Sissejuhatus ainesse "Agentorienteeritud modelleerimine ja multiagentsüsteemid" (IDK5151)

> Prof Kuldar Taveter, Tallinna Tehnikaülikool

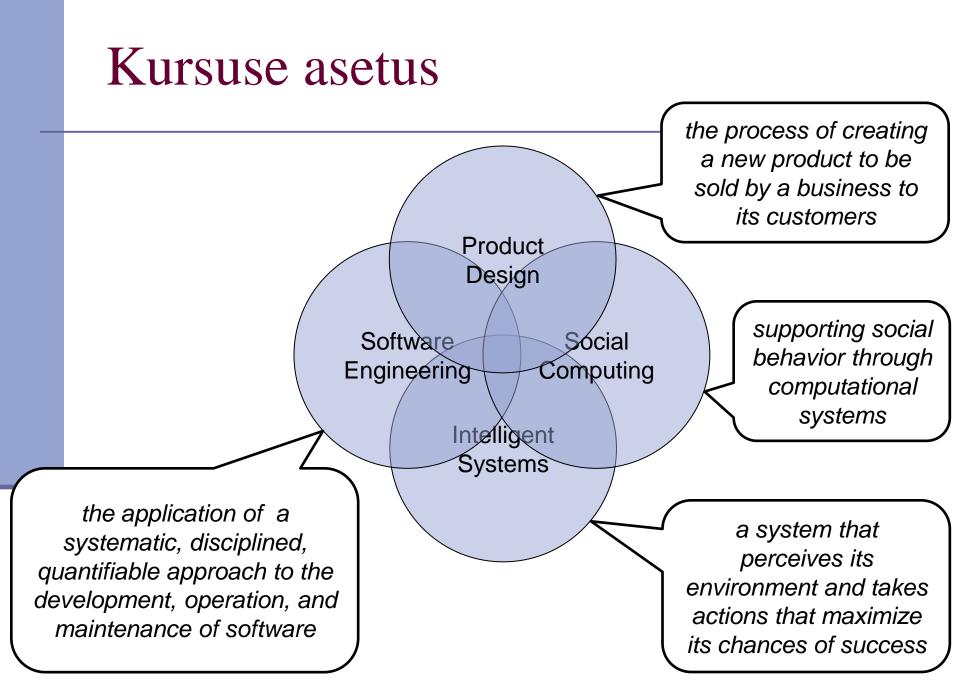
Kohtumise kava

- Kes olen mina?
- Kes olete teie?
- Aine logistika
- Hindamine
- Sissejuhatus agentidesse
- Modelleerimisharjutus

Kes olen mina?

- Name: Kuldar Taveter
- Position: Professor, Chair of Software Engineering
- Education:
 - Dip.Eng., TUT, 1988
 - M.Sc., TUT, 1995
 - Ph.D., TUT, 2004
- Work experience:
 - 1985-1989: Institute of Cybernetics
 - 1989-1993: Private companies
 - 1993-1998: Department of Informatics of TUT
 - 1997-2005: Technical Research Centre of Finland
 - 2005-2008: The University of Melbourne, Australia
 - 2008- : Department of Informatics of TUT
 - Jan-Aug 2011: University of South Carolina, USA
- Research areas: Agent-oriented software engineering, multiagent systems, intelligent systems, ambient intelligence, agent-based mobile systems, agent-based simulation

Kes olete teie?


Aine logistika

Neli kohtumist:

- 01.02.2013 : 19:30-21:00 IT-213D
- 12.04.2013 : 19:30-21:00 IT-213D
- 26.04.2013 : 19:30-21:00 IT-213D
- 10.05.2013 : 19:30-21:00 IT-213D
- Põhiline on iseseisev õppetöö:
 - Loengute videod ja esitlused (inglise keeles) leheküljel

http://maurus.ttu.ee/sts/?page_id=1315

Miniprojektid

Kursuse eesmärk

To design by AOM a software-intensive intelligent social product that delivers the overall solution for the end user through interactions between different nodes and by following the execution loop of an abstract agent

Miniprojektid

- Design and prototyping or simulation of a software-intensive social product
- Range of topics:
 - Crowdsourcing applications
 - Intelligent digital assistants
 - Social applications
- Two Mektory (<u>http://www.ttu.ee/mektory</u>) projects:
 - Healthminer
 - Phoenix

Vaadake veel eelmise aasta miniprojektide lehekülge <u>http://maurus.ttu.ee/sts/?page_id=875</u>

Millist laadi probleemid?

- Allocation of scarce resources (e.g., electric power, parking spaces, emergency care, transportation)
- Distributed situation assessment (e.g., traffic jams)
- Decentralized decision-making (e.g., finding a grocery store, legal decision-making, taxation, intelligent traffic control)
- Cooperative information exchange (currently no context, no help by other users)

Millist laadi süsteemid?

- Distributed systems that obtain control information *from* the edge of the system to provide desired behaviors *at* the edge of the system
 - Examples:
 - Electricity distribution
 - Grocery shopping
 - Healthcare
 - Transportation
 - Traffic control
 - Telecom bandwidth

Hindamine

- Analüüsimudelite kaitsmine: 10%
- Disainimudelite kaitsmine: 10%
- Kirjalik aruanne, umbes 2000 sõna koos lisadega, joonistega, tabelitega ja lähtekoodi näidetega: 20%
- Töö lõpukaitsmine: 10%
- Kahetunnine kirjalik eksam: 50%

Ajakava

- Esimene kohtumine 01.02.2013: Sissejuhatus
- 15.02.2013: Tähtaeg tiimide moodustamiseks ja teemade valikuks
- Teine kohtumine 12.04.2013: Analüüsimudelite kaitsmine (7,5 %)
- Kolmas kohtumine 26.04.2013: Disainimudelite kaitsmine (7,5 %)
- 08.05.2013: Tähtaeg miniprojekti esitamiseks
- Neljas kohtumine 10.05.2010: miniprojekti lõpukaitsmine

Kirjandus

- Sterling, L. & Taveter, K. (2009). The art of agentoriented modeling. MIT Press.
- Wooldridge, M. (2009). Introduction to multi-agent systems, 2nd Edition. Addison-Wesley.
- d'Inverno, M. & Luck, M. (2001). Understanding agent systems. Springer-Verlag.
- Padgham, L. & Winikoff, M. (2004). Developing intelligent agent systems: A practical guide. John Wiley and Sons.
 - Bellifemine, F., Caire, G, & Greenwood, D. (2005). Developing multi-agent systems with JADE. John Wiley & Sons.
 - Bordini, R. H., Hübner, J. F., & Wooldridge, M. (2007). *Programming multi-agent systems in AgentSpeak using Jason*. John Wiley & Sons.

Põhiõpik

The Art of Agent-Oriented Modeling Leon S. Sterling and Kuldar Taveter

The book's mission

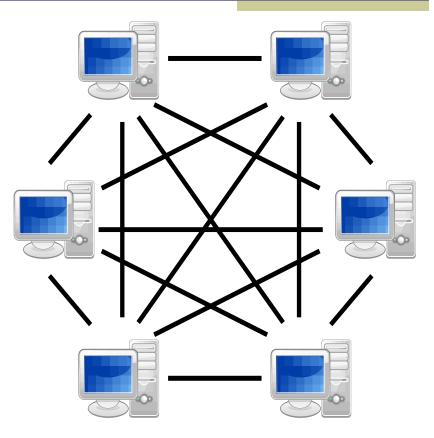
- To address how computing can support individuals and social organizations in the environment where the computing is:
 - Pervasive;
 - Deployed over a range of devices;
 - With multiplicity of users
 - Approach for engineering software systems that are:
 - Open;
 - Intelligent;
 - Adaptive

Two kinds of systems

- Predominantly client-server systems
- Increasingly more peer-to-peer systems
- Peer-to-peer subsumes file sharing

Client-server systems

Client:


queries;
waits;
receives;

Server:

waits;
serves;
does not query.

Peer-to-peer systems

- All nodes are equal
- Each node can work as a client or as a server
- Each node can offer (computing, memory, bandwidth, *information*) resources

Client-server vs. *peer-to-peer*

Peer-to-peer resources are distributed

- Peer-to-peer is more robust
- Peer-to-peer is more secure
- Peer-to-peer is trickier to test
- *Peer-to-peer* is trickier to manage
- Hybrid network: peer-to-peer network + client-server directory

The Viewpoint Framework

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models
Design	Agent models, acquaintance model, and interaction models	Knowledge model	Agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

What is model?

- A hypothetical, simplified description of a complex entity or process
- "A model should be as complex as it needs, but not more complex", David Lorge Parnas
- What features...
 - are important?
 - can be ignored?

Examples of models

- A model of the solar system
- The model of a gold mine
- The model of a chemical plant
- Air traffic simulator:

Concepts for goal models

Goal

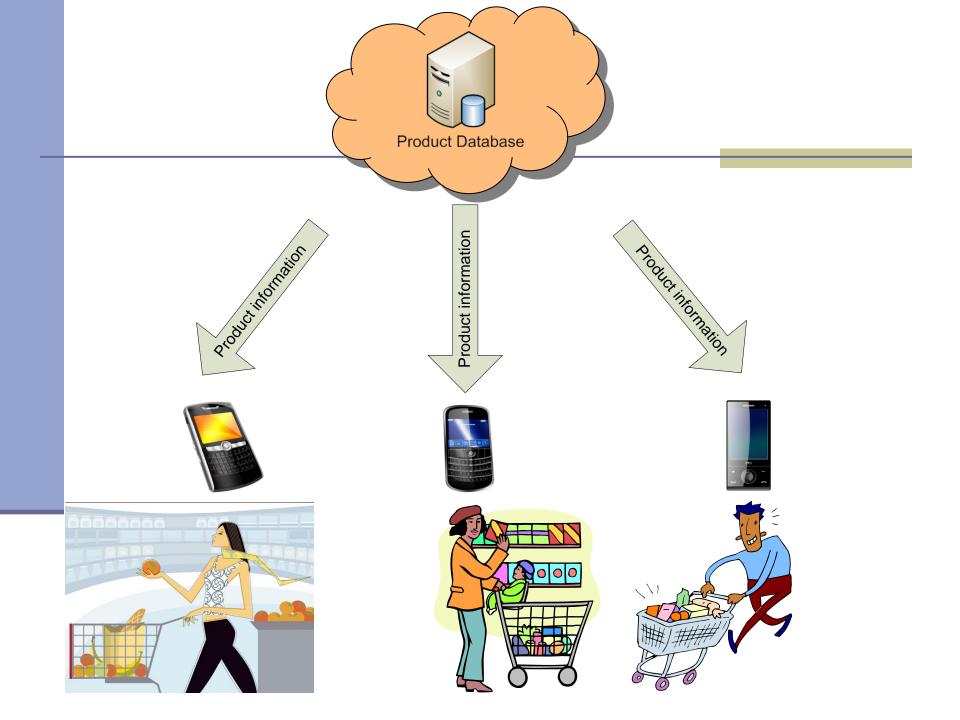
- Functional goal
- Quality goal
- Role

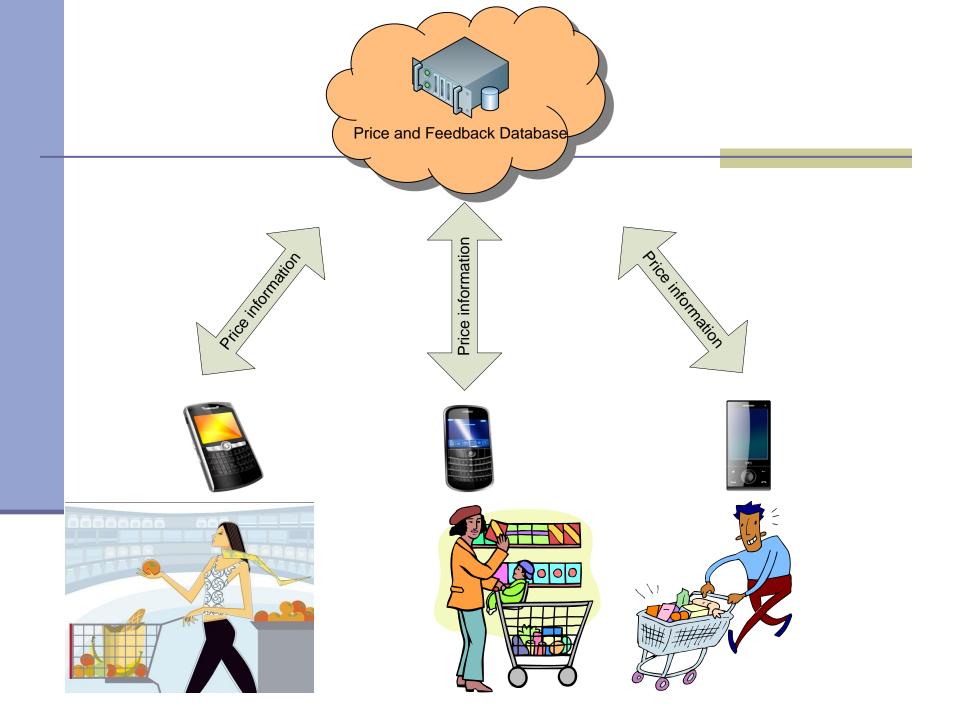
What is goal?

- Dream with a deadline ③
- A particular state of affairs intended by one or more agents

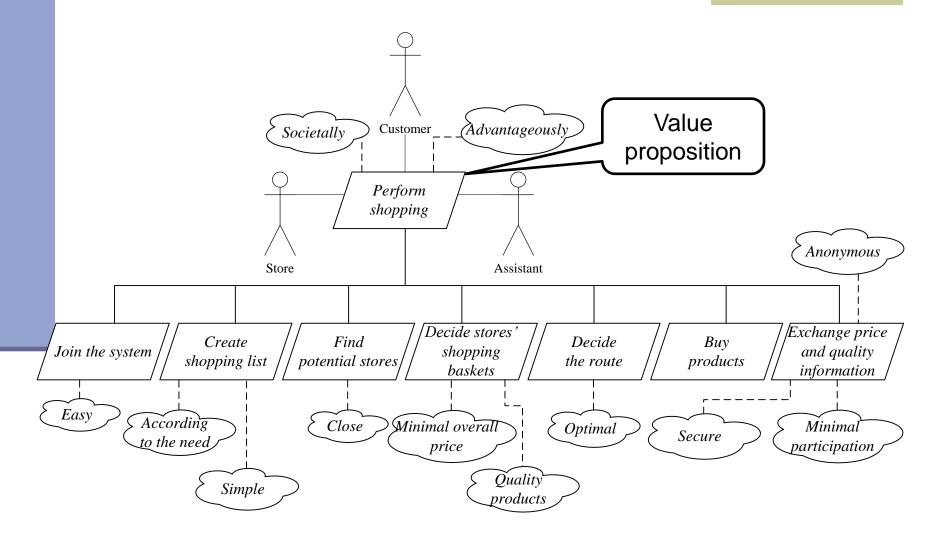
Two kinds of goals

- Functional goal: a goal that captures one or more desired scenarios. Example: attend the lecture
 - Quality goal: quality requirement of the achievement of the functional goal. Example: attend the lecture attentively

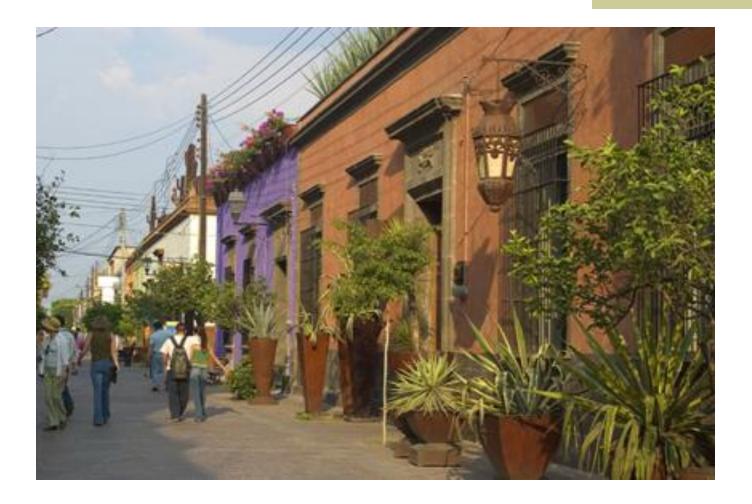

- Some capacity or position that the system requires in order to achieve its goals
- Examples

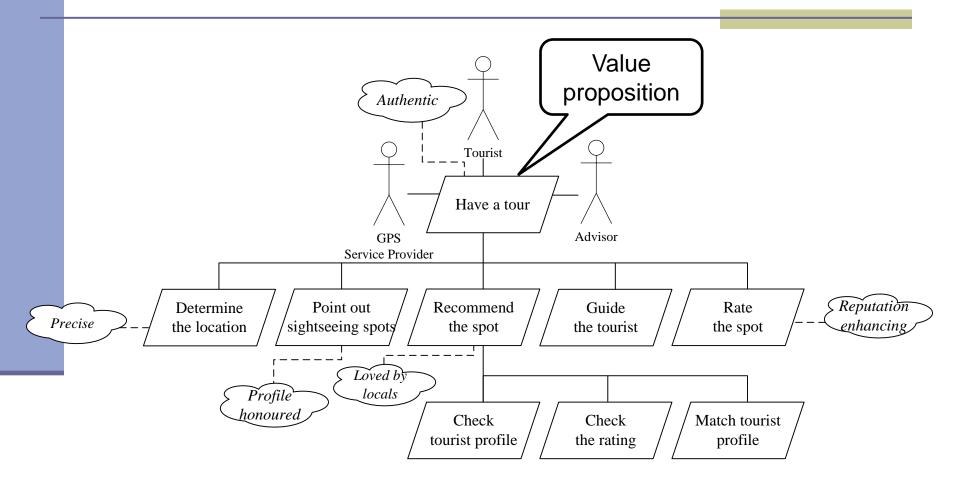

Goal model

- Hierarchy of goals
- Roles associated with goals
- Quality goals attached to goals


Fair grocery shopping

- Customers post the prices they paid for their groceries and QoS information
- A prospective shopper enters a grocery list and obtains a pointer to the store(s) with the lowest total price (and best service)
- Each customer has an app representing his/her interests and interacting with the agents of the other customers
 - Results from initial experiments by Prof. Michael Huhns and Hongying Du: savings up to 21% can be obtained!




Goal model for fair grocery shopping

Tourist advisor

Goal model for tourist advisor

Smart parking

Koostage eesmärgimudel Smart Parking süsteemi kohta