Alan Kay on formuleerinud
OOP 5 tähtsaimat printsiipi

1. Everything is an Object. Iga objekt on omapärane muutuja – objekt (nagu iga muutuja) hoiab endas andmeid, mis määravad objekti oleku. Iga objektiga on aga lahutamatult seotud ka mingid funktsioonid (meetodid), mille kaudu saab objekti olekut (objekti käitumist!) muuta. Programmis võib objektiks kuulutada praktiliselt suvalise mõiste.

2. Programm on objektide kogum, mis saadavad üksteisele sõnumeid. Kui üks objekt soovib saata mõnele teisele objektile sõnumi (näit. päringu tema oleku kohta), siis see objekt pöördub teise objekti vastava meetodi (funktsiooni) poole.

3. Igal objektil on oma isklik mälu, mis on reeglina nähtamatu teistele objektidele. Seetõttu jääb objekti ehitus varjatuks (hidden implementation), sest objektiga saab reeglina suhelda ainult tema meetodite (objekti liidese, interface) kaudu.

4. Iga objekt on konkreetset tüüpi. Ehk teisiti – iga konkreetne objekt on mingi objektitüübi (klassi) ilming (instance). Klassi kasutaja tahab teada vastuseid küsimustele:

· mis teenuseid seda tüüpi objektid pakuvad?

· milliseid sõnumeid saab seda tüüpi objektile saata?

5. Kõik sama tüüpi objektid on ühesuguse ehitusega. Seetõttu kõik antud tüüpi objektid oskavad vastu võtta ühesuguseid sõnumeid.


Üldisematest objektitüüpidest on võimalik tuletada (derive) alamtüüpe. 

Näiteks kui on loodud klass Kujund, siis on võimalik sellest objektitüübist tuletada objektitüüp Ring, mis pärib (inherite) kõik klassi Kujund omadused (andmed ja meetodid). Seetõttu oskab iga Ring-tüüpi objekt vastu võtta ka kõiki selliseid sõnumeid, mida oskavad käsitleda Kujund-tüüpi objektid.

Seega – kirjutades üks kord valmis klassi Kujund programmikoodi (meetodid), kandub see programmilõik automaatselt üle kõikide klassist Kujund tuletatud klasside programmikoodi! 

Tuletamise-pärimise skeem ongi kõige tähtsam mehhanism, mis tagab OOP võimsuse ja efektiivsuse.  




OOP KEELED

Kolm omadust:

1) kapseldamine (encapsulation) – keeles on vahendid, mis võimaldavad koondada andmed ja nendega tehtavad operatsioonid (meetodid) ühte programmilisse ühikusse (objektitüüp)

NB! objekti andmetele saab reeglina ligi ainult meetodite 
        kaudu!

2) pärimine (inheritance) – igast objektitüübist saab tuletada uusi objektitüüpe, kusjuures järglased pärivad eellase omadused (nii andmed kui meetodid)

3) polümorfism (polymorphism) – samanimelised meetodid võivad erinevatel objektidel teostuda erineval viisil

     Objektitüüp					    Stack

pop
view
push
init

top
	
     





	
     






Andmed
OP 1
OP 2
OP 4
OP 3














[bookmark: _Toc24775516][bookmark: Heading1033][bookmark: _Toc375545220][bookmark: _Toc24775546][bookmark: Heading1271][bookmark: _Toc375545217][bookmark: _Toc24775543][bookmark: Heading1246][bookmark: _Toc375545226][bookmark: _Toc24775552][bookmark: Heading1390]Fields and methods
When you define a class (and all you do in Java is define classes, make objects of those classes, and send messages to those objects), you can put two types of elements in your class: fields (sometimes called data members), and methods (sometimes called member functions). 
A field is an object of any type that you can communicate with via its reference. 
It can also be one of the primitive types (which isn’t a reference). If it is a reference to an object, you must initialize that reference to connect it to an actual object (using new, as seen earlier) in a special method called a constructor. 
If it is a primitive type, you can initialize it directly at the point of definition in the class. (As you’ll see later, references can also be initialized at the point of definition.) 
Each object keeps its own storage for its fields; the fields are not shared among objects. Here is an example of a class with some fields: Feedback
public class Thing {
// fields (data members)
	String name;
	int year;
// constructor
	Thing(String n, int y){  // Konstruktor
		name=n; 
year=y;
	}
// methods (member functions)
	void myMethod() { }
	public static void main(String[] args) {
		Thing ball = new Thing("Ball",2014);  // call constructor
		Thing cup = new Thing("Cup",1999);

	}
}

You manipulate objects with references 
You treat everything as an object, using a single consistent syntax. Although you treat everything as an object, the identifier you manipulate is actually a “reference” to an object.
You might imagine this scene as a television (the object) with your remote control (the reference). As long as you’re holding this reference, you have a connection to the television, but when someone says “change the channel” or “lower the volume,” what you’re manipulating is the reference, which in turn modifies the object. If you want to move around the room and still control the television, you take the remote/reference with you, not the television. 
Also, the remote control can stand on its own, with no television. That is, just because you have a reference doesn’t mean there’s necessarily an object connected to it. So if you want to hold a word or sentence, you create a String reference: 
String s;
But here you’ve created only the reference, not an object. If you decided to send a message to s at this point, you’ll get an error (at run time) because s isn’t actually attached to anything (there’s no television). A safer practice, then, is always to initialize a reference when you create it: 
String s = "asdf";
However, this uses a special Java feature: strings can be initialized with quoted text. Normally, you must use a more general type of initialization for objects. 
[bookmark: _Toc375545218][bookmark: _Toc24775544][bookmark: Heading1257]You must create all the objects
When you create a reference, you want to connect it with a new object. You do so, in general, with the new keyword. The keyword new says, “Make me a new one of these objects.” So in the preceding example, you can say: 
String s = new String("asdf");
Not only does this mean “Make me a new String,” but it also gives information about how to make the String by supplying an initial character string. 

Special case: primitive types
[bookmark: Index117][bookmark: Index118]One group of types, which you’ll use quite often in your programming, gets special treatment. You can think of these as “primitive” types. 
The reason for the special treatment is that to create an object with new—especially a small, simple variable—isn’t very efficient, because new places objects on the heap. 
That is, instead of creating the variable by using new, an “automatic” variable is created that is not a reference. The variable holds the value, and it’s placed on the stack, so it’s much more efficient.
Java determines the size of each primitive type. These sizes don’t change from one machine architecture to another as they do in most languages. This size invariance is one reason Java programs are portable. 
	Primitive type
	Size
	Minimum
	Maximum
	Wrapper type

	boolean
	—
	—
	—
	Boolean

	char
	16-bit
	Unicode 0
	Unicode 216- 1
	Character

	byte 
	8-bit
	-128
	+127
	Byte

	short
	16-bit
	-215
	+215—1
	Short

	int
	32-bit
	-231
	+231—1
	Integer

	long
	64-bit
	-263
	+263—1
	Long

	float
	32-bit
	IEEE754
	IEEE754
	Float

	double
	64-bit 
	IEEE754
	IEEE754
	Double

	void
	—
	—
	—
	Void



[bookmark: _Toc312373853][bookmark: _Toc375545275][bookmark: _Toc24775600][bookmark: Heading3348]Guaranteed initialization with the constructor
You can imagine creating a method called initialize( ) for every class you write. The name is a hint that it should be called before using the object. Unfortunately, this means the user must remember to call the method. 
In Java, the class designer can guarantee initialization of every object by providing a special method called a constructor. If a class has a constructor, Java automatically calls that constructor when an object is created, before users can even get their hands on it. So initialization is guaranteed.
[bookmark: _Toc375545276][bookmark: _Toc24775601][bookmark: Heading3424]Method overloading
Thus, method overloading is essential to allow the same method name to be used with different argument types. And although method overloading is a must for constructors, it’s a general convenience and can be used with any method.
It’s as if when you don’t put in any constructors, the compiler says “You are bound to need some constructor, so let me make one for you.” But if you write a constructor, the compiler says “You’ve written a constructor so you know what you’re doing; if you didn’t put in a default it’s because you meant to leave it out.”
[bookmark: _Toc375545279][bookmark: _Toc24775605][bookmark: Heading3756]Default constructors
As mentioned previously, a default constructor (a.k.a. a “no-arg” constructor) is one without arguments that is used to create a “basic object.” If you create a class that has no constructors, the compiler will automatically create a default constructor for you. 

[bookmark: _Toc375545280][bookmark: _Toc24775606][bookmark: Heading3783][bookmark: Index348]The this keyword
Suppose you’re inside a method and you’d like to get the reference to the current object. 
Since that reference is passed secretly by the compiler, there’s no identifier for it. However, for this purpose there’s a keyword: this. 
The this keyword—which can be used only inside a method—produces the reference to the object the method has been called for. You can treat this reference just like any other object reference. 
Keep in mind that if you’re calling a method of your class from within another method of your class, you don’t need to use this. You simply call the method. The current this reference is automatically used for the other method.
[bookmark: _Toc375545223][bookmark: _Toc24775549][bookmark: Heading1348]Scoping
Most procedural languages have the concept of scope. This determines both the visibility and lifetime of the names defined within that scope. In C, C++, and Java, scope is determined by the placement of curly braces {}. So for example: Feedback
{
  int x = 12;
  // Only x available
  {
    int q = 96;
    // Both x & q available
  }
  // Only x available
  // q “out of scope”
}

A variable defined within a scope is available only to the end of that scope.

[bookmark: _Toc375545224][bookmark: _Toc24775550][bookmark: Heading1373]Scope of objects
Java objects do not have the same lifetimes as primitives. When you create a Java object using new, it hangs around past the end of the scope. Thus if you use:
{
  	String s = new String("a string");
} // End of scope

the reference s vanishes at the end of the scope. However, the String object that s was pointing to is still occupying memory. In this bit of code, there is no way to access the object, because the only reference to it is out of scope. 
[bookmark: _Toc375545231][bookmark: _Toc24775557][bookmark: Heading1482]
Using other components
Whenever you want to use a predefined class in your program, the compiler must know how to locate it. 
Of course, the class might already exist in the same source code file that it’s being called from. In that case, you simply use the class—even if the class doesn’t get defined until later in the file (Java eliminates the “forward referencing” problem, so you don’t need to think about it). 
What about a class that exists in some other file? 
This is accomplished by telling the Java compiler exactly what classes you want by using the import keyword. 
import tells the compiler to bring in a package, which is a library of classes. Most of the time you’ll be using components from the standard Java libraries that come with your compiler. 
With these, you don’t need to worry about long, reversed domain names; you just say, for example:
import java.util.ArrayList;
to tell the compiler that you want to use Java’s ArrayList class. 
However, util contains a number of classes and you might want to use several of them without declaring them all explicitly. This is easily accomplished by using ‘*’ to indicate a wild card:
import java.util.*;
[bookmark: _Toc375545232][bookmark: _Toc24775558][bookmark: Heading1493]



The hidden implementation
[bookmark: Index58][bookmark: Index59][bookmark: Index60]It is helpful to break up the playing field into class creators (those who create new data types) and client programmers (the class consumers who use the data types in their applications). 
The goal of the client programmer is to collect a toolbox full of classes to use for rapid application development. 
The goal of the class creator is to build a class that exposes only what’s necessary to the client programmer and keeps everything else hidden. 
Why? Because if it’s hidden, the client programmer can’t access it, which means that the class creator can change the hidden portion at will without worrying about the impact on anyone else. The hidden portion usually represents the tender insides of an object that could easily be corrupted by a careless or uninformed client programmer, so hiding the implementation reduces program bugs. 


Kasutatava klassi liikmete NÄHTAVUS (visibility) kasutaja klassis


Klass User saab juba olemasolevat klassi Useful kasutada kahel erineval viisil:

1) komponendina:

class User {
Useful uc = new Useful();    // vms.
// ......
			}

2) baasklassina:

class User extends Useful {  //......  }


Kasutatava klassi Useful LIIKMETE NÄHTAVUS kasutajaklassis User on esitatav järgmise tabelina:


	
Klassi Useful liikme ligipääsu määraja (access identifier)
	class User { ... }


	
	import kuskilt.Useful;

	Ei impordita - klass User on klassiga Useful samas package-is (kaustas)

	
	Kompositsioon:
new Useful()
	Tuletamine:
extends Useful
	

	private

	NO

	NO

	NO


	määraja puudub (package access)
	NO

	NO

	YES

	protected

	NO

	YES
	YES

	public

	YES
	YES
	YES






NB!  Importida saab vaid avalikke (public) klasse!



public class Thing {
// data members
	private String name;
	private int year;
// constructor
	public Thing(String n, int y){  // Konstruktor
		name=n; year=y;
	}
// methods (member functions)
	public static void main(String[] args) {
		Thing ball = new Thing("Ball",2014);  
		Thing cup = new Thing("Cup",1999);

	}
}


The static keyword
Ordinarily, when you create a class you are describing how objects of that class look and how they will behave. You don’t actually get anything until you create an object of that class with new, and at that point data storage is created and methods become available.
But there are two situations in which this approach is not sufficient. 
One is if you want to have only one piece of storage for a particular piece of data, regardless of how many objects are created, or even if no objects are created. 
The other is if you need a method that isn’t associated with any particular object of this class. 
That is, you need a method that you can call even if no objects are created. You can achieve both of these effects with the static keyword. 
When you say something is static, it means that data or method is not tied to any particular object instance of that class. So even if you’ve never created an object of that class you can call a static method or access a piece of static data. 
With ordinary, non-static data and methods, you must create an object and use that object to access the data or method, since non-static data and methods must know the particular object they are working with. 
Of course, since static methods don’t need any objects to be created before they are used, they cannot directly access non-static members or methods by simply calling those other members without referring to a named object (since non-static members and methods must be tied to a particular object).
To make a field or method static, you simply place the keyword before the definition. For example, the following produces a static field and initializes it.
class StaticTest {
  static int i = 47;
}
Now even if you make two StaticTest objects, there will still be only one piece of storage for StaticTest.i. Both objects will share the same i. Consider:
StaticTest st1 = new StaticTest();
StaticTest st2 = new StaticTest();

At this point, both st1.i and st2.i have the same value of 47 since they refer to the same piece of memory. 
There are two ways to refer to a static variable. 
As the preceeding example indicates, you can name it via an object, by saying, for example, st2.i. 
You can also refer to it directly through its class name, something you cannot do with a non-static member. (This is the preferred way to refer to a static variable since it emphasizes that variable’s static nature.)
StaticTest.i++;

The ++ operator increments the variable. At this point, both st1.i and st2.i will have the value 48. 
Similar logic applies to static methods. You can refer to a static method either through an object as you can with any method, or with the special additional syntax ClassName.method( ). You define a static method in a similar way: Feedback
class StaticFun {
  static void incr() { StaticTest.i++; }
}
An important use of static for methods is to allow you to call that method without creating an object. 
This is essential, as we will see, in defining the main( ) method that is the entry point for running an application.
Like any method, a static method can create or use named objects of its type, so a static method is often used as a “shepherd” for a flock of instances of its own type.
[bookmark: _GoBack]
ÜLESANNE
Klassis Thing nummerdada kõik loodavad objektid nende loomise järjekorras (alates 1).



