Generic Containers and lterators in Java

Motivation

* containers are objects that store an arbitrary number of
other objects

* these containers are manipulated by iterating over the
contents

* virtually any non-trivial program will involve these two
concepts

— power of computers is in ability to quickly perform
repetitive operations

Don't do everything from first principles

* if you find yourself writing code that manages the
contents of an array or vector, performing inserts,
deletes, etc, there's probably a container that already
does what you're doing.

* arrays are relatively crude ways to store objects, only
really useful for fixed sized groups of objects, without
any properties like order or unigueness

* using existing containers allows you to write faster,
more correct code Iin less time

Contalners

e Collection
— a group of elements
— often with additional constraints, like order or uniqueness
- Implements the j ava. uti | . Col | ecti on interface
e Map
— a group of key-value pairs
- also known as associative containers

- Implements the j ava. uti | . Map interface

* Manage storage automatically

Collections

* two dimensions, unigueness of elements, and ordering
of elements

— ordered, non-unique: List

— ordered, unique: *

- unordered, non-unigue: Multi-set, Bag
— unordered, unique: Set

* the standard Java libraries do not include a multi-set or
a unigue-element list.

— such collections do not conflict with the design however,
one could write classes for these.

Collections

* the Col | ect i on interface defines all of the common
operations you can perform on a group of elements

* all Collections support:
- bool ean contains(Cbject o0)
- lterator iterator()
- int size()
* may also support:
- bool ean add(Onject o0)
- bool ean renove(Object o0)

Example

* for any collection, you can define a “bigger than”
method:

public static bool ean bi gger Than(Col Il ection |l hs, Collection rhs) {
return | hs.size() > rhs.size();

}

* as you can see, without iteration, we're pretty limited...

Iterators

* abstract the process of iteration
* advantageous because:

— allows you to support many kinds of containers (even at
run-time)

— will often be more efficient than iterating over indices
manually

— exXist as object separate from the container, so multiple
iterations can be in progress at the same time

* replaces Enunmer at i on from previous Java versions

iterator cont'd

e java. util.Ilterator interface
- bj ect next (): returns next element

- bool ean hasNext () : returns true if there are more
elements

- voi d renove(): if supported, removes the most
recently accessed (via next ()) element

* when created, the first call to next () will return the first
object

Example

* generically define a “contains” method for collections

Il returns true if lhs contains all of the elenents of rhs
publ i c bool ean contains(Collection | hs, Collection rhs) {
Iterator i =rhs.iterator();
while (i.hasNext()) {
if (!'lhs.contains(i.next())) {
return fal se;
}
}

return true;

Ordered Collections

If you care about the order that the elements are stored,
use a Li st

lists usually allow duplicate elements, so can be used in
place of a multi-set

refines add, to end of sequence
refines r enpve, the first occurence

two lists are equal if they contain the same sequence of
elements, compared using the elements' equal s()
method

— thus you can compare different kinds of lists

Listlterator

bidirectional, allow insertion and deletion

created by listlterator() methodinLi st
Interface

add(nj ect o0):inserts o iImmediately before the
next element

hasPr evi ous(), previ ous() : analogous to
hasNext () and next (), moving towards the front of
the list

set(nj ect o):replaces the most recently
returned element with o

List implementations

e LI nkedLi st

— good insert/delete performance
— poor random access
e ArraylLi st

— poor insert/delete (requires elements to shift)
- good random access
e Vect or

- thread safe, but otherwise comparable to ArrayList

Unordered Collections

* |f order is unimportant, use a Set

* Set also implies uniqueness of elements

— aLi st can be used as a (less efficient) Set with
duplicates in it

— 1f you really need a proper multi-set, it would implement
Col | ecti on

* refines add to refuse duplicates

Uniqueness and Equality

to determine whether or not an element is already in the
Set, the equal s() method is used

on the surface, this is straightforward, BUT...

If the objects in the Set are mutable, the result of
equal s() must not change after they have been
added to the set

this can also work against you in the opposite direction

- e.g. two Vectors are equal if they have the same state,
l.e.foralli,vl.get(1).equals(v2.get(I))

— as a consequence, you can't insert two empty Vectors
Into a Set!

Example

e can'tinsert vl and v2 into s, even though they are
different objects

Set s = new HashSet ();

Vector vl = new Vector();

Vector v2 = new Vector();
s.insert(vl);

s.insert(v2); [/ does nothing
vl. add(“sonething”)

if (s.contains(v2)) // false!

Example (cont'd)

* a solution, use a wrapper object that defines equal s In
terms of references:

public class Wrapper {
private Object wrapped;

public Wrapper(Object o0) {
wrapped = o0;

public Object get() {
return wrapped;
}

public boolean equals(Object o) {
iIT (! (o instanceof Wrapper)) return false;
return (wrapped == ((Wrapper)o) .wrapped);
by
by

Set s = new HashSet();

Vector vl = new Vector();

Vector v2 = new Vector();

s.insert(new Wrapper(vl));

s.insert(new Wrapper(v2));

vl._add(“something”);

iIT (s.contains(new Wrapper(v2))) // true!

Set Implementations

e HashSet
— constant time add(), renove(), cont ai ns()

— Iterator order unknown, may even change as contents
change

* TreeSet, implements Or der edSet
- elements are sorted (sequence not preserved though)
- O(logN) add(), renove(), cont ai ns()

Comparator/Comparable

* you can define the order that elements are sorted in
using two approaches:

* have the elements implement the Comparable interface
— public int conpareTo(CObject rhs)

- returns -1 if this < rhs, O if this is equal to rhs, and 1 if this
> rhs

- throws an exception if rhs is wrong type

* supply a Comparator object to the container
— public int conpare(Object | hs, Ooject rhs)
— analogous semantics as conpar eTo()

— Comparator is more flexible, since it can be chosen at
run-time

Assoclative containers

Map interface, not related to Col | ect 1 on
defines key-value pairs

a generalization of containers which can be accessed
by index, keys can be arbitrary objects

Col | ecti on val ues()
Set keySet ()

Map Example

Map m = new HashMap();

m.put(“spot”, new Dog(“brown”, “shaggy”));

m.put(“rover”, new Dog(“black’”, *“short-haired™));
System.out._printin(m);

Dog d = m.get(“rover”);
System.out.printin(d);

OUTPUT
{ spot=brown and shaggy dog, rover=black and short-haired dog }
black and short-haired dog

Map Implementations

HashMap
HashTabl e — old version of HashMap, thread safe

WeakHashMap — values may be garbage collected if
there are no external references to them

Tr eeMap — slower for all operations O(2logN), but can
provide sorted contents at no extra cost

Choosing a container

identify the abstract properties you require:
— ordered/unordered?
- look-up by key?
— duplicate elements allowed?
— store sorted?
this will pick the interface for you:
— one of Collection, Set, List, Map, SortedMap, SortedSet

pick an implementation, based on expected usage In
the program

If you get the interface right, you can easily change
Implementations if your performance needs turn out
differently than expected (which they often do)

