")],"Autom. Route")++
1° ([("RIMI","10101")],"Manual Route 1")
CPN_Diagram'ORDER MANAGER delivery order created 1
17 []++
1" [("Kesklinn","10101")]
CPN_Diagram'ORDER MANAGER food order created 1
1" "Kesklinn"
CPN Diagram'ORDER MANAGER pick up order created 1
17 []++
1° [("RIMI","10101")]
CPN Diagram'SHELTER 1
1" "Kesklinn"
CPN Diagram'SHELTER package received 1
1" ("Kesklinn","10101")
CPN Diagram'SHOP 1 1 "RIMI"
CPN Diagram'arrived to distributor 1
17 []++
1" [("Kesklinn","10101")]
CPN Diagram'delivery orders sent 1
1° [("Kesklinn","10101")]
CPN Diagram'delivery route ready 1
1" ([("Kesklinn","10101")], "Autom. Route")
CPN Diagram'delivery route requested 1
1° [("Kesklinn","10101")]
CPN Diagram'dumster 1
1 m"i0101"
CPN Diagram'error sent no delivery route 1
1° [("Kesklinn","10101")]
CPN Diagram'error sent no pick up route 1
1°[("RIMI","10101")]
CPN Diagram'food has been scrapped 1
1 m"i0101"
CPN Diagram'food order is canceled 1
1" "Kesklinn"
CPN Diagram'food ready for deliver 1
1" ("Kesklinn","10101")
CPN Diagram'food ready to pick up 1
1° ("RIMI","10101")
CPN Diagram'food sorted 1
1 m"i0101"
CPN Diagram'leftover food 1
1-m"i0101"
CPN Diagram'leftover food is collected 1
17 []++
1° [("RIMI","10101")]
CPN Diagram'leftover food packed 1
1° ("RIMI","10101")
CPN Diagram'next delivery order selected 1

1°[1++
1° [("Kesklinn","10101")]
CPN Diagram'next pick up order selected 1
1°[1++
1° [("RIMI","10101")]

CPN Diagram'package ready for shelter 1
1" ("Kesklinn","10101")
CPN Diagram'pick up orders sent 1
1°[("RIMI","10101")]
CPN Diagram'pick up route ready 1
1° ([("RIMI","10101")],"Autom. Route")
CPN Diagram'pick up route requested 1
1°[("RIMI","10101")]
CPN Diagram'shelter has been notified 1
1" "Kesklinn"
CPN Diagram'shelter packages collected 1
17 []++
1° [("Kesklinn","10101")]

Best Lower Multi-set Bounds
CPN Diagram'DISTRIBUTOR food received 1
empty
CPN Diagram'LOGISTIC ANALYSER 1
1 "Autom. Route"
CPN Diagram'LOGISTIC HANDLER 1 1
1 "Manual Route 1"
CPN Diagram'LOGISTIC HANDLER 2 1
1 "Manual Route 2"
CPN_Diagram'LOGISTIC HANDLER delivery order received 1

31

empty

CPN Diagram'LOGISTIC HANDLER pick up order received 1
empty

CPN_Diagram'ORDER MANAGER delivery order created 1
empty

CPN Diagram'ORDER MANAGER food order created 1
empty

CPN Diagram'ORDER MANAGER pick up order created 1
empty

CPN Diagram'SHELTER 1
empty

CPN Diagram'SHELTER package received 1
empty

CPN Diagram'SHOP 1 empty

CPN Diagram'arrived to distributor 1
empty

CPN Diagram'delivery orders sent 1
empty

CPN Diagram'delivery route ready 1
empty

CPN Diagram'delivery route requested 1
empty

CPN Diagram'dumster 1
empty

CPN Diagram'error sent no delivery route 1
empty

CPN Diagram'error sent no pick up route 1
empty

CPN Diagram'food has been scrapped 1
empty

CPN Diagram'food order is canceled 1
empty

CPN Diagram'food ready for deliver 1
empty

CPN Diagram'food ready to pick up 1
empty

CPN _Diagram'food sorted 1
empty

CPN Diagram'leftover food 1
empty

CPN Diagram'leftover food is collected 1
empty

CPN Diagram'leftover food packed 1
empty

CPN Diagram'next delivery order selected 1
empty

CPN Diagram'next pick up order selected 1
empty

CPN Diagram'package ready for shelter 1
empty

CPN Diagram'pick up orders sent 1
empty

CPN Diagram'pick up route ready 1
empty

CPN Diagram'pick up route requested 1
empty

CPN_Diagram'shelter has been notified 1
empty

CPN Diagram'shelter packages collected 1
empty

Home Properties

Home Markings
Initial Marking is not a home marking

Liveness Properties

Dead Markings
[33,42]

Dead Transition Instances
None

Live Transition Instances

None

Fairness Properties

No infinite occurrence sequences.

32

5. References

Sterling, Leon S., and Kuldar Taveter. The Art of Agent-Oriented
Modeling (2009). The MIT Press

TALLINN UNIVERSITY OF TECHNOLOGY

Erasmus Learning

Agreement

Agent-Oriented Modelling and Multiagent Systems
Final Project Report

in the
Faculty of Information Technology

Department of Informatics

May 2016

Contents

List of Tables

1 Introduction

2 Motivation Layer
2.1 Goal Modelo
2.2 RoleModels e
2.3 Domain Model

3 System Design Layer
3.1 Agent Models L
3.2 Acquaintance Model
3.3 Imteraction Models
3.3.1 Require Availability for the Exams
3.3.2 Answer-Question Student-Teacher
3.3.3 Learning Agreement Process,
3.3.4 Sending Certificate according the exams taken
3.4 Knowledge Model L
3.5 Behaviour Models
3.5.1 Behaviour Model - Available Course List
3.5.2 Behaviour Model - Learning Agreement Process
3.5.3 Behaviour Model - Sending final Certificate

4 CPN tools - Simulation and Verification

4.1 CPN tools - Before Mobility,
4.1.1 CPN model - Learning Agreement Process.
4.1.2 Scenarios o
4.1.3 Learning Agreement Management - Simulation and MSC results .

4.2 CPN tools - During Mobility
4.2.1 CPN model - Sending Final Certificate
4.2.2 Scenarioso
4.2.3 Sending Final Certificate - Simulation and MSC results

4.3 Verification
4.3.0.1 Verification - Learning Agreement Management model . .

4.3.0.2 Verification - Sending Final Certificate model

iv

10
10
10
12
12
13
14
15
15
15
16

19
19
19
21

22
22
24
24
25
26

Contents

ii

5 Conclusion

28

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1

4.2
4.3

4.4
4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12

4.13
4.14

Goal Model 3
Organization Model 7
Domain Model 7
Acquaintance Model 11
Interaction Model - Available Exam List 11
Interaction Model - Answer/Question Teacher-Student 12
Interaction Model - Learning Agreement Request 13
Interaction Model - Learning Agreement Submit 14
Interaction Model - Final Certificate 14
knowledge Model L Lo 15
Behaviour Model - Available Courses 16
Behaviour Model - Learning Agreement Process - Request 17
Behaviour Model - Learning Agreement Process - Submit 17
Behaviour Model - Sending Final Certificate - Exam Sessions 18
Behaviour Model - Sending Final Certificate - Submit Phase 18
CPN Model - Learning Agreement Management (exams availability and

selecting process) oo 20
CPN Model - Learning Agreement Management (exams evaluating) . . . 20
CPN Model - Learning Agreement Management (communication to Host

University) 21
CPN Model Learning Agreement - Available courses list 22
CPN Model Learning Agreement - Learning Agreement Accepted 22
CPN Model Learning Agreement - Learning Agreement Denied 23
CPN Model- Sending Final Certificate 23
CPN Model Sending Final Certificate - Two Exams passed in the firs

attempto Lo 25
CPN Model Sending Final Certificate - Two Exams passed in the firs

attempto 25
CPN Model Sending Final Certificate - Two Exams passed in the firs

attempto L 26
CPN model 1 - Statistics. oo 26
CPN model 1 - Verification results 27
CPN model 2 - Statistics. 27

CPN model 3 - Verification results 27

iii

List of Tables

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Role Model - Student 5
Role Model - Lecturer, 5
Role Model - Host Department Coordinator 6
Home Erasmus Coordinator 6
Student Agent 8
Teacher Agent 9
Home coordinator Agent 9
Host Erasmus Coordinator 9
My captiono 9
Teacher Software Agent 10
Host Coordinator Software Agent 10
Home Coordinator Software Agent 10

iv

Chapter 1

Introduction

The idea behind our mini-project has come from the experience of all Erasmus students.
Erasmus students are student who decided to go abroad, hosted by other universities,
to take exams. This experience is ruled by some documents that must be filled in and
validated by three entities that are: student, a employer of host university (usually

named host university coordinator) and the coordinator for the home university.

The main document of the Erasmus Process is the ”Learning Agreement® that is a
document where the student must write down the exams that he intends to do abroad
and the exams (chosen from his study plan) that he wants that home university validates

after his come back.

Now this process is not so easy and the student often has to change this document during
the first weeks of his mobility. In this way in the first weeks the Erasmus student is

forced to spend more time to handle bureaucratic stuff than study for his exams.

Our idea is to get this process easier, to help student and other involved entities to get
the agreement faster, adding on some features that can be handled by software agents.
In this way the whole process becomes faster and the Erasmus Experience can be lived
better by the student.

Model multi-agent system is the opportunity that let students to have the possibility
to require a list of exams given by the host university that should be fit with his study
plan. In addition the system can improve the communication between students, host

and home Erasmus coordinator as well as teachers.

We have also decided to handle with an agent-oriented model the end of Erasmus pe-
riod, getting automatic the submit of final grade to the home university, included the

conversion in a different system grade.

In this report we are going to explain in the following two chapters our Agent-Oriented

System for Learning Agreement Process on two different layers:

1

Erasmus Learning Agreement 2

e Motivation Layer

e System Design Layer

The first one highlights the goals of the different roles involved in the system and shows

the domain of the system. We use for this purpose the following models:

Goal Model

Role Models

Organization Model

Domain Model

The second one refers to the design of the system, showing the interaction and the
behaviour of the different agents that operate in the system. The models that land in

this layer are:

Agent models

Acquaintance model

knowledge model

Interaction Models

e Behaviour Models

The fourth chapter shows our CPN models we have used to simulate and validate our

Multi-agent system.

Chapter 2
Motivation Layer

As written in the previous one, this chapter contains the following models:

1. Goal Model
2. Role Models
3. Organization Model

4. Domain Model

2.1 Goal Model

Fast /

S~ / Student

Manage Learning
Agreement

Send Certificate Manage the Validate the
To Home University Courses Contracts

Select the Grade the
Courses Courses Hom 5 smus
Coordinator
Host Erasmus]
Coordinator " \
z ! \
’ f{ \
< \
// /

. Reliable

- 1 \
Accurate ! On Time Available
Lecturer

FIGURE 2.1: Goal Model

Erasmus Learning Agreement 4

The goal model describes the goals and it connects them to specific roles. The model
also connects the goals with specific quality requirements that the system is trying to
achieve. The goals are described hierarchically and the goal model for current project

is described on the figure 2.1

The main goal of the our system stated as ”Management of Learning Agreements “ with
the emphasis on providing easy and fast service for all students. In order to achieve this
goal, we have defined some sub-goals. The Sub goals are: Manage the courses, Validate
the contracts, Send Final Certificate.

2.2 Role Models

The following topic includes a short overview of different roles. The purpose of the role
model is to describe different roles in the system. The role models include: role names,

descriptions, responsibilities and constraints.

There are four different roles in our project:

Student;

Lecturer;

Home Erasmus Coordinator;

Host Department Coordinator.

The role models show the different roles implemented in the Erasmus Learning Agree-

ment system. These roles are played by humans as well as software agents.

The roles are described in detail below:

Erasmus Learning Agreement

TABLE 2.1: Role Model - Student

Role Name Student
. The Role of the students is to propose the Learning Agreement
Description
following the instruction by the home university
- Propose a list of host university courses that he wants to do
- Propose a list of home university courses that he wants
that Home University validate
- Following Contract Rules
- Sending questions
- Signing documents
- Listening Advice
Responsibilities | - Following Coordinators’ instructions
- Agree with the Erasmus contract rules
- Following the courses
- Having appointment with the coordinator
- Apply registration in the host university
- Enter the start of the Erasmus Experience
- Enter the end of the Erasmus Experience
- Submit Erasmus Period
- Unexpected changes in the Learning Agreement must be
Constraints submitted quickly
- Information submitted must be correct
TABLE 2.2: Role Model - Lecturer
Role Name Lecturer
. The role of the lecturer is to suggest available courses
Description
and grade the students
- Enter the grades
- Submit the grades
- Evaluating students
- Receiving questions
Responsibilities | - Entering answers
- Sending the answer
- Give course advice
- Submit course advice
- Submit syllabus
- The list of available course must be available on time without
. error
Coplais - Grades should be evaluated correctly
- Information to student must be reliable

Erasmus Learning Agreement 6

TABLE 2.3: Role Model - Host Department Coordinator

Role Name Host Department Coordinator
The role of the host department coordinator is to validate
Description the Learning Agreement submitted by the student and accepted

by the sending university

- Check the Learning Agreement

- Set the courses

- Connecting the lecturers about current course list

- Evaluating student suitability

- Giving information about courses to Home University
- Receive the grades

- Enter the grades in the certificate

- Sending the certificate

Responsibilities

- Information to student must be available and easy to get
Constraints - Changes in timetables must be communicated quickly
- Student Registration must be sent to home university immediately

TABLE 2.4: Home Erasmus Coordinator

Role Name Home Erasmus Coordinator
.. The role of the home Erasmus coordinator is to manage and
Description .
evaluate the Learning Agreement proposed by the student
- Informing the students about Erasmus tasks
- Validate the Learning Agreement
- Print th
Responsibilities rmt the contract

- Check the compatibility between the host and home courses
-Inform students about the Erasmus Bureaucracy

- Receiving certificate from host university

- The Learning Agreement must be validate quickly

- After the submit of the Learning Agreement the contract must
Constraints be printed immediately

- The information about Erasmus project and host

university must be up to date

Organization Model

The organization model is a part of the interaction analysis of the agent organization.

It shows the relationships between the roles in the agent organization system.

As written previously, our system is acted by 4 different roles. In this system we can

find the relationship shown in figure 2.2.

2.3 Domain Model

The domain model explains the knowledge within the system and its relationship to

the roles. The domain model for our project is shown on Figure 2.3. There are seven

Erasmus Learning Agreement 7

isBenevolentTo w

Lecturer

Host Department
Coordinator

isPeer isControlledBy isBenevolentTo

o ®

w< isControlledBy

Home Erasmus Student
Coordinator

FIGURE 2.2: Organization Model

different domain entities: Answers, Certificate, Learning Agreement, Courses available,

Grades, Project/Exams, Question.

In the domain model Students ask questions to Home Eramus Coordinator, receive an-
swers from Home Erasmus Coordinator and grades from Lecturers. Lecturer evaluates
submitted Project/Exams by Students and they give grades to the students. Also Lec-

turer submits courses which is available to the Host Department Coordinator.

Learning Agreement is submitted by student, accepted by Home Erasmus Coordinator

and validated by Host Department Coordinator.

Host Department Coordinator submits final certificate and Home Erasmus Coordinator

receives it.

Asnwer

ﬂ -
Receive
nmeE_rasm
Coordinator
m Reative
Recaive Accept
Ack,

Learning
Agreement Receive Student Submit

Project,
Gra des Bk 1r|sl
Submit Validate

les Evaluate

Availa bllnv
Host Department

Coordinator I.ec‘turer

FIGURE 2.3: Domain Model

Chapter 3

System Design Layer

The System Design Layer includes the following models:

- Agent models

- Acquaintance model

- Knowledge model

- Interaction Models

- Behaviour Models

3.1 Agent Models

TABLE 3.1: Student Agent

Agent Name Student Agent

Drssrfiytiion The Role of the Student is to create
L.A without problem

Role Student
- Propose a list of host university course that he wants to attend
- Propose a list of home university courses that he wants to validate
- Following contract rules
- Formulate Questions
- Signing documents

e - Listening advice

R espertlb e - Following Coordinators’ instruction
- Following the courses
- Having appointment with the coordinator
- Enter the start date of the Erasmus
- Enter the finish date of the Erasmus Experience for students
- Apply registration in host university

8

Erasmus Learning Agreement 9

TABLE 3.2: Teacher Agent

Agent Name Teacher Agent
Deseiniton The Role of the Teacher is to send availability
for the courses and put the grade to the exams
Role Lecturer
- Enter the grades
s - Evaluating the Students
Responsibilities | Read Questions
- Entering Answers
TABLE 3.3: Home coordinator Agent
Agent Name Home Coordinator Agent
. The Role of the Home Coordinator Agent is to help student to develop
Description .
The Learning Agreement Successfully
Role Home Erasmus Coordinator
- Informing the students about Erasmus tasks
Responsibilities | - Inform the students about the Erasmus bureaucracy
- Check the compatibility between the host and home courses
TABLE 3.4: Host Erasmus Coordinator
Agent Name Host Coordinator Agent
Description The Role of the Host Coordinator Agent is to help the students
to choose the right exams and send certificate to Home University
Role Host Department Coordinator
- Check the Learning Agreement
Responsibilities | - Se.t .the COUISES . .
- Giving information about courses to Home University
- Evaluating student about suitability

TABLE 3.5: My caption

Agent Name Student Software Agent

The role of the Student Software Agent is to create

Descripti . .
escrption an interface in the peer-to-peer system for the Student
Roles Student
- Submit the Learning Agreement
Responsibilities | Sending Questions

- Agree with the Erasmus contract rules
- Submit Erasmus Period

Erasmus Learning Agreement 10

TABLE 3.6: Teacher Software Agent

Agent Name Teacher Software Agent
The role of the Teacher Software Agent is to create
an interface in the peer-to-peer system for the Lecturer

Description

Roles Lecturer

- Submit syllabus

- Submit course advice
Responsibilities | - Sending the Answer
- Receiving Questions
- Submit the grades

TABLE 3.7: Host Coordinator Software Agent

Agent Name Host Coordinator Software Agent

The role of the Host Coordinator Software Agent is to create an

Descripti . . .
escrption interface in the peer-to-peer system for the Host Department Coordinator

Roles Host department coordinator

- Connecting the lecturers about current courses list
Responsibilities | - Enter the grade in the certificate
- Receive the grades

TABLE 3.8: Home Coordinator Software Agent

Agent Name Home Coordinator Software Agent
o The role of the Home Coordinator Software Agent is to create
Description . . .
an interface in the peer-to-peer system for the Home Erasmus coordinator
Roles Home Erasmus Coordinator

- Validate the Learning Agreement
Responsibilities | - Print the contract
- Receiving the certificate from the host university

3.2 Acquaintance Model

The aim of the acquaintance model is to describe the interactions between agents of
our system. All agents have their software interface agents and they are interacted each

other. The Acquaintance model for our project is displayed in the figure 3.1

As we can see in the model, the interactions between human agents are limited and most

of the communications involve software agents.

3.3 Interaction Models

3.3.1 Require Availability for the Exams

This interaction involves the Host University and the Teachers. The purpose of this

interaction is to create the list of exams that the Erasmus student can choose to take

Erasmus Learning Agreement 11

StUdent Home Erasmus

Coordinator

Student Software | Home Coordinator | Home Coordinator
Student Agent Agent il "l Software Agent " Agent
7'y 7Y Iy
¥ 4 A 4
o IO t Teacher Software | .| Host Coordinator | .| Host Coordinator
CAENEGRERI Agent = 7| Software Agent | 3 Agent

Host Department
Lecturer Coordinator

FI1GURE 3.1: Acquaintance Model

once arrived in the host University.

Host Coordinator Host Coordinator Teacher Agent Teacher S0
Agent SW Agent Agent

Request Course
Avaliability

* Send Request

e o -
\ Show Request

Give Availability

=]
Send Availaiity £

F' S SRR
Natify Availability /

FIGURE 3.2: Interaction Model - Available Exam List

As shown in the figure 3.2, the interaction between the human agents ”Host Coordinator
Agent“ and 7Student Agent“ is linked by other intermediary interaction between the

human agents and their software agents as well as the two software agents.

Erasmus Learning Agreement 12

3.3.2 Answer-Question Student-Teacher

This interaction involves the students and the teachers agents. The purpose of this
interaction is to give to the student the opportunity to have a fast and reliable way to
communicate to teacher to ask the main questions regarding the exams that he wants
to take.

Student Student SW Host Sw NE——
Agent Agent Agent | 2

Write Question(s)

-
by Send Question(s) ,

N T
A Notify Question(s)

Ask to display
Question(s)

Write Asnwer(s)

Ask to Display
Asnwer(s)

Show Answer(s) 7
XS

FIGURE 3.3: Interaction Model - Answer/Question Teacher-Student

Also in this case, the communication between the two human entities is mediated by

software agents inside.(figure 3.3)

3.3.3 Learning Agreement Process

This interaction is the main important for the systems because it regards the main
purpose of the project. Since this interaction involves many agents, we decide to split

this interaction model in two models to let it to be more readable.

In the first one we show all the interactions that occur when a student has to require
the Learning Agreement. The Process starts by the Student Software Agent when he
received the confirm that the student is definitively an Erasmus Student. So when the
period arrives, it asks to student to complete the Learning Agreement and he asks,
through the software agent, to see the available courses that he can choose from the

host university. The request is forwarded to the Host Coordinator Software Agent that

Erasmus Learning Agreement 13

show the request to the host coordinator agent that launch the process. At the end the
list of the courses is shown to the Student. (figure 3.4)

In the second one there is the submitting of learning agreement. The student fill in
the Learning Agreement adding on the exams that he wants to take. The exams are
evaluated by the home university according to his policy and study plan and the outcome

is sent back to student.

If the Learning Agreement is valid, the student forward the Learning Agreement to the

Host University that sign and validate the contract.

Also in these interactions the communications are mediated by the software agents.
(figure 3.5)

Host Coordnator Host Coordinator Student SW Student
Agent Software Agent Agent Agent

'\ Asktosubmit

Ask for Available
Courses

Send Request "‘
I

Show Regquest /

SubmitList)

by Show List

P

FIGURE 3.4: Interaction Model - Learning Agreement Request

3.3.4 Sending Certificate according the exams taken

The final interaction Model involves all agents at the end of mobility period for the
student. Its purpose is to send to home universities the final certificate that show to
home university the result taken by the student. In this interaction we have added the
possibility to have the conversation between different Grading Systems automatically
though the software agents. Obviously each university can kept its grading system and
conversion rules. It is only necessary that Home university send to host university this

rules to let it the possibility to send final grades already converted.

The Scenario described above is shown in the figure 3.6

Erasmus Learning Agreement 14

Studert SW Hos Coordnator SW Hos Coordnaor
Studert: Agent. l et s ey

>F Ilin Learnin

Agreement o
| Bend Learnirg *

Host Coordinator Host Coordinaor
Agert Software Agent

.._
T
o
o
o
o
3
I
3
25
|
I

Ppen Learning
Agreement

¢ |Agreement | .

hece pt/refuse {

Leapning Agreemep

< Send Outcom

77| Tsendlearning P

5
" show Learning |}
e
Sign Learning
/| Agreement [R a—
'y | Vaidate Learning i]
—

4_ | _ Agreement |

FIGURE 3.5: Interaction Model - Learning Agreement Submit

Host Coordinator Student SW Teacher SW Host Coordinat
SW Agent tident Agent ‘ Agent ‘ Agent Teacher Agent | DSSWDADgre:\: .
—] Takeg Exam —
Put Grade
=t
| Submit |,
i Grade |-
2T
- =2 Send Grade | /- — -~
P I &
P |
LT e P Sending Certificate Eomm
MmN

FIGURE 3.6: Interaction Model - Final Certificate

3.4 Knowledge Model

This kind of model represents the knowledge requirements for the agents. The knowledge

model is detailed version of our domain model. We can see more extended view of domain

entities here.

In the Figure 3.7 we can see agents and goals interact with each other and the kind of

”messages“ that they exchange themselves.

Erasmus Learning Agreement 15

<<AgentType=>

=<hgentTypes> Ask 5 Recipient:String "
Student agent/ Student Softwere Agents Sender:String wﬁ\) <<AgentType>>
Student s Student Time Timestamp Hom;(e Soﬂgfare Agent/
; ome Erasmus
m{? Content:String Couriinar
Sulprnit
Subprt Sel Ra\iiva
Date:String
Content:String DocumsntlD'ln?egg Recipient:String
Time Timestamp Dricumtshtiametggréng Sender:String CoursesID:Array[integer]
it et Time:Timestamp CoursesName Array[String]

Content:String CoursesGrades:Array[integer]
Time Timeytamp

Courses:Array[String]
ECTS:Integer
nvert
Receive work

StudentiD:integer

GradeInteger
M cnurselD-zmgéger Courses.ArTay] —
<<AgentType>> <cAgentType=> Receive

/ Send
Teacher agent/ Teacher Software Age
Lecturers Lecturers.

FIGURE 3.7: knowledge Model

3.5 Behaviour Models

The Behaviour model illustrates loop inside the agent types and the activities and actions
between the agent types in our system design. We can create rules and events in the
agent type. There are several behaviour models in the system but we are just going to
describe the primary ones following the scenarios described by the interaction models.
So there are several behaviour models that describe our system and show the behaviour

and the triggered communication between the different agents.

3.5.1 Behaviour Model - Available Course List

As written in the previous sections, the first requirement to have a fast and safe Learning
Agreement Process is to give to the student the possibility to refers to a list of available

courses. The first behaviour model (figure 3.8) shows this process.

3.5.2 Behaviour Model - Learning Agreement Process

As done for the interaction models, also for the behaviour one we decide to split the
behaviour model regarding the main goal of the project, that is the Learning Agreement

Management.

In the first one (figure 3.9) we show how the student software Agent behave in this phase
and his interaction with the student (human) agent and the host coordinator Software

Agent. In this phase there is the request to have an available courses list.

In the second one (figure 3.10) we focus on the behaviour of the Student Software Agent
and Home Coordinator Software Agent. The first one submit the Learning Agreement
filled in by the student and send it to home coordinator software Agent. This Agent

check the exams following home university rules and decide if the exams are valid or

Erasmus Learning Agreement 16

Host Coordinator Agent I Host Coordinatar SW Agent ‘ Teacher SW Agent Teacher Agent

‘1 Require A\faial:ie1

Courses

S LI

"""" o

ARequ ire Avai amtvfnr
thecourf
Show Request
Receive Answer

Send Request to
Teacher

i
Show J
Avallablllty

I

’

Send Availability

}
[/ show ‘J‘ Send
"Unavailability unavailability

FIGURE 3.8: Behaviour Model - Available Courses

not. At the end he evaluated the whole learning agreement and send the outcome to the
student software agent. If the learning agreement received is good, the student software
agent send it to the host university. If the learning agreement is not valid, the student

must start the initial process again and fill in another Learning Agreement.

3.5.3 Behaviour Model - Sending final Certificate

This behaviour Model is particularly interesting because we add on here the possibility
to compute the grade according to home university grading systems. In addition we
have shown the possibility for the student to take the exam again if he has failed the

first one, according the rules that there are available dates to repeat it.
Since the complexity of the model, we decide again here to split the model in two ones.

The first one (3.11) shows the behaviour of the student software agent that register the
exam sessions, receive the grades by the teacher software agent, and notify all events to
the student (human) agent (included the possibility or not to do again the exam in the

failure case).

The second one (3.12) focuses on the behaviour of the Host University Software Agent
that receives grades from the teachers and convert these grades according the home
university grading system. In this model we show above all the communication between
the host and home university regarding the request of the grading system by the home

university.

Erasmus Learning Agreement

17

Host Software Coordinator
Student Agent Student Software Agent Agent

Theswdant iscffidally
an Erasmus student.

Request to Submit

7 Norfythe
(T Learning Agreement

v Request

ot e N

Ask for
Courses list

Send Request

g S
oy Requestof ML
Courseslist s

Notify

3 E
2 L S
|, Show Courses { Request

Submit The Learning

Agreement

FI1GURE 3.9: Behaviour Model - Learning Agreement Process - Request

Host Coordinator Home Coordinator Software
Software Agent Student Agent Student Software Agent Agent

Submit the Learning
Agreement

Show Learning o
Agreement

Receive Learning
Agreement

7 /
/

Leaming Agreement | Accept Leaming
Accepted \ Agreement

Register the Learmning
Agreement

2 ;
- LA, valid { ™1
X 3

Learning Agreement zg |
Denied i

Refuse Learning
Agreement

Discard the Leaming
Agreement

o v
Lol Leamning ','_ ol s o 2l Submit the Learning
"\ Agreement et it
h)

F1GURE 3.10: Behaviour Model - Learning Agreement Process - Submit

Erasmus Learning Agreement

Student SW
Teacher Teacher SW Agent Agent Student Agent

e
7 /
= =, TakeBxam (- —
i A

s a R R

|- —- Show Grade b= >
/

S

Grade
Positive

g

<. | Notifyend /| _ 4 Register
% session % Result

Check Other
Data

ew Artempt

Availzbie

FIGURE 3.11: Behaviour Model - Sending Final Certificate - Exam Sessions

Teacher SW Agent Host SW Agent Host Agent

Grade
Registered °

Grade is
positive

Grade
Registered

Submit Grade

b
-—--—} Send Grade :\,,,7
I

’

Ask .
co=or=) Grading G
System #F

CORES /' Grading L"
Conversation . ’.\ Svstem \7- v
. \

TR TR |

R AT

Submit 5 - \
@. _'\’ SR meTTh
a /

S — E

FIGURE 3.12: Behaviour Model - Sending Final Certificate - Submit Phase

Chapter 4

CPN tools - Simulation and

Verification

The Erasmus Experience involves two different phases: Before mobility and after mo-
bility. For this reason we have decided to use two different CPN model to validate and
take the verification of our AOM models.

The first one refers to the Learning Agreement Management, included the requirements
that are the gathering of available courses by the host university and the request by the

student to receive the courses that he can attended.

4.1 CPN tools - Before Mobility

4.1.1 CPN model - Learning Agreement Process

Since the model referring to the Learning Agreement Process is too big to show com-

pletely in one figure, we split this in three figures.

The first one (figure 4.1) shows the interactions between the host university, the teachers
and the student. The Host University gathers the availability of the teachers to hold

the courses that host university wants to offers for Erasmus students.

After that the student, in according his study plan, receive the courses that he can

choose and select some of that.

The second one (figure 4.2) displays the process of the Home University regarding the
acceptance of the courses proposed by the student. In the figure we can see a list of
courses that University can accept (exams are identified here by a id code to simulate
one possible policy). According to the code of the exams proposed, the Home University

can accept or deny the exam. This information is used also to validate the Learning

19

Erasmus Learning Agreement

20

available exams

ot_code = 5_cade flag=true]
&_id,st_code flag
Erasmus S e {e_idis_id,s_cods)
vams Sxams
INTYSTRINGKXBOOL P_MAX input (s_id,e_id); STRINGXSTRING
output ()
action
send_exams(&_id,e_id);

|(e_id st_codeflag)

Availability

(th_id,st_code flag)

(n_exam,s_id,s_code)

|

(e_idis_id,s_coda)

[t_id=th_id]

(e_id,t_id)
INTXSTRING

" (3,"CC"MAT™)
(n_exam,s_id,s_code)

input (=_id;flag);
autput (J;
action
ask_availabiity(e,_idfag)S-9=nt [

InpuE (e_id,s i)

send_availability(e_id Meg]; = i
= = INTxsTRINGksTRING (M==¥am1o dd i epe
output ();

17 ("zz","MAT" true)++ action
1 (U AT false) @ selact_sxam(e_id,s_id);

STRINGXSTRINGXEOOL

MAX [n_exam>0]

T=
| propose sxam

FIGURE 4.1: CPN Model - Learning Agreement Management (exams availability and
selecting process)

LA D TN 134+

14++
16++
214+
28++
244+

e report failure
1:37FF input (s_id,e_id);

1 3444 output ();

17 38++ action

L33+ check_exam(s_id,s_id);
LAy

I I

‘l\:} 5_coda) (e_id,s_id,s_code)

[e_id=v_id]
K e @e) (e_id,s_id,s_code)
axams proposed
input (& _id,s o INTHSTRINGXSTRING P-HIG

| e | —) —

Exam Code
walid

check exam

v_id

input (s_id,s_itHs ThT
output (); output ();
e action
selact_exam{=_id,s_id); d,s_id,s_code,true) check_sxam(s_id,e_id);

ade)

a4mi,s_id,5_code) @nme
INTXSTRINGXSTRINGXEOOL
@ 17(0,'CE","MAT")
INT#STRINGXSTRING (e cades i ag)

(n_exam+1,5_id,s_code)

avams %_id,s_id,s_code flag) sand
evaluated outcome
" INTXSTRINGXSTRINGXBOOL

FIGURE 4.2: CPN Model - Learning Agreement Management (exams evaluating)

innut (s id.e id fladi:

Agreement, because we have considered (just to have a simple example) that the Learn-

ing Agreement proposed is valid only if the student can take at least two exams in the

Host University.

The third one (figure 4.3) shows the classification of the student proposals and the send-

ing process by the student to host university of the the exams that he can do during

Erasmus period. Only student that received a positive feedback for the Learning Agree-

ment can send this information to the Host University, and he can only communicate the

exams that he can effectively take, and not the ones that he proposed but are refused

by the Home University.

Erasmus Learning Agreement 21

4 STRIMGXSTRINGxBOOL
A {} in_exam,st_id,s_cade)

(st_id.false) Dary Learning

dd4 Bs

k. [n_exam>1]
Studernts
Evaluated

(st_id,acc)

d (e_id,s_id,s_code flag)
send_sxams feg

P_LOW input (s_id,e_id};
aLtpuE)]

action
send_chosen(s_id,e_id);

(st_idtrus)

Accept Learning
mant

(rm_exam,st_id,s_code) @ 1°(0,"ct
it (st_id); INTRSTRINGxE

autput ();
action
send_result{st_id,"accapted”);

STRINGXBOOL P_LOW

[flag=tre,acc=trua,st_id=s_id]

/
.

(=_ids_id,s_coda)

axam
sent
INTRSTRINGRSTRING

FIGURE 4.3: CPN Model - Learning Agreement Management (communication to Host
University)

4.1.2 Scenarios

About the Learning Agreement Management, we have decided to show here two different

possible scenario that can occurs in this phase.

In the first one we will show a successful case where the student chooses at least two
exams that are good for the home university. In this case the Learning Agreement is
accepted and the the communication of the exams that the student can take during his

Erasmus are sent to the Host University.

In the second one we will show a failure case where less than two exams are accepted
by the Home university. In this case no Learning Agreement should be sent to the host

University.

Notice that the first part of the two scenarios about the request of available course is
important-less for the purpose of this project, so we will show only the result of one run

of simulation for this phase.

4.1.3 Learning Agreement Management - Simulation and MSC results

The figure 4.4 displays the communication between the host university and the teachers
to have the availability of them to take the course for Erasmus Project. As it is possible

to see by the figure, not all the exams receive availability by the teachers.

The figure 4.5 displays the success case of a student that choose at least two exams that

are accepted by the home university getting a valid Learning Agreement.

Erasmus Learning Agreement 22

i jum o jum

FIGURE 4.5: CPN Model Learning Agreement - Learning Agreement Accepted

In particular this simulation shows a student that has chosen three exams. One of them
is refused but the other two are accepted, so the Learning Agreement is Valid and the

student apply for the Host University.

The figure 4.6 displays the failure case of a student that choose less than two exams
that are accepted by the home university getting a invalid Learning Agreement. The
simulation refers to a student that has chosen three exams and only one of them is
accepted, so the Learning Agreement is Valid and it has not been sent to host university

as expected.

4.2 CPN tools - During Mobility

4.2.1 CPN model - Sending Final Certificate

The model shown in figure 4.7 displays the interaction between students, teachers and

Host University during the Erasmus mobility. In particular it refers to the exams session

Erasmus Learning Agreement 23

check exam 2
far seudane CC

EXAM 21
OUTEEME trus

check exam: 22
far seudent CC

EXAM 22

v
f
STUpELTEC
OUTCOME fal
eh
iz

EXAM 23
OUTCOME falsn

FI1GURE 4.6: CPN Model Learning Agreement - Learning Agreement Denied

process, included grading phase, and the final certificate sending for the exams that the

students passed.

« praan g 17t
1°("Aa","00"] FR
1" 22" ++ =
1 e 104+
STRINGKSTRING s
17244
(s_id,home_id) ~STRING i 3::
| I
[st_id=s_id] 1e
grade

(e_\d,s_\d,hume_ld,t_\d,dates)}@ (e_id,s_id,home_id,t_id,dates)

INTXSTRING%STRINGXSTRINGXINT,

P_HIGH input (e_\d,s_\d,t_ld,dates,graWeT)‘,

P_HIGH input (e_id,s_id,t_id,dates);
output (J;

output ();

action

take_exam(e_id,s_id t_id,dates);
(e_id

action
[t_id = tth_idput_grade_s(e_id,s_id,t_id,dates grade);
(e_id.t_id,st_id,dates) 4_id,homa_id t_id;dates) (e_id,s_id,home_id,E id,grade dates-1)

ey

vy AfgrdHe=0,dates>0]

Repeat |2 id.s idhome id t idgrade dates)
Session

INTxSTRINGXSTRINGXINT
P_MAX input (e id,s_idt_id,dates); INTHSTRINGKSTRINGXSTRINGRINTXINT
output (};
action
send_failure(e_id,s_id,t_id dates);
take_exam(s_id,s_id,t_id,dates);

(e_id,s_id,home_id t_id,grade, dates)

input (e_id,s_id,t_id,grade);

output ();

action
send_grade(e_id,s_id,t_id,grade);
send_grade_to_st(e_id,s_id t_id,grade);
send_final_grade(e_id,s_id,arade);
INT%STRINGXSTRINGXSTRINGXINT

P_HIGH
(e_id,s_id,home_id t_id,grade)

17 ("00" sys1) [h_id=home_id,arade>0]
"(h_idsys)

comvart | e idis id.home id.t id,grade)

grade

STRINGXSYS P_HIGH

(e_id,s_id,home_idt_id,grade)
(e_id,s_id;home_id t_id,grade grading(sys,grade))
(e_id,s_id,home_id t_id,
grads, Fail'})
Failure
INTSTRINGXSTRING*STRINGXINTx STRTM™

FiGURE 4.7: CPN Model- Sending Final Certificate

In this model we can notice the loop that let the student to take again one exam if he
has failed in the first attempt. The loop ends if the student passes the exam or he does
not have more attempt for that exam (in this case we have considered two attempts for

each exam).

About the sending of final certificate, we have implemented the automatic conversion of
grades. Before doing this, the Host University asks the Home University to receive its

grading system.

Notice that only for passed exams the grade is converted, while the failed ones are

certificated with grade ”fail “.

Erasmus Learning Agreement 24

4.2.2 Scenarios

About the period spent by the student in the host university, ended with the exams
sessions, we run three simulation to show these different scenarios. (In all three scenarios
we consider a student that has taken two exams and for each of them he has only two

attempts)

Scenario 1: The student takes two exams and the he passes both of them in the first
attempt. So the exams are immediately handled by software agents and the certificate

of them to home university.

Scenario 2: The student takes two exams and he passes one of them in the first
attempt, and the other one in the second attempt. The simulations will show the

interaction between the agents and the loop the let the student to repeat the exams.

Scenario 3: The student takes two exams and he fails one of them twice. The sim-
ulations will show that the loop that let the student to repeat the exams ends if the

student doesn’t have more attempts.

All scenario show the feature we have thought about an automated conversation of the
grade. For simplification reason we have considered the conversation between 5-point
grading systems to 10-point grading systems. The rules used (just to simplify the model
since it is not important per the purpose of the project) is to multiply the grade obtained

for two.

4.2.3 Sending Final Certificate - Simulation and MSC results

Figure 4.8 displays the interaction between the agents. In particular we can notice that
the student take the exams only one time because he passes both of them in the first

attempt.

In the figure 4.9 we can notice that the student take one of exams twice because he fails

one of them in the first attempt.

Figure 4.10 shows the case where the student fails one exam twice (the student has only
two attempts in our simplified policy). As expected for this exam the student send the

grade failure (conversation is useless only for positive results).

Erasmus Learning Agreement

[Student So&w}re ;{Student J [Tea:her } [Tead’wer Soﬂw}re {Host Software}%ge{r—!ome Softwa% Agent

L AR 20
Tiyy ai i
L AR gl 20
Tiyy ai'l
1AL o
e 20 T‘:’w
a:1 grade: 5
AR o
e 20 T:’W
a: 1 gradg: 3
fi A8]
evan T y
grade: 3
< £LAA
e 20 Ty
grade; 3
St AR o,
e 20
grade: 3
£ A4
ey 20 T:’yy
grade: 5
< fAA
e 20 T yy
grade: S
L B8 o
&1y 20
grade: 5
O 1 (- (- 1 (|

FIGURE 4.8: CPN Model Sending Final Certificate - Two Exams passed in the firs

attempt
[Studsnt Suftw]are { Student] [Teacher] [Teacher Suftw]are { Host Sm’tware]Ag{ Home Sm’twar} Agent
t: A8 oyl 15
Tixx ar]
t: A8 oy 20
Tryy ar y
o AR
21115 T: Jo
a1l gradp: 0
TATLN
e 15 T:xx
grade: fail
ti AA agd 15
Tixx a3
AN
e |15 T: kx
a: 2 grade: 4
t AR
21120 Tipy
a: 1 grade: 3
AN
e 15 T fx
grade: 4
it A8
e 15 T pex
grade: 4
b A4
e: |15
grade: 4
o AA
21120 T ¥
grade: 3
t: AA
@120 T:ky
grade: 3
f: AR
e 20
grade: 3
- O - O -

F1GURE 4.9: CPN Model Sending Final Certificate - Two Exams passed in the firs
attempt

4.3 Verification

In order to verify our models, we run the state-space analysis for both of them.

Erasmus Learning Agreement

26

[Student Sm"tw]are {Student] [Teacher] [Teacher SUftw}are {Hust SDf’tware]Ag{ Home Suftwar} Agent

O

LTI

tAA 220
Tiyy a1l
tAA 215
Tixx a:l
L AA
e 20 T yy
a: 3 grade: 0
THATLY
220 Tiyy
grade: 0
f A e 20
Tiyy a2 £ioap
e 20 Tiyy
a: 2 grade: 0
LTI
et 20 Tiyy
grade: 0
LTI
e 15 T:xx
a: 2 grade: 4
St: A
e 15 Tixx
grade: 4 L AR,
215 T
grade: 4
- O (-

e:: |20
grade: 0

it AA

-

e |15
grade: 4
(-

FiGURE 4.10: CPN Model Sending Final Certificate - Two Exams passed in the firs
attempt

4.3.0.1 Verification - Learning Agreement Management model

Figure 4.11 shows the statistics of one run for the CPN model referring the Learning

Agreement Management process. Since the status is full, the results shown in the state-

space analysis are meaningful.

statistics

Scc Graph
Nodes:
Arcs:
Secs:

: Full

53
62
[}

Boundedness Properties

Best Integer Bounds

Sending'exam 1

Upper
4

Sending'final_grades 1 1

sending'grades 1

Sending'home_univesity 1

Sending'sent_grades 1

sending'session_Exam 1
sending'session_graded 1

Sending'students 1
sending'teacher 1

6

srrTRrre

Figure 4.12 displays the results of the simulation run.

FIGURE 4.11: CPN model 1 - Statistics

4.3.0.2 Verification - Sending Final Certificate model

Figure 4.13 shows the statistics of one run for the CPN model referring the Sending

Final Certificate process. Also in this case we get the full status, so the results are

significant.

27

Erasmus Learning Agreement

Liveness Properties

Dead Markings
| 12 [53,52,49,48,41,...]

Dead Transition Instances
None

Live Transition Instances
None

Fairness Properties

No infinite occurrence sequences.

FIGURE 4.12: CPN model 1 - Verification results

Statistics

State Space

Nodes: 996
Arcs: 3228
Secs: 532
Status: Full
Scc Graph
Nodes: 996
| Arcs: 3228
Secs: [¢]
Boundedness Properties

FIGURE 4.13: CPN model 2 - Statistics

Figure 4.14 shows the result for the simulation run.

Liveness Properties

Dead Markings

20 [996, 995,994,993, 989, .

Dead Transition Instances

None

Live Transition Instances

Fairness Properties

-1

No infinite occurrence sequences.

FIGURE 4.14: CPN model 3 - Verification results

Chapter 5

Conclusion

This project let us to learn how could be useful and efficient use AOM methodology to

model systems that are meaningful in the society.

In particular the use of different agents that share the tasks of a single role could be
a real improvement in the system since it is possible add a software agent that can do

automated operation faster than human agent.

In addition the AOM methodology, such as the use of CPN tools to validate and verify
the AOM models, has been very useful since it let us to know before a possible imple-
mentation problems that can occur in the test phase. In this way the CPN tools could
get the AOM system development faster and safer, since he let people to save time to

fix problems that without CPN tools can see only in the test phase.

The use of CPN tools, after a brief starter phase, has let us to validate and verify our

models fast and easily.

For all these reasons we suggest to use CPN tools as support for the development of

multi-agent systems.

28

Bibliography

[1] Leon S. Sterling, Kuldar Taveter The Art of Agent-Oriented Modeling

[2] CPN tools - cpntools.org

29

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

User to User Borrowing and Renting Service

Agent-Oriented Modelling and Multiagent Systems (IDY0303)

Tallinn
2016

Table of Contents

Table of Contents
1. Introduction
2. Motivation layer
2.1 Goal model
2.2 Role model
2.3 Organizational model
2.4 Domain model
3. System design layer
3.1 Agent and acquaintance model
3.2 Interaction models
3.2.1 Service providing
3.2.2 New service availability notification
3.2.3 Service request with no immediate match
3.2.4 Service request with immediate match
3.3 Knowledge model
3.4 Behaviour models
3.4.1 Service providing behavior model
3.4.2 New service availability behavior model
3.4.3 Service request behavior model
4. Analysis in CPN Tools
4.1 Validation
4.1.1 Scenario 1
4.1.2 Scenario 2
4.1.3 Scenario 3
4.2 Verification
Conclusion
References

1. Introduction

For this project we are going to create a mobile application that enables people to borrow and
use products and services directly from user to user.

Based on their location, the users would be able to search for products and services of their
interest, that are nearest to them, and then contact their providers.

The application shows a list of all the products and allows the users to view detailed information
and also the status of the product, for example if it is currently available or being borrowed by
someone and for how long.

It will be possible to borrow products for free, to rent for money and to trade one product for
another in return, according to the user’s preferences.

2. Motivation layer

This section contains the following models: Goal model, Role model, Organizational model and
Domain model.

2.1 Goal model

The goal model describes the hierarchy of functional goals, roles associated with functional
goals, quality and emotional goals attached to functional goals.

The main goal of the system is to help connect lenders and borrowers (or service providers and
consumers) to help out each other and to help decrease unnecessary spendings or to get
affordable services more conveniently. The main goal is dependent on 5 subgoals. Most
important of these are adding new services and searching for services. Adding a new service
also includes managing service calendar to keep track of when the service is available. When
searching for a service, the system ftries to find best matching services and prioritizes those
closest to the searcher.

Other subgoals are managing transactions between providers and consumers, managing user
profiles, generating notifications about relevant services and rating the quality of products and
services.

e

Feel good
about helping
others

Personalized } @

)
% Connect sevice
4

Service Provider Service Consumer

/danage transactior/ / Manage profile /
Service Provider
Manage service
% calendar %
%4

Trade Object Manager Notifier

% Search service [---------- 5

Service Consumer Best match

Find closest i
/ provider(s) / /Jhoose service /
Rate quality

Service Locator

Add service

2.2 Role model

There are five roles in the system: Service Consumer, Service Provider, Service Locator,
Notifier and Trade Object Manager. Below are more detailed descriptions of all roles.

Role name Service Consumer

Description The role of the user

Responsibilities Register an account
Allow location data

Edit profile

View products and services
Search products and services
Use products and services

Rate products and services

Constraints

The application must be installed

The user must be registered

Role name

Service Provider

Description

The role of the provider

Responsibilities

Register an account

Allow location data

Edit profile

Offer new products and services
View users

Rate users

Constraints

The application must be installed

The user must be registered

Role name

Service Locator

Description

The role of the GPS service

Responsibilities

Return coordinates of current location

Constraints

GPS services should be enabled on the device

The application must be installed, where to return the coordinates

Role name Notifier

Description The role of the notification service

Responsibilities Notify of incoming messages
Notify if products or services become available

Notify changes in transaction

Constraints Connection to the database of the service
Role name Trade Object Manager

Description The role of the trade object manager
Responsibilities Manage transactions

Manage trade objects and states

Constraints Connection to the database of the service

2.3 Organizational model

This figure shows the organizational model which describes different types of relationships
between roles. We have five main roles: Service Locator, Notifier, Trade Object Manager,
Service Consumer and Service Provider. Service Provider and Service Consumer are both
Party-type roles. We have five different types of relationships: Monitors, Updates,
isControlledBy, Notifies, isPeerTo.

Updates

Service locator Motifier

Updates

\ i \
isControlledBy

Monitors \
\ Umasﬁ
=

Trade object manager

Party
= isPeerTo e
/N /N
Service provider Sernvice consumer

At the center of our service are service providers and service consumers. A provider can also be
a consumer and vice versa. Service providers and consumers are monitored by the service
locator. That information is then passed on to the Notifier, who decides whether to notify a
particular party or not. If the needs of a Service Consumer is met by some Service Provider, the
Service Consumer will be notified. If the Service Consumer decides to use that particular

service, the Trade Object Manager will be updated and those updates will then be sent forward
to the Notifier service.

2.4 Domain model

The purpose of the domain model is to describe the relationships between the roles and the

resources. There are 5 different domain entities:

At the center of this domain model is the Trade object. Service Providers can update their profile
and add trade objects. Service Consumers can order trade objects and also update their profile.
Both Service Providers and Consumers will receive relevant notifications about trade objects
and transactions. The Trade object has a schedule and can be a part of a particular
Transaction. Notifier monitors Trade objects and Transactions and notifies Service Providers
and Service Consumers when necessary. The Service Locator updates the location in the user

Transaction
Trade object
Notification
Profile
Schedule

profiles and searches for Trade object's location.

Receives

o

Mediates

A

Trade manager

Scheduie

Service provider

h

Transaction o

Monitars

A

Updates location
L

Service locator

Has avallability Is part of
Manages O
Trade object o Monitors
. B —
C?’]_ Adds Orders Adds
| Notifier
Uses
¥
Searches] T Recelves
I — Motification
Updates
¥ Service consumer
Updates
> Profile < |
~

3. System design layer

This section contains the following models of system design layer: Agent and acquaintance
model, interaction models, knowledge model and behaviour models.

3.1 Agent and acquaintance model

The agent model is created by designing agent types to fulfil the roles. Each role may be
mapped to one or more agent types. The service provider and the service consumer agents are
both mapped as Party Agents. The notification agent can send notifications both to the trade
agent and the party agent . The precise roles and responsibilities are described in the table
below.

MotificationAgent

&1

.1_

TradeAgent LocationAgent
v 1
2 1
PartyAgent
Service provider Service consumer

Agent name

Party agent

Description

Human type agent

Roles

Service provider, Service consumer

Responsibilities

Register an account
Allow location data

Edit profile

View products/services
Offer products/services
Order products/services
Search products/services

Rate products/services

Agent name

Notification agent

Description

Notification software component

Roles

Notification service

Responsibilities

Notify of incoming messages
Notify if products or services become available

Notify changes in transaction

Agent name

Location agent

Description

Location data provider

Roles

Location service

Responsibilities

Update current location

Search nearby matching services

Agent name

Trade agent

Description

Trade object management software component

Roles

Trade object manager

Responsibilities

Manage transactions

Manage trade objects and states

10

3.2 Interaction models

The interaction links described in section 3.1 show which agents interact with other agents and
which party can initiate an interaction. Interaction model represent interaction patterns between
agents in more detail. Interaction-sequence diagram models prototypical interactions as action
events. Action event is an event that is caused by the action of an agent, like sending a
message or starting a machine.

Direct actions performed by human agents are shown as continuous lines, messages sent
between and by software agents are shown as dotted lines.

3.2.1 Service providing

Service provider Trade agent Nofification agent| Service consumer]

Location agent

8!

_.+" " Get matching service -
e COnsumers

Insert new service

3.2.2 New service availability notification

Service provi ider rade agenl Notification agent Service consumer|

,,,,,,,,,,,,,,,,,,,,,,,,

..

__

11

3.2.3 Service request with no immediate match

Service consumer

Trade agent

Insert service reguest >\

No matching service found at this - e
moment. Service request
inserted

servicas

3.2.4 Service request with immediate match

Service consumer|

Trade agent

Inser service request >‘

...............................

...............................

services

3.3 Knowledge model

Location agent

Location agent

Knowledge model represents private and shared knowledge that the agents need for functioning
in the sociotechnical system. There are two most important data entities in our knowledge

12

model: profile, which every party agent has, and trade object, which every party agent knows

about.

Location agent updates the Party agents location and has information about all the trade
objects. The profile contains basic knowledge like first name, last name and contact information.

The trade object contains the following information: a type enum, name, description, transaction
type, status. Enum is a data type consisting of a set of named values called elements,
members, enumeral, or enumerators of the type of trade object it is (service, physical object
etc.). The trade object has several methods: addNew, search, interestedInTrade, acceptTrade,
rejectTrade. A Trade object can have multiple date ranges when it is available (Availability). It
can also have multiple notifications, which notification agent has generated about this object.
The trade object can have multiple transactions.

Knows about

«AgentType» «AgentType»
[Location Agent Party Agent
I
1 1 1
Updates Has
|
W
Profile

+ firstName: String
+ lastName:String
+ contact: Contact
+ location: Location

Knows about

3.4 Behaviour models

«AgentType» «AgentType»
Notification Agent Trade Agent
T
) 1.
Knows about
Knows about
/ Transaction
0.* 0. 0.*
A AN yd + timestamp: Date
- +type: Enum
TradeCbjpot 0.°—| | \radeObject: TradeObjest
+ type: Enum
+ name: String —3
+ description: String 1 + add(): void
+ transactionType: Enum
+ status: Enum
Avallability
+ addNew(): void . + slart: Date
+ search(): List<TradeObject> 0.'——=>| 4 end: Date
+ interestedinTrade(): void 1
+ accepiTrade(): void
+ rejectTrade(): void
4
Notification
+ type: Enum

+ timestamp: Date
+ processed: boolean

+ IsProcessed(): boolean

Behaviour models are based on interaction models. While interaction models describe what
happens between the agents, behaviour models go into more detail about what happens inside
agents as a result of interacting with another agent.

13

3.4.1 Service providing behavior model

Service provider Trade agent
/L ©PS enabled
—— New service ‘ﬁgu(R |
v Floquest GPS
<l { s [cet GPS cooranates
v Notification agert]
[Create new senvice |——New servica———51
s hJ # Location agent
" Newsenics - inform atout new Info about new . .
][Newserdoe |, Tiahon e ULIGHS | orecoesesseessesamssesssos]| Bty I bout naw savice
Roquest nearby service el N |
__! N } -~Hocation request "~ Recelve location request
i\ Nearby consumer found l " :
cation nearby
g r N
/ /
H R) & (R2 j l
L SR A “/ 2 Location responsé---+-{ Send location] ‘ lgnore location request
‘ R i ‘ Receive info about nearby 3
request timeout bt b d
Notiy about
new sanvice

Service consumer

.

-+ Get notified about new service

... MNolifyabout

Service providing behaviour model describes what happens inside agents when a new service
is added to the system. Trade agent asks the provider to enable GPS if necessary, acquires
providers coordinates and inserts the service. Then it signals Notification agent, who in turn
asks Location agent for nearby consumers. If any suitable consumers are found, Notification
agent sends them a notification about new service.

We are only interested in nearby consumers because it makes much more sense to suggest a
new service to them, than to someone who is halfway around the world, too far to actually use
the service. The only time distance doesn’t matter, is when the service in question is virtual and
doesn’t require consumer/provider to be physically present. However, we in our model, all
services do require physical presence.

R1 - A new service is inserted. Check if GPS is enabled. If yes, get coordinates and add new
service to the system, else request provider to activate GPS.

R2 - If matching consumer is found and they happen to be nearby, location agent returns their
GPS coordinates to notification service. If consumer isn’t near, location agent ignores them.

R3 - If suitable consumer(s) are found, notify them about new available service.

14

3.4.2 New service availability behavior model

Service provider Trade agent Notification agent

T ‘ Service
. consumer
Matching consumers found

Agent available

Notify matching consumers about| | ™
new service

Receive info about new service

Consumer interested

Agent available. Service available at requested date.

P —
\ Intrested in g

Ré ik Intrested in service

...... = Accept request le—<—Find service:

Service not
availableat
requested date

Update service. Create transaetion. | | ooy

Book service at requested date 5 booked at -
£ __requested date

New service availability behaviour model describes what happens when consumer gets
notification about new service. Effectively, this model is a continuation of Service providing
behaviour model (section 3.4.1).

Notification agent sends consumer a notice about new service. If consumer is available, they
receive the notice and if they are interested in the service, they alert the Trade agent. Consumer
also gives Trade agent a timeframe when they would be interested in the service. If the service
is not available at requested date, Trade agent let's consumer know about it. On the other hand,
if the service is available, Trade agent asks service provider to either accept or reject the
request. In case service provider accepts, Trade agent creates a new transaction. In either
case, Trade agent also informs consumer about provider’'s decision.

R1 - If matching consumers are found, notify them about new service.
R2 - If consumer is near, they get notification about new service.
R3 - If consumer is interested in the service, they alert Trade agent about it.

R4 - If consumer is available and service is available at the time consumer wishes, trade agent
finds service provider and asks them to accept or reject the consumer. If service is not available
et requested date, trade agent informs consumer about it.

15

3.4.3 Service request behavior model

Service Trade agent Service provider
consumer

GPS avallabie.

Insert service Ri
request

" 'RequestGPS +*_ |
i activation

{ Request GPS]

activation [Gel GPS coordinates

Save service request

Create new service request
Find nearby matching
service providers
a ‘Walit for response. Timeoul.
Matching service found

T Agent available. Matching service found.

-Matching servige”
i found

" Benvice info and -~
schedule

Return service info and schedule

This model describes the behaviour of agents when a new service request is made. Consumer
finds a service they want to consume (this is not described in the model) and requests it. Trade
agent receives the request, asks consumer to activate their GPS if it's not enabled already, and
creates a new request in the system. After that Trade agent searches for nearby providers who
could respond to the request. If suitable providers are found, Trade agent returns found
provider’s service to the consumer.

R1 - Consumer requests a service. If they have GPS enabled, the coordinates are used to
create a new request in the system. If consumer’s GPS is not enabled, they are asked to enable
it.

R2 - If matching provider is found, they are nearby and available, return info about provided
service and the times when it is available.

R3 - Search for nearby matching providers is in progress. If the search times out, repeat it. If
providers are found in reasonable time, return info about found matching service(s) to
consumer.

16

4. Analysis in CPN Tools

4 .1 Validation

For validation we chose a subsection of our system that deals with providing a new service. The
behaviour is also described in section 3.4.1 (Service providing behaviour model). All scenarios
selected for validation are based on rules from behaviour model. Below are all scenarios in
detail along with screenshot of MSC and analysis whether simulation behaved as expected.
Due to the asynchronous nature of agents, there are some unrelated function calls between the
calls specific to one scenario. Calls that pertain to a specific scenario are underlined.

4.1.1 Scenario 1

Description: Provider submits a new service to Trade agent. Trade agent checks if provider
has their GPS enabled. If the GPS is enabled, Trade agent gets provider's coordinates and
inserts new service along with these coordinates into the system. If GPS is not enabled, Trade
agent asks provider to enable it.

[Service prouid}r a{Trade agent] [Nutification ag}nt [Ser\r‘ice cunsu}er {Locatiun agen}

ADD SERRACE: [sp2,servical]

ARD SEEYICE: [sp3,sarvice3]

REQUEST GPS ACTIVATION: [sp3]

A

< REQUEST 5P GPS COORDINATES: [sp2]

T CREATE MEYY SERMICE! [sp2,5ervice 1d 2,5ervicel,(50.1234,24.1234]]

Analysis: The part of the simulation for first scenario worked exactly as expected. Service
provider sp2 submits new service (first ADD SERVICE function call), Trade agent requests
providers GPS coordinates. Provider gives the coordinates (this is unfortunately not displayed
on the screenshot), and trade agent creates new service in the system along with these
coordinates. The screenshot also illustrates another option where providers GPS was not
enabled (second function call) and trade agent correctly requested that provider enable it.

17

4.1.2 Scenario 2

Description: Location agent gets request for consumers that are near the provider. Location
agent searches for consumers based on their current GPS coordinates. If consumer is near
provider, location agent return the consumer. If consumer is somewhere far away, location
agent ignores it.

EQUEST NEARBY ¢ [(sp2,(50.1234,24,1234]]

m LOCATION REQUEST RECEIVED: [(sp2,(50,1234,24,1234)]

m IGNORE LOCATION REQUEST: [sp2,(50.1234,24,1234), 5¢2,(10.0,10.0}]

B LOCATION REQUEST TIMEOUT (spl,sefvica_id 1;service2,(50,1234,24,1234]]

B LOCATION REQUEST TIMEOUT (sp2,sefvice_id 2,serviesl,(50.1234,24,1234]]

EQUEST NEARBY §F; [(sp2,(50.1234,24.1234]]

m LOCATION REQUEST RECEIVED! [(sp2,(50.1234,24,1234]]

< SEND | OCATION RESPOMNSE: [5p2,(50.1234,24,1234),5¢1,(50.1234,24, 1234]

B RECEIVE MEARBY JC LOCATION (scl,service_id_2,5¢1,(50.1234,24.1234]]

HEV SERMICE NOTIFICATION sp2,service_id_2,5ervicel,(50.1234,24.1234),5¢1,(50.1234,24.1234]]

Analysis: Simulation of second scenario also runs as expected. Notification agent requests
consumer, who is near coordinates 50.1234, 24.1234. Location agent finds consumer sc2,
whose coordinates are 10.0, 10.0. Based on these coordinates location agent decides that
consumer is not anywhere near provider, and ignores the consumer.

On the lower part of the screenshot is also positive outcome for this scenario, where a
consumer with matching GPS coordinates was found and returned to notification service. It
should be noted that in a real system, consumer coordinates would need to fall into some +/-
range of the provider, but to simplify our model, exact coordinates are good enough.

4.1.3 Scenario 3

Description: Notification agent waits for location service to return nearby consumers. If there
are any found, notification agent receives information about them and sends them notifications
about the service. If location agent takes too long to respond (effectively times out), notification
agent requests consumers again.

18

EQUEST NEARBY &1 [(sp2,(50.1234,24.1234]]

m LOCATION REQUEST RECEIVED: [(sp2,(50,1234,24,1234]]

m IGNORE LOCATION REQUEST: [sp2,(50.1234,24,1234), sc¢2,(10.0,10.0)]

® LOCATION REQUEST TIMEOUT (spl,senvice.id_1,5ervice2,[50,1234,24,1234)]

B LOCATION REQUEST TIMEDOUT (sp2,sefvice_id_2,servieal,(50.1234,24.1234]]

EQUEST NEARBY §F; [(sp2,(50.1234,24.1234]]

W LOCATION REQUEST RECEIVED: [(s5p2,(50.1234,24,1234]]

< SEND | OCATION BRESPOMNSE: [5p2,(50.1234,24,1234),5¢1,(50.1234,24, 1234]

B RECEIVE MEARBY JC LOCATION (scl,service_id._2,5¢1,(50,1234,24.,1234]]

HEV SERMICE NOTIFICATION sp2,service_id_2,5ervicel,(50.1234,24,1234),5¢1,(50.1234,24.1234]]

Analysis: Simulation of the third scenario also behaves as expected. When notification agent
requests nearby consumer, and none is found (in the simulation, the one that is found is not
near), the request times out as it was supposed to do. After timeout notification agent tries again
to find a suitable consumer. This time location agent returns a nearby consumer. On getting
information about the consumer, notification agent sends a notification to them, alerting them of
a new service.

19

4.2 Verification

Despite our best efforts we didn’t manage to get a full verification status. Below are 2
screenshots of first and third run of State Space analysis. From the screens it is visible that
number of travelled nodes grew by ~200 and the number of arcs grew by ~300. It can also be
seen that the number of dead markings grew, but the number of dead transition instances
decreased by 3.

Statistics Statistics

State Space
Nodes:
Arcs: 693
Secs: 305
Status: Partial

State Space
Nodes:
Arcs: 993
Secs: 913
Status: Partial

Scc Graph
Nodes:
Arcs:
Secs: 2]

c Graph
Nodes: 5@6
Arcs: 993
Secs: 4]

Boundedness Properties ldeletedﬂ Boundedness Properties Ldeletedj

Home Markings

Home Markings
None

None

Liveness Properties Liveness Properties

Dead Markings

Dead Markings
162 [334,333,332,331,330,...]

246 [506,585,504,503,502, ...]

Dead Transition Instances

Service_providing'Get_notified_ about_new service 1

Service providing'Ignore_location request 1

Service providing'Nearby service consumers_request timeout 1

Service_providing'New_service_inserted 1

ce_providing'N about_new_service 1
info_about_nearby service consumer 1
‘Receive_info_about_new_service 1
‘Receive_location_request 1
g'Request nearby service consumers 1
Service providing'Send location 1
Service_providing'Wait 1

Dead Transition Instances
Service providing'Get notified about new service 1
Service_providing'Ignore location_request 1
Service_p ing'Nearby service consumers_request_timeout 1
Service p ing'Notify about new service 1
Service providing'Receive info sbout nearby service consumer 1
Service providing'Receive_location_request 1
Service providing'Send_location 1
Service providing'Wait 1

Live Transition Instances
None

ive Transition Instances
None Fairness Properties

No infinite occurrence sequences.

irness Properties

No infinite occurrence sequences.

State-space analysis of first run State-space analysis of third run

There were quite many dead markings, 162 on the first run, 246 on the third. Dead markings
denote nodes without outgoing arcs[1], in our model, there are 5 such nodes.

Dead transition instances correspond to parts of the model that can never be activated.
Therefore they could be removed from the model without changing its behaviour[1]. However, in
our model all the transitions that are marked as dead were actually traversed when we ran the
simulation manually. Therefore it is difficult to see why state space analysis would mark these
transitions as dead.

20

Since we couldn’t get a full verification status, it's impossible to say if our model was correct.

Conclusion

Our goal was to analyse, model, validate and verify a system for borrowing and renting services.
The main idea was that providers could add a new service, consumers would be notified about
it, and could also search for existing services.

Creating all the analysis and design models was a great way to get a bigger picture of our
system and to really think through all the interactions and necessary relationships between our
agents and to model the functional and nonfunctional goals.

For validation and verification we used CPN Tools. Validation part seems to be correct,
messages corresponded to scenario descriptions. However, we were unable to completely
verify our model because we couldn’t get a complete state space analysis.

CPN Tools is an interesting tool to model and verify agent oriented systems. It's probably very
useful to domain experts and people who have much experience using it.

However, it has quite steep learning curve. That is both because none of us had any prior
experience with agent-oriented modelling, and because CPN Tools has a very unique user
interface that works differently from any other GUI we had ever seen.

It also has same weird bugs, for example the program tends to crash if you leave it unattended
long enough for screensaver to appear.

21

References

1. Kurt Jensen, Lars M. Kristensen, Coloured Petri Nets: Modelling and Validation of

Concurrent Systems, Springer, 2009

22

Tallinn University of Technology
Department of Informatics
Chair of Software Engineering

Adaptive Personal Training
Advisor

A mini-project in the course of
“‘Agent-oriented modelling and multi-agent systems”

Tallinn 2016

Table of Contents

Table of Contents
Introduction
Requirements analysis
Goal model
Role model
Organization model
Domain model
Design
Agent model
Acquaintance model
Knowledge model
Interaction models
Beginning of training
Exercise selection
Exercise
Behaviour models
Beginning of training
Exercise selection
Exercise
CPN simulation
Validation
Sequence diagram
Verification
Report
Conclusion
References

Introduction

The goal of this Project is to learn the basics of agent-oriented modelling by building a
multi-agent system, that helps people in improving their health by composing a gym training
plan. The person willing to train defines a goal and the system creates a personalized
training plan. The key feature of the system is adaptivity in terms of training plan difficulty
and gym equipment availability.

The document consists of three main parts: Requirements analysis, Design and CPN
simulation. The first two parts consist mainly of the corresponding diagrams together with
descriptions. The third part contains verification and validation of a simplified system
simulation using Coloured Petri nets (CPN). Lastly a Conclusion is presented with the
overview of the work done.

Requirements analysis

Goal model

The main goal of the system is to advise an adaptive and personalized training for the
person (Trainee) willing to improve his/her health. To reach this goal a number of subgoals is
created.

Trainee requests a ftraining plan, that must be healthy (sufficiently difficult to present a
challenge and be beneficial, but not too difficult to adversely affect well-being).

Training plan consists of exercises, that the Trainer must provide. Trainee has to do the
exercises using the Equipment which gives safe opportunity to exercise. The Recorder must
correctly record the training session, and the Trainer must analyze the recorded data to
make training plan improvements if needed.

The advised training plans are adaptive (an alternative exercise is provided if the Equipment

is used by someone else or unavailable at specific gym, the difficulty is adjusted if it is too
easy or too hard for the Trainee) and personal (based on the age, weight, height, gender

and other personal data the Trainee provides).
|
! |
|

Plovide exercisde Exdmine training redult Record training Giyé an opportunity to exerfise
Request training pjan
7 \ «

NI

¥

.

/ =
Trainee Fiddingr Recorder EqUipment
Role model

There are 4 roles in the system: Trainee, Trainer, Recorder and Equipment. Below are the
detailed characteristics of the roles.

Role name Trainee

Description The person who wants to improve his/her
physical health

Responsibilities

* Defines goal
* Goes to training
* Does exercises provided by Trainer

Constraints

Has to do exercises provided by Trainer

Role name

Trainer

Description

Helps Trainee to achieve his physical goal,
provides training plan and exercise
information

Responsibilities

* Provides Trainee a training plan

* Provides information about exercise (how
to do, etc.)

* Provides Trainee an alternative exercise
» Examine training results

Constraints

* Has to provide adaptive and personal
training plan

* Has to provide efficient exercises (training
plan)

* Has to examine training results correctly

Role name

Recorder

Description

Records result of the training (done
exercises, order of exercises, etc.)

Responsibilities

* Records done exercises (and their order)
* Records Trainee's health/body data

Constraints

* Has to record data without loss
* Has to record data correctly

Role name

Equipment

Description

Gym equipment

Responsibilities

* Gives an opportunity to do exercise

Constraints

Has to provide safe opportunity to do
exercise

Organization model

Trainee being the single human role has the control over other non-human roles. Meaning its
requests are always being complied with. Recorder is also controlled by the Trainer, as
Trainer needs recorded data to improve Trainee’s training plan.

isControlledBy

Equipment

Tra’uee

isContrplledBy isControlledBy

isControlledBy

Recorder Trainer

Domain model

The Trainee receives a Training plan provided by the Trainer. Training plans consist of
Exercises. The Trainee does the Exercises using some Equipment. During training the
Recorder logs the completed Exercises, records Body/Health data and provides the Training
result to the Trainer. The Trainer examines the Training result and makes a new Training

plan.

Body/health data

Equigment

Recbrds Is useq during
Records . Does
> EXxercise
Recdrder Trainee
ProJides Recegives

< Examines Provides

Training result >»| Training plan

Trainer

Design

Agent model

There are four agents in the system - Trainee human agent, Trainee software agent, Trainer
agent and Equipment agent. Below are the detailed characteristics of the agents.

Agent name

Trainee human agent

Description Human Agent. The one who wants to
improve his/her physical health
Roles Trainee

Responsibilities

* Defines goal
* Goes to training
* Does exercises provided by Trainer

Agent name

Trainee software agent

Description Software Assistant of Trainee Human
Agent
Roles Trainee

Responsibilities

Agent name

Trainer agent

Description Agent that is responsible for providing
exercises, recording training and examining
training result

Roles * Trainer
* Recorder

Responsibilities

* Provides Trainee a training plan

* Provides information about exercise (how
to do, etc.)

* Provides Trainee an alternative exercise
* Examine training results

» Records done exercises (and their order)
* Records Trainee's health/body data

Agent name Equipment agent

Description Gym equipment agent

Roles Equipment

Responsibilities » Gives an opportunity to do exercise

Acquaintance model

The Trainee role is represented by two agents - a human agent representing a real person
and a software agent, which forwards the actions of the human agent to other agents and
displays information from them.

The Trainer agent has two roles - the Recorder and the Trainer and is typically comprised of
a software application on a smartwatch or a smartphone.

The Equipment agent has a single role with the same name. Equipment is a single piece of
gym equipment.

Trainee Trainee

N\

Equipment Agent Trainer Agent
Equipment Recorder Trainer

Knowledge model

The following model contains the knowledge requirements of the agents. Only the basic
attributes are shown.

<<AgentType>>
body_data: Fquipment Agent
Equipment

v

<<AgentType>> <<AgentType>>
Trainer Agent/ > id:INT <« ——1Trainee _Srsgit:‘v:;e Agentf
Trainer, Recorder exercise:STRING

lalternative_exercise:INT|

training_result:

training_plan:

Interaction models

The basic interactions between human and software agents are shown below. Three
interaction models were chosen, that capture the key functionality of the project - adaptive
training.

Beginning of training

TranesHuman TranesSoftware Tramer Azert Equipment
Agen
Agent Agent fgent

i

\ Tramnng plan t’- -
R TP A Ep

=" Tranng plan fove
'._ 'S

EelEoe s R R

This interaction model shows beginning of the training. After Trainee reached the gym, he
tells the Trainer (some wearable device or smartphone) that he wants to start training. All
this is done through some Ul (Trainee Software Agent). In response Trainer sends an
overview of today’s training to the Trainee, what is also displayed through some Ul.

Exercise selection

Trainee Traines Software Trainer Equipment
Human Agent Agent Agent Azent

£

L MExercisedas reques ~

N s B Exercisedaa L —
—. Training finished &
T i i 3

[
| . Alternative sxercise
\ data

% Excercisedaa L

e e e

Given model is a sequel of previous one (Beginning of training). After Trainee receives
today’s plan, he requests information about first exercise from Trainer. This information
contains different types of media that describe how and using what gym equipment the
exercise has to be done. Before Trainee can start exercising, he must to make sure that
necessary gym equipment is available. If it is not available, then Trainee (Software Agent)
asks for alternative exercise from the Trainer. Then the process is repeated until there is no
more exercises left to do.

10

Exercise

Tranes
Human Agent

TranesSoftware
Agent

t Start using equipment

e
=, Succemmesssge L

S |

1 Finish uzing equipment

Foo= Succes messme &
ot .y s %

Equipment
Agent

s
\ Succes message e =

L Succem messe A -
SRS, LY

Traner Agent

After Trainee receives all needed information, he can finally start exercising. Trainee
occupies the gym equipment, does the exercise and, finally, releases the equipment, so
others could also use it.

Behaviour models

Following are the behavior models for the corresponding interaction models together with
rule descriptions. Description of the models can be found in previous section (Interaction

models).

Beginning of training

TraneeHuman
Agent

Tranee Software
Agent

!

g
= Tranng plan
e e S A

St=rt trsining
E : |

~

Motify sbout

startof the
treining

| P
= I

Ehow training
plan

R e =
ATI'E!'I eewantstostat

3 traini
B M A

= Traming plan v

R S

Tramer AgZent

Send training
plan

Egquipment |
Azent

Given model shows beginning of the training. Equipment Agent does not participate in this

phase.

11

Exercise selection

Trainee
Human Agent

Trainee Software
Agent

I

e — =
% Excercisedaa i'_ —

T P L e

Motify that treining
iz finizhed

Chedkif
equipment is
=vailable

Switch to the
nExtexecise

T e -

Given model show exercise selection logic.

Rules:

= _\E)(en:iseda:a reques ~

Trainer

Agent

Send exercizs data
| B [medizetc)

Availabiity info

Send
alternative
exarcize data

R1 - Check if there are exercises left in today’s training plan.
R2 - If gym equipment is taken, ask for alternative exercise from Trainer.
R3 - If gym equipment for alternative exercise is also taken, switch to the next exercise.

Equipment
Agent

Send svailzhiliny
B Info

12

Exercise

Tranee
Human Agent

TranesSoftware
Agent

% Start using equipment |

Occupy equipment
|change avsilsbility
status)

B e
— Succesmesssge £ —

A . |

Display success
MESEEgEE

% Finish uzing equipme m>

Release 1
squipment gt

= Display success
message |

1" Succes messsEe "_

1 - pme v

Equipment
Agent

Change availsbilty
status

1

PR

Change avilabilyy
) status

Tramer Agent

Given model shows training process. Trainer Agent does not participate in this phase.

13

CPN simulation

1°(10,"Frado"}++
1'{11,"Gandalf*)
2

{Trai

1'(10, "Frodo")++
1°(11, "Gandalf*)

'

(10,100])++
(10,102])++ 1
(11,101])++ 4
(11,102] i

g

[

Training Plan

INTXINT

(tid,name]

[a_rid=0]

(10,100]++
T(10,102)++

(11,101)++
“(11,102)

(tid,name,a_gid)

nee
j (tid,name]
INTXSTRING

Procead Ta The Next Exercise

(tid,name)

(tid,name]

(tid,name)

input (name};
output {J;

action

proceadTaNaxtExercise{nama];

[tid=tid] n

Get Next Exercise

(tid,2id)

Switch To The Next Exercise

P_LOW

P_HIGH

{100
(101

1
i
17102
1

JEx1",101,1000)++]
, Ex2
S+ Ex3
{103,"Ex4

input {name);

autput {J;

action
getNextExarcise(nama);

(101,"Ex:

L
=
o
]
m
3

y

Gat Nes«@

INTXSTRINGxINT

[eid=gid]

| Get Exerc@(—J

. _DT—“"\\ INTXSTRINGRINTXSTRINGRINTXINT
Xercise Data
_/

(tid,name,=d,exercise2

Get Alternative Exercise

inish Training

i

input (name};
output (;
action

{tid,name)

Training Finished
INTxSTRING
Release Equipment

input (eid,name);

output {);

action
getAlternativeExercisa(eid,namel;

(tid,name gid)

(tid,name eid)

Exarcise

input (eid,name);

output (J;

action
getExarciseData(eid,nama);

(tid,name,zd,exercise,a_sid,=qid]

'(100,"Ex1",101,1000)++

*(103,"Ex4",0,1003)

INT®STRINGXINTXINT

(eid,exarcis=,a_eid,eqgid)

0,1001)++
103,1002)++

a_eid,eqid2)

[eqid=eqid]

(tid,name,eid exercise,a_eid,eqid]

Occupy Equipment

(eqid)

finishTraining(nameal;

1'1001
il 1‘1001|
7y INT

Equipment

|
P_HIGH

(tid,name, = d,exercisejeqid)

(eqid)

Equipmeant releasad

(tid,nam=]

input (2gid,name);
output (1
action

h 4

Exercise History -
(tid,name gid exercise)

INT%STRINGXINTXSTRING

Do Exercisa

Y

(tid,name,2gid)

Exercise Dane

releaseEquipment(agid,nama);

input {egid,name);
output (J;
action

aceupyEquipment(eqgid,nama);

Equipment is avallable
INTXSTRINGXINTxSTRINGXINT

(tid,name,=id,exercise,eqgid)

input {aid,nams);
output (];

action
doExarasa(aid,nama);

lagFinishedEvarcisal@id nama);

(tid,name,=gid)

INTxSTRINGXINT

(tid,name,zid,exercise,a_esid,=qid)

input {name);

output {);

acticn
switchToNextExercisa(nama);

INTXSTRING

14

Validation

For the mini project 3 different scenarios were chosen that describe situations that can
happen during the training. Scenarios are following:
1. Trainee wants to start exercise that is provided by Trainer using specified equipment.
This Equipment is available at the gym and is not held by other trainees at the
moment. Trainee successfully performs the exercise.
2. Trainee wants to start exercise that is provided by Trainer using specified equipment,
but he can’t because there is no available equipment. Trainee asks for alternative
exercise. The Equipment is available and Trainee successfully performs alternative

exercise.

3. Trainee wants to perform exercise, but Equipment used in this and alternative
exercise are taken and Trainee has to switch to the next exercise.

Sequence diagram

Trainerﬁraine} Traineeﬁraina}i Equipment;’EqE]ﬂpn‘{ Trair:e-r,-’RecordFr

GET MEXT [EXERCISE (Frodo)

-
T

GET NEXT |EXERCISE (Gandalf)

GET EXERCISE DATA (101, Gar

A

GET EXER

QCCUPY-L

dalf)

QUIPMENT (1001, G

m DO EXERCISE (101

, Gandalf)

0G0 FINISHED EXER

sndalf)

CISE (101, Gandalf)

A

CISE DATA (102, Fro

GET ALTERNATIVE EXERCISE (

A

Ho)

102, Froda)

QUIPMENT (1001, Gandalf)

RELCASE

15

GET EXERCISE DATA (103, Frofdo)

A

m PROCEED TO NEXT EXERCISE (Gandalf

GET NEXT [EXERCISE (Gandalf)

A

GET EXERTISE DATA (102, Gandalf)

A

A

GET ALTERMNATIVE EXERCISE (102, Gandalf)

GET EXERCISE DATA (103, Gandalf)

A

W SWITCH TO NEXT BEXERCISE (Frodo)

GET NEXTIFXERCISE (Frodo)

A

GET EXERCISE DATA (100, Frofo)

A

GET ALTERMNATIVE EXERCISE (100, Froda)

K

GET EXERCISE DATA (101, Froflo)

A

m DO EXERCISE (101, Frodo)

0G FINISHED EX
7 g

OCCUPYLIOUIPMENT (1001, Fijodo)

CISE (101, Frodo)

m PROCEED TO MEXT|EXERCISE (Frodo)

® FINISH TRAINING (Frodo)

m SWITCH TO NEXT BXERCISE (Gandalf)

m FINISH TRAINING ([Gandalf)

RELEASEHQUIPMENT (1001, Froda)

1] 1 (-

16

Verification

Applying CPN Tools on our mini project we obtain the following result from Report:

Home Markings: [274],

Dead Marking: [274],

Dead Transition Instances: None

Live Transition Instances: None

Fairness Properties: No infinite occurrence sequences

The part of the state space report shown above says that there is one home and one dead
marking. These markings have the same node number 274, which means that this node is
both a home and a dead marking. One dead marking means that the CPN model is partially
correct and if execution terminates then we have the correct result. Furthermore, because
node 274 is also a home marking, it is always possible to terminate the protocol with the
correct result. Also we can see that there are no infinite occurrence sequences. [4]

Report

CPN Tools state space report for:
/cygdrive/C/Users/Sergei/Desktop/cpn 07052016.cpn
Report generated: Sat May 7 22:25:53 2016

Statistics

State Space
Nodes: 274
Arcs: 400
Secs: 13
Status: Full

Scc Graph
Nodes: 274
Arcs: 400
Secs: 0

Boundedness Properties

Best Integer Bounds

Upper Lower
New Page'Equipment 1 1 0
New_Page'Equipment is_available 1

1 0
New Page'Equipment released 1

2 0
New Page'Exercise 1 4 4
New Page'Exercise Data 1

2 0
New_ Page'Exercise Done 1

1 0

17

I S S S e

R =

New_ Page'Exercise History 1

2 0
New Page'Got Next Exercise 1

2 0
New_Page'Trainee 1 2 0

New Page'Training Finished 1

2 0
New Page'Training Plan 1

4 0

Best Upper Multi-set Bounds
New Page'Equipment 1
171001
New Page'Equipment is available 1
1°(10,"Frodo",101,"Ex2",1001) ++

(11, "Gandalf", 101, "Ex2",1001)

New Page'Equipment released 1
1°(10,"Frodo") ++

" (11,"Gandalf")

New Page'Exercise 1 1°(100,"Ex1",101,1000)++

" (101,"Ex2",0,1001)++
" (102,"Ex3",103,1002) ++
" (103,"Ex4",0,1003)

New Page'Exercise Data 1
1°(10,"Frodo",100,"Ex1",101,1000) ++

(10, "Frodo", 101, "Ex2",0,1001) ++
(10, "Frodo™,102,"Ex3",103,1002) ++
(10, "Frodo",103,"Ex4",0,1003) ++
(11, "Gandalf", 101, "Ex2",0,1001) ++
*(11,"Gandalf",102,"Ex3",103,1002) ++
(11, "Gandalf",103,"Ex4",0,1003)

New Page'Exercise Done 1
1°(10,"Frodo",1001) ++

" (11,"Gandalf",1001)

New Page'Exercise History 1
1'(10,"Frodo",101,"Ex2") ++

"(11,"Gandalf", 101, "Ex2")

New_Page'Got Next Exercise 1
1°(10,"Frodo",100) ++

(10, "Frodo™,101) ++
(10, "Frodo",102) ++
(10,"Frodo",103) ++
" (11,"Gandalf",101) ++
*(11,"Gandalf",102) ++
“(11,"Gandalf",103)

New_ Page'Trainee 1 1°(10,"Frodo")++

(11, "Gandalf"

New Page'Training Finished 1
1°(10,"Frodo") ++

" (11, "Gandalf")

New Page'Training Plan 1
1°(10,100)++

(10,102) ++
S (11,101) ++
*(11,102)

Best Lower Multi-set Bounds
New Page'Equipment 1
empty
New_Page'Equipment is_available 1
empty
New Page'Equipment released 1

18

empty
New Page'Exercise 1 1°(100,"Ex1",101,1000)++
1°(101,"Ex2",0,1001) ++
1°(102,"Ex3",103,1002) ++
1°(103,"Ex4",0,1003)
New_Page'Exercise Data 1
empty
New Page'Exercise Done 1
empty
New Page'Exercise History 1
empty
New Page'Got Next Exercise 1
empty
New Page'Trainee 1 empty
New Page'Training Finished 1
empty
New_ Page'Training Plan 1
empty

Home Properties

Home Markings
[274]

Liveness Properties

Dead Markings
[274]

Dead Transition Instances
None

Live Transition Instances
None

Fairness Properties

No infinite occurrence sequences.

19

Conclusion

During the project, all of the project requirements were achieved. Different level analysis and
design models were constructed, core functionality CPN simulation was created. During the
implementation of the project team members were introduced to web-based agent-oriented
modelling tool and CPN Tools software package.

CPN Tools has a nice idea of model validation and verification, but is severely lacking a
modern user interface and a decent documentation. The software package is not widely
used, thus it is impossible to compensate the lack of proper documentation with online
research on resources such as stackoverflow.com.

Most of the time using CPN Tools was spent on trying to find out how to implement the
simplest programming constructs (e.g. loops and branches) for the most basic business
logic, and refactoring (simplifying) the AOM model when the CPN created was becoming too
complex. CPN Tools software package aims to be cross-platform but is not working properly
on anything other than Microsoft Windows. Out of three team members only one uses
Windows as the main OS.

Overall the team members find the usage of CPN Tools package counter-productive and
suggest finding at least an alternative editor for CPN files. Also more complex CPN

examples should be provided on course home page.

Nevertheless the members are pleased with the project and the experience gained from
making it.

20

References

1.

Laboratory of Socio-Technical Systems. "Agent-Oriented Modelling and Multiagent
Systems (2016)". [WWW] http://maurus.ttu.ee/sts/?page_id=2222 (08.05.2016)

CPN Tools. “Documentation”. [WWW] http://cpntools.org/documentation/start
(08.05.2016)

Sterling, Leon S., and Kuldar Taveter. The Art of Agent-Oriented Modeling (2009).
The MIT Press.

Kurt Jensen, Lars M. Kristensen. Coloured Petri Nets: Modelling and Validation of
Concurrent Systems (2009). Springer.

Bogdan Aman, Gabriel Ciobanu. Mobility in Process Calculi and Natural Computing
(2011). Springer.

21

http://www.tcpdf.org

