
Workshop 9 in AOM & MAS

Prof Kuldar Taveter,

Tallinn University of

Technology

Have you decided the team and

topic of your miniproject?

 The teams and topics of your

miniprojects should have been decided

by 24 March

 If you have not done so yet, please mail

the names of your team members and

the title of your topic to Prof Taveter

Greeting Goal Model

Greet

FormulateIdentify Articulate Evaluate

Greeter

Greetee

Evaluator

Appropriate

greeting

Accurate

identification

Variety

Right tone

and phrase

Notice

Timely

noticing

Greeting Role Model

 Greetee:

• To be greeted by greeter

• Responsibilities:

• To be noticed by greeter; To perceive greeting

• Constraints: None

 Greeter:

• To greet another agent coming within environment

• Responsibilities:

• To notice greetee; To formulate greeting; To articulate greeting

• Constraints: Articulation within 10 seconds of noticing; Formulation must be
appropriate to greetee + environment

 Evaluator:
• To evaluate the greeting

• Responsibilities:

• To observe greeting; To evaluate greeting; To publish report

• Constraints: timeliness

Combined

behaviour and

interaction

model

for greeting

Person/

Greetee

GreeterAgent/

Greeter

R1

Greet

(pd: PersonDescription)

Query context

(person: Greetee)

ContextGateway.

getContext(person)

Formulate

greeting

(person: Greetee,

context: Context)

inform

(?Greeting)

enter

(?PersonDescription)

Ready to greet

(person: Greetee)

EvaluatorAgent/

Evaluator

greeting-starts

(?Greetee)
R2

Evaluate greeting

(person: Greetee)Articulate

greeting

(person: Greetee)

inform

(?Response)
R3

Create

feedback

inform

(?Feedbcak)
R5

Register response

(response:

Response)

Learn from feedback

(feedback:

Feedback)

Observe

Evaluate

greeting

Query context

ContextGateway.

getContext(person)

Identify person

(pd:

PersonDescription)

Exercises

 Create two JADE agents that greet each other.

Follow the Greeting Goal Model and Greeting Role

Model.

 Continue with the design for your miniproject either

manually or using a suitable tool.

JADE (Java Agent Development

Environment)

 Distributed agent platform which can be split
among several hosts

 Java Application Programmer’s Interface.

 Graphical User Interface to manage several
agents from the same Remote Management
Agent

 Library of FIPA interaction protocols, such as
Contract Net

 Available at http://jade.cselt.it/

http://jade.cselt.it/

JADE Agent Platform

Agent life cycle

Concurrent tasks

 An agent must be able to carry out

several concurrent tasks in response to

different external events

 Every JADE agent is composed of a

single execution thread

 Concurrent tasks are modelled and can

be implemented as instances of

jade.core.behaviours.Behaviour

Agent thread

Hierarchy of behaviours

Defining JADE agents

package DigitalPet;

import jade.core.*;

public class Tamagotchi extends Agent {

 // Put agent initializations here
 protected void setup() {

 // Adding behaviours

 addBehaviour(new MessageHandler (this));

 …

 }

 // If needed, put agent clean-up operations here
 protected void takeDown() {
 System.out.println(“Tamagotchi “+getAID().getName()+” terminating.”);

 …
 }
}

Defining behaviours

package DigitalPet;

import jade.core.*;

import jade.core.behaviours.*;

import jade.lang.acl.*;

public class MyOneShotBehaviour extends OneShotBehaviour {

 public void action() {

 // perform operation X

 }

}

public class MyCyclicBehaviour extends CyclicBehaviour {

 public void action() {

 // perform operation Y

 }

}

Sending messages

ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
msg.addReceiver(new AID(“tama1”, false);
msg.setLanguage(“English”);
msg.setOntology(“Weather-forecast-ontology”);
msg.setContent(“Today it’s raining”);
myAgent.send(msg);

// Message carrying a request for offer
ACLMessage cfp = new ACLMessage(ACLMessage.CFP);
for (int i = 0; i < sellerAgents.lenght; ++i) {
 cfp.addReceiver(sellerAgents[i]);
}
cfp.setContent(targetBookTitle);
myAgent.send(cfp);

Receiving messages

public void action() {

 ACLMessage msg = myAgent.receive();

 if (msg != null) {

 // Message received. Process it

 ...

 }

 else {

 block();

 }

}

Setting classpath

 Please include in the classpath the

following library files:

• …\jade\lib\jade.jar

• …\jade\lib\jadeTools.jar

• …\jade\lib\http.jar

• …\jade\lib\iiop.jar

 Please include in the classpath the

location(s) of your Java class files

Compiling and running JADE agents

javac Tamagotchi.java Behaviours.java

…

java jade.Boot –gui -platform

java jade.Boot –container tama1:DigitalPet.Tamagotchi

Please consult API!

 http://jade.tilab.com/doc/api/index.html

Passing arguments to an agent

public class BookBuyerAgent extends Agent {
 private String targetBookTitle;
 // The list of known seller agents
 private AID[] sellerAgents = {new AID(“seller1”, AID.ISLOCALNAME),
 new AID(“seller2”, AID.ISLOCALNAME)};
 // Put agent initializations here
 protected void setup() {
 // Printout a welcome message
 System.out.println(“Hello! Buyer-agent“ +getAID().getName()+
 ” is ready.”);
 // Get the title of the book to buy as a start-up argument
 Object[] args = getArguments();
 if (args != null && args.length > 0) {
 targetBookTitle = (String) args[0];
 System.out.println(“Trying to buy” + targetBookTitle);
 }
 else {
 // Make the agent terminate immediately
 System.out.println(“No book title specified“);
 doDelete();
 }
 }
…
}

Running an agent with arguments

java jade.Boot –container buyer:BookBuyerAgent (The-Lord-of-

the-rings)

