y

The NUT Language Re:portl

Tarmo Uustalu, Urmas Kopra, Vahur Kotkas,
Michail Matskin, Enn Tyugu

Research Report TRITA-IT R 94:14
Dept of Teleinformatics, The Royal Institute of Technology, Stockholm

June 1994
Revised December 1996

Development of the NUT system is carried out in the framework of the project
»Knowledge-Based Software Tools” financed by the Swedish National Board for
Industrial and Technical Development (NUTEK) under grant 9303405-2

1. This document is available by anonymous ftp from it.kth.se, file labs/se/Software/NUT/
doc/language.ps.Z

Page i Contents

Contents

1.0 INEEOAUCTION .vveeeeeeeeeeeiieeeeseeeeeeeeetrereeeeesasnreesesssannrereeesssasreeeeessenarnnreeesnnsassesasnsas |
1.1 Scope and purpose of this dOCUMENL..........corviiriirinisietnei s 1

1.2 Assumptions about the T€AdErcvverrieiiieii e 1

1.3 NOLAtiONA] CONVENMEIONS ... eeviveercereeeeetrreriiineeraireeesernresessssseesssassnsetsarnesesassassssssnneseacessaneeesns 1

1.4 ADOUL the NUT SYSIEM . .cervrrerereeereerecacrisiiierese ettt bes e st |

1.5 Other documentation 0N NUTcooiioviiiiiiiree et r s 2

2.0 NUT PACKAGES ...ooveivviiiiiiietee e 4
3.0 LeXiCal JEVEL...oeenieeeeeeieeeie et e ettt et s e e e eb e 5
3.1 COMMIMENES ... eeeeeeeeeeeereeeseeeeeevesssseseesseessesseassseneeeaseeseeseteeassesssssssressanesrnsabnsssbesenasansesresans 5

32 Keywords, Operators, SEPATALOIS.......cveveeieririsirirsaceisestastier sttt e s 5

33 TA@IEITIEIS .o eeeeeeeectieeieeieer e e e e e eabesreessnsbaessesaeesiecemtssabessbeerasesss e be e tnesaesenssabasatasnaseances 5

34 INUINDELS <o ieieeeeeneverecreertesseeeseasseesseranesseaases e eseesassiass et b e b es s s e e ba s baerae st seabbe st e s assensesene 6

35 SHEEIIES . ..eveverierereee ettt et sttt s b e s e e eb e e 7

4.0 ODbjects and CIASSESc.evveriviiiiiiieite et 8
4.1 CASSES 1vveeereeeeeeseeeeeesseeeeseasesteassseasseesssasaseesanseassesssentssan s e e sas s irbessraesenrn s e s s e s e be s s s anaseensesaas 8

4.2 Predefined ClaSSES. ...ccoiiviiiiieeriieitreerieereeeeesetrreseesrst e st e seser e snessressssans e sessntesassassnsasnrnans 9

4.2.1 TIUITY 1o eeeeeeeeeseeeeeeasreseesssneeensssesasssneasssneaasssssesesesmneres sobabesosanntsssarnasnsesnasesernensssensas 9

B.2.2 DOOL oot ee e e et e e e st e s s s a s st s b e s e e b e s e te e sanreenans 9

423 EEXE oreeeeeeeeeereeresessreessenreaeessesesnrassaanaesaasrene s bn s e e s st b e s s b e sr R an e s e e R an e e s ae e rane s 9

428 PIOZ.eeueeceeeereieecireereeeaenensre s etk 10

425 ANY ittt eb e s bbb e s 10

426 AITAY OF Cluoveeececcieecii e 10

A.2.7 SHUCE weeeeiieeeeeeeeeveeeeresteeteeese e beessesssesereseeneeeraeeeceanessutosbe s s s anbae s e s ra e s s sanesaesrsasneas 10

428 TOW veneeeteeeeeeseeesaesesaaseessannraesaesaaasssssaesnraa s s baaesasmener e sesbnssssssatesenbarassesrananertnsansres 10

4.3 TUSEE CLASSES ..neveeennrveeieeetiesieteeeeeseeeeesssseasnneeessbeeeannreresabtasassssasnesessbbbss e aranaasearsesansnnesnnenss 10

4.4 NAMING Of OBJECLSuureeiirirecicericretct e e 12

5.0 USET CLASS LEXLES 1.vvvvviinrrieeerreeeireeeeiseeessssseesssaeessseeeeessnsesssnnseesabeseeesssaeessnesssssessns 14
5.1 SUPET-SECHOMNS ...oceerererrriereneesicsssisrsts e sreansssss e s s e s st bbbttt et 14

5.2 VAT- ANA VIT-SECHIOMNS ..evevevirererrerereererteeeesseessrssreesresssesseesmressisssssssssssnsssnssssesaseseensessssssenes 15

53 LS Iy w o) | TR OO 16

54 AlIAS-SECHIOMNSvvivveerereererereeereererserresressesneeresseesan e s e e s be s s s s nesansesesese s raesssassnsseseens 19

5.5 IME-SECLIONS ..neoecvieeeiiereeeireesreeeseseeaessstessssessensssrsessetssnnessntesassnessessssanssastarassesassansnasnsesas 20

5.6 Component declaration ProtOtYPES........ovvevieerererereoreiriresseieeeseetsts et 20

6.0 PrOCEAUIE LEXES....eeiiuvrierieeeireeeeeesierreeeeesesseeeeesssnrrneresssssssssessesissranseesesinrraeensenssens 23
6.1 SPeCifications (AXIOMS)c.vvvrurmrirerrreeretrn sttt 23

6.2 Object CONtEXLS OF PIOZIAIMS.......c.ceiviiririirirtireietersssresiae ettt e 25

6.3 PrOGIAIMS vv.vevevencrenceracaccireeaessrsrsts s s s e £t b s es 25

6.3.1 ASSIZNIMENLS.....oeuerererrreriinitcrisreresssese e sttt 26

6.3.2 Procedure CallS........oocevvreecieererrirerccrenee et 26

6.3.3 SUDLASK CALIS ..c.vveeieecvectreereerertercesrree ettt s e 29

6.3.4 COMPULE-CAll .ot 30

6.3.5 Produce-Callocoeecevimiirirririie et s 30

6.3.6 Sequences and the emMPty SLAEMENLc.ovvriererrirriiiniincnr e 31

6.3.7 AF-SALEIMENLS....covererrereirreerrerrrsrerneentsssiessnssreserress e s e st assnssaresesesesesermsissr s nrn e 31

6.3.8 FOI-SLALEMENLS ...eeovveenvrererereereeeerrereeeeesnesanssresssanstes s e nsabasesssnnansratassessassmesses 32

6.3.9 dO-SLALEIMENLSeoveierererererreeeerenreneesresnesenssrnessamssnesseesnsssassaasnsansrsnssssesassanssss 32

6.3.10 EXIt-SLALEIMENLS c..eeevvererereererrerreessmrerersesrsisrnesnesraese s s saassnssressusensssscnenessisssenns 32

6.4 EXPIESSIONS.vruureerimimrsrsresressssssess ettt e b s 33

20 December 1996 The NUT Language Report

Contents Page ii

6.4.1 CONSLANLS.cu.evieeveirreeriesteateeseesserseesseeseesieessesneesreasssissoses s sbseraseassraseestnsesnsernernnens 34
6.4.2 OpErator EXPIESSIONSccvviiviirririoreeiireiteieste sttt sttt 34
6.4.3 FUNCHON CallS.....iiuiiiireieieeice ettt e 35
6.4.4 SHIUCHUIE CXPIESSIONS .eeverveierereeereeeereeniiistits st s e e n ettt e s es e 35
6.4.5 NEW-EXPIESSIONS c...everremiiiiiiiiitiieetene ettt et rae sttt eb e sb et 36
7.0 SYNENESES ...eieieiiiiee ettt 37

The NUT Language Report 20 December 1996

Page | Introduction

1.0 Introduction

1.1 Scope and purpose of this document

This document is a corrected, updated, revised, and extended version of Technical Report
TRITA-TCS-SE-9212 “The NUT Language”, and replaces it.

NUT is a knowledge-based programming environment, consisting of a windows-based
interactive user interface, a language processor, and graphics facilities. The present docu-
ment is intended as a reference manual of the NUT language for the users of the NUT sys-
tem. It corresponds to the language of the NUT version 3.0 developed at the Royal
Institute of Technology. For the principles and ideas behind the NUT system, and for other
documentation of the system, we refer elsewhere (see Sec 1.4).

1.2 Assumptions about the reader

The reader is assumed to be acquainted with the principles of object-oriented (OO) pro-
gramming, and, recommendably, some OO language (e.g. Smalltalk, C++). Comprehen-
sion of Backus-Naur style formal syntactic definitions is required. Some knowledge of
logic is beneficial for understanding the automatic synthesis mechanism implemented in
the system, but not strictly necessary.

This document is not a crash course in NUT and not even in the NUT language. It is
assumed that the reader is somewhat acquainted with both the system in general and with
the language in particular. The best document to start with is “The NUT System” by Enn
Tyugu (see Sec 1.4).

1.3 Notational conventions

Throughout this document, formal syntactic definitions use angle brackets < and > to
denote syntactic variables, square brackets [and] to enclose optional items, symbol | to
separate alternative items, and ellipses ... to indicate that the preceding item may be
repeated any number of times. The metaseparator ::= is a definition symbol.

1.4 About the NUT system

The NUT programming language is based on two paradigms: procedural object-oriented
programming and automatic synthesis of programs from declarative specifications. The
latter is a technique for automatic construction of programs for unprogrammed procedures
out of their specifications and of the programs and specifications of programmed proce-
dures, where a procedure’s specification embodies its external view (states the names of its
input and output parameters). Automatic synthesis of programs, as practiced in NUT, is
based on proof search in intuitionistic propositional logic. It is possible in the language to
state constraints on variables in terms of arithmetic equations. Thanks to an equation
solver built into the language processor, the system is able to interpret arithmetical equa-
tions as multi-way procedures for computing the unknown variable of the equation.

20 December 1996 The NUT Language Report

Introduction Page 2

The NUT graphics facilities include the Graphics Editor, a set of graphics functions in the
language, and the Scheme Editor. The latter is a tool for visual programming that allows
the user to define classes by means of graphical schemes.

The development of the NUT system began and its first versions were implemented by a
group of researchers and programmers lead by Prof Enn Tyugu and Dr Michail Matskin at
Software Dept. of Institute of Cybernetics, Estonian Academy of Sciences (Tallinn). At
the present moment, the system is being further developed by the Software Engineering
Group at Dept. of Teleinformatics, The Royal Institute of Technology (Stockholm) in co-
operation with the Tallinn group.

The NUT system runs under X Windows System, Version 11, Release 5, and requires the
Xaw library (the Athena widget set), and the standard X11 bitmaps.

An installation of the NUT system version 3.0 (executables, libraries, demos, manpage,
documentation) for Sun4 machines running SunOS 4.1 is available by anonymous ftp
from it .kth. se, file labs/se/Software/NUT/v3.0.tar.Z.

1.5 Other documentation on NUT

Journal papers on NUT:

e Enn Tyugu. Knowledge-Based Programming Environments. Knowledge-Based Sys-
tems, 1991, 4(1):4-15.

e Enn Tyugu. Three New-Generation Software Environments. Comm. ACM, 1991,
34(6):46-59.

 Enn Tyugu, Michail Matskin, Jaan Penjam, Peep Eomois. NUT: An Object-Oriented
Language. Computers and Artificial Intelligence, 1986, 5(6):521-542.

Documents on NUT:

e Enn Tyugu. The NUT system. June 1994. Available by anonymous ftp from
it.kth.se, file labs/se/Software/NUT/doc/syst .ps.Z.

o Benjamin Volozh, Mari Kopp, Enn Tyugu. The NUT Graphics. Technical Report
TRITA-IT-R 93:05, Dept. of Teleinformatics, The Royal Institute of Technology, June
1993. Available by anonymous ftp from it .kth. se, file Reports/TELEINFORMAT -
ICS/TRITA-IT-9305.ps.Z.

o Benjamin Volozh. Appendix to The NUT Graphics. March 1994. Available by anony-
mous ftp from it.kth.se, file labs/se/Software/NUT/doc/graphics-
new.ps.Z.

e The NUT libraries. June 1994. Available by anonymous ftp from it.kth.se, file
labs/se/Software/NUT/doc/libraries.ps.Z.

e Interoperability of NUT with C and UNIX. June 1994. Available by anonymous ftp
from it .kth.se, file labs/se/Software/NUT/doc/interoperab.ps.2.

o Bo Andersson, Benjamin Volozh. User interface of NUT. June 94. Available by anony-
mous ftp from it .kth. se, file lab/se/Software/NUT/doc/interface.ps.Zz.

the NUT Language Report 20 December 1996

Page 3 Introduction

Selected papers on automatic synthesis (structural synthesis of programs):

e Grigori Mints, Enn Tyugu. Justification of the Structural Synthesis of Programs. Sci-
ence of Computer Programming, 1982, 2(3):215-240.

e Grigori Mints. Propositional Logic Programming. In: J. E. Hayes, D. Michie, E. Tyugu,
eds., Machine Intelligence, Vol. 12, pp 17-37. Clarendon Press, Oxford, 1991.

20 December 1996 The NUT Language Report

NUT packages Page 4

2.0 NUT packages

Applications written in NUT are arranged into packages.

The text of a package in the NUT language consists of the following:
e one or several main programs,

« the texts of the user-defined classes of the given package.

Main programs are written in the main NUT window. Texts of user-defined classes are
written in special class text windows, named after the classes.

the NUT Language Report 20 December 1996

Page S Lexical level

3.0 Lexical level

In the NUT language, there are the following kinds of lexical tokens:
e keywords,

e operators,

e separators,

« identifiers,

e numbers,

e strings.

Newline characters and blanks are ignored except as token separators and in strings.

3.1 Comments

Comments begin with a percentage character % and extend to the end of a line or to a next
% character. They are ignored completely by the NUT parser.

3.2 Keywords, operators, separators
The following is a complete list of keywords:

<keyword> ::=
nil | true | false
| super | var | vir | rel | alias | rule | init
| num | text | bool | prog | any | array | of | all
| new | spec | c_fun | compute | produce | subtask
| i€ | £i | for | step | to | do | od | exit
| next | curr

The following is a complete list of operators: ntf alaw
/
+ - * / A > < >= <= == /= ~ | &
. . . r))o‘.éi-\.o / \
The following is a complete list of separators: “wAm “
()Y 1 €Y « , 3= <= |= => - || .. #

<blank> <newline>

3.3 Identifiers

Identifiers are sequences of letters, digits and underscore symbols beginning with a letter.
They are used for naming objects, classes, relations (methods) etc.:

<identifier> ::=
<letter>[<letter>l<digit>l_]...

<digit> ::=
oli1l12131la4l51l6l1l71819

20 December 1996 The NUT Language Report

Lexical level Page 6

Notes. 1. Keywords should not be used as identifiers (although such usage is, in
fact, legal in certain constructions).
2. Standard function names are identifiers that have a certain predefined meaning,
and should not be redefined (although this is legal in certain constructions).
2. Identifiers are case-sensitive.
3. Only the first 15 symbols of identifiers are significant.

Examples:
pointl, penSize, Double_integral, al_side

The following is a list of standard function names:

O <std-function-name> ::=
gin!|cos | tan!|asinlacos|atan
| sgrt | I1n | exp | abs | int | mod
| pos | copy | delete | insert
| chin | rech | length
| add_elem | add_pictl| del_elem | del_pict
| reshow | reshow_all | save_elem | save_pict
| 1ink name | link_pict | get_ID
| get_line | get_poly | get_rect | get_oval | get_text
| get_group | get_type | get_frame | get_name | get_status
| gr_line | gr poly | gr_rect | gr_oval | gr_text
| gr_group | put_frame | put_name

3.4 Numbers

O Numbers are defined in the usual way:

<number> ::=
<integer> | <real>

<integer> ::=
[<sign>]<unsigned-integer>

<sign> ::=
+1-

<unsigned-integer> ::=
<digit>[<digit>]...

<real> ::=
<integer>[. [<unsigned-integer>]][<exp-symbol><integer>]
| [<integer>] . <unsigned-integer>[<exp-symbol><integer>]

the NUT Language Report 20 December 1996

Page 7 Lexical level

<exp-symbol> ::=
Ele

Integers with absolute value greater than 16383 are treated as reals. The highest allowed
absolute value for an exponent is 307'.

Examples:

0, 15, 1328
5.1, .28, 12., 0O.le-1, .3E2, 20584

3.5 Strings
Strings consist of any sequence of characters surrounded by single quotes (*).

<string> ::=
[<symbol>]...”

<symbol> ::=
<digit> | <letter>
Lol #l$l%lal 7l (1)I*l+l,1=-1.1/71:1;1<l=l>]?
l@lgINT3lAl_Iv1¢l}I~1]I<blank>|<newline>

The single quote * is represented in a string by the sequence of two quotes # 7. Observe
that strings may contain newlines.

Examples:
'hello world’
'This is a text’

1. Values of real numbers are restricted as follows: 0.00000000001e-307 < abs(real) < 18.0e307.

20 December 1996 The NUT Language Report

Objects and classes Page 8

4.0 Objects and classes

The notions of object and class lie in the ground of all OO languages.

An object is an entity that possesses an identity, a class, and a value (state). The value of
an object can change in time.

Objects can be scalar and compound. The value of a compound object is a structure
formed of component objects.

In the sequel, components of an object, components of components, components of com-
ponents of components, etc., are often called first-level, second-level, third-level etc. com-
ponents of the object. All these are also called deep components of the object.

A class is a template for creation of objects with similar properties. Such objects are called
instances of the class. An object’s class determines the following properties of the object:

o the object’s domain of values (if the object is scalar), the names and classes of the com-
ponents (if the object is compound),

o the default (initial) value of the object,

 and the relations (methods) performable on the object.

4.1 Classes

Classes are divided into predefined and user-defined classes. The predefined classes are:
the primitive classes, the universal class any, and the polymorphic classes array,
struct, and row. They are described in Sec 4.2. User-defined classes (in short, user
classes) are defined by the user in special class definition windows, and they are local to
the package. The general properties of user classes are described in Sec 4.3. How to define
user classes is explained in Sec 5.0.

Classes can also be divided into scalar and compound classes. The primitive classes are
scalar. The classes array, struct, row, and all user classes are compound classes.

All classes, except for classes struct and row (see Sec 5.2.7, 5.2.8), are named. Syntac-
tically, class names are defined as follows.

<class-name> ::=
<nonarrayclass-name> | <arrayclass-name>

<nonarrayclass-name> ::=
<primitiveclass-name> | <userclass-name> | any

<primitiveclass-name> :=
num | bool | text | prog

<arrayclass-name> ::=
array [<unsigned-integer>] of <nonarrayclass-name>

<userclass-name> ::=
<identifier>

the NUT Language Report 20 December 1996

Page 9 Objects and classes

The unsigned integer in an array class name tells the initial length of instances of the given
array class.

Classes struct or row cannot be mentioned in texts in the NUT language. No object can
be explicitly declared to have class struct or row. For closer comments, see Sec 5.2.7,

5.2.8.
Instances of all classes can take value nil, representing undefinedness.

On values of all classes, the following operations are predefined: test for identicality, test
for non-identicality (implemented as operators, see Sec 6.4.2), and length (implemented
as a standard function, see Sec 8.4).

A number of functions applicable to object of different classes (e.g. NutPrint,
c_getclass, self) are available in the language as C-functions, see separate document
The NUT Libraries.

4.2 Predefined classes

The predefined classes are: the four primitive classes, the universal class any, and the pol-
ymorphic classes array, struct, and row.

The domains of values for instances of different predefined classes, as well as basic opera-
tions on these domains are described below. The default value for instances of primitive
classes and of class any is nil. No relations are defined on instances of predefined
classes.

4.2.1 num

num is a class of numbers. Any number is a num value. The basic operations on numeric
values are: elementary arithmetical operations and comparison operations (implemented
as operators, see Sec 6.4.2), rounding, mod, absolute value, square root, logarithm, expo-
nentiation, trigonometrical functions (implemented as standard functions, see Sec 8.1).
Comparison operations yield boolean values.

4.2.2 bool

bool is a class of booleans. true and £alse are the two boolean values. Internally, txrue
is represented as number 1, and false is represented as number 0. Therefore, all bool
objects are internally represented as num objects. However, if an object is explicitly
declared to have class bool, it cannot be used as a num object. The basic operations on
boolean values are: negation, conjunction, and disjunction (implemented as operators, see
Sec 6.4.2).

4.2.3 text

text is a class of strings. Any string is a text value. The basic operations on textual val-
ues are the usual string-manipulation operations (implemented as standard functions, see

Sec 8.2).

20 December 1996 The NUT Language Report

Objects and classes Page 10

4.2.4 prog

prog is a class of procedures. Any programmed procedure (in the NUT language) is a
prog value. Procedure calling can be regarded as an operation on prog objects. Proce-
dures and procedure calls are explained in Sec’s 6.0 and 6.3.2, respectively.

4.2.5 any

any is a universal class. The concrete class of an object declared to have class any is ini-
tially open. It will be determined dynamically when the object (or any of its components)
first acquires a non-nil value. Arbitrary values are allowed. Since the object may obtain
arbitrary class, no assumptions are made about its number of components or their names.

In a sense, the only legal value of class any is the constant nil, since as soon as a value of
an object having class any becomes non-nil, the object’s class is concretized, and it
ceases to have class any.

4.2.6 array of cl

array of clis a class of values that are structures of objects having class cl. The initial
length for an object having class array of c! is picked from the class name in the declara-
tion of the object, if indicated there, and is O otherwise. During the object’s life-time, the
length is dynamically extended, and more memory is allocated, if components with higher
index than the length are referenced. Dynamic memory allocation is time-consuming and
a potential cause for fragmentation of memory. Therefore, explicit initialization of length
should be preferred, where possible.

Two-dimensional arrays can be modelled by an arrays of arrays (must be declared as hav-
ing class array of any).

4.2.7 struct

struct is a polymorphic class of values that are structures of objects of arbitrary classes.
This class is hidden: no object can be explicitly declared to be of this class; in fact, this
class cannot even be mentioned by name in the language. However, group aliases (see Sec
5.4) are of that class, and certain kinds of expressions evaluate to stxuct values (proce-
dure calls, structure expressions, see Sec 6.3.2, 6.4.4).

4.2.8 row

row is a class of values that are structures of objects of some fixed class (and is thus simi-
lar to class array). This class is hidden: no object can be explicitly declared to be of this
class. However, user class instances can have row components (at most one, see Sec 4.3),
and row components are always of class row. The length of an object’s row is derived
from the text of the object’s class. It is either the length bound given in the declaration of
the row, or the maximum over the row element indices mentioned in the class text.

4.3 User classes

User classes are compound classes.

the NUT Language Report 20 December 1996

Page 11 Objccts and classes

Components of instances of user classes fall into four categories:
e proper components (instance variables),
e virtual components (virtual variables),

aliases,

rows (an object can have at most one row; the row does not have a name)

The names and classes (and, optionally, extra properties) of the proper and virtual compo-
nents of an object are given in the text of the object’s class in the form of var- and vir-dec-
larations (see Sec 5.2, 5.6). Besides, any simple name that appears in the text of the
object’s class undeclared (either alone or as the name to the left of the dot in a dot-name,
but not as a receiver in a relation call or a called prog object in a prog object call) is
treated as naming a proper component of the object and having class any. Object naming
is explained in Sec 4.4.

An alias is an equivalent to some deep component or some group of deep components.
The aliases are defined in the text of the object’s class in the form of alias definitions (see
Sec 5.4).

A row is used for synthesis of loops. The initial length of the row and the class of its ele-
ments are given in the text of the object’s class in the form of a var-declaration (see Sec
5.2).

The order of an object’s components in the value of the object is the following:

1. the proper components, in their order of declaration / first mentioning in the text of the
object’s class;

2. the virtual components and aliases, in their order of declaration / definition in the text
of the object’s class;

3. the row of the object (if any).

The default value for an instance of a user class is determined in the class text in the form
of initializations and initialization amendments (see Sec 5.4, 5.6). These define default
values for deep components of the object. The default value for these deep components for
whom no initialization is provided in the class text is nil.

The relations performable on an instance of a user class are given in the class text in the
form of relation definitions and equivalence amendments (see Sec 5.3, 5.6).

In synthesis (see Sec 7.0), computability of an object can be concluded from computabil-
ity of the proper components of an object. Note that computability of the virtual compo-
nents and of the optional row of the object is not required.

If the “Object Reduction” option in the “Options” menu in the NUT main window is “on”,
then values of a user class are coercible into num values, if the class has exactly one proper
component, and this proper component has class num.

20 December 1996 The NUT Language Report

Objects and classes Page 12

4.4 Naming of objects

The values of compound objects are structures whose components are objects in their own
turn. Thus, in every state of the package, we have to do with a hierarchically built-up
object world. Wherever the control is in the text of the package, some objects in this hier-
archical world are considered as first-level of the hierarchy, and, as a rule, only these
objects and their deep components can be referenced. These first-level objects are called
the object context. The object context of a main program consists of the global objects of
the package. The object context of a procedure consists of the parameters and local varia-
bles of the procedure. The object context of a user class text consists of the components of
the class.

First-level objects (with the exception for first-level rows) are referenced in any context by
simple names that are identifiers.

<simplename> ::=
<identifier>

The only contexts where there can be a first-level row are user class texts. In a user class
text, the row as a whole cannot be referenced (we say the row, because the class cannot
have more than one row). Elements of the row are referenced by row element names:

<row-element-name> ::=
| #<unsigned-integer>
| #curr | #next

The name #n refers to the n-th element of the first-level row. The relative names #curx
and #next do not name any real objects. The name #curr refers to the current compo-
nent of the row, the name #next refers to the next component of the row. These relative
names (as well as names containing these relative names) make sense only in relation def-
initions (see Sec 5.3.). The semantics of #curr and #next is explained in detail in Sec
7.0.

<simplename> ::=
<identifier>

An atomic name is either a simple name or a row element name:

<atomicname> .=
<simplename> | <row-element-name>

The NUT language provides direct addressing to first-level and second-level objects (i.e.
until depth two). If a first-level object is a compound object, then the basic way of refer-
encing its component is by the component’s name, using the dot-name construction:

<dotname> ::=
<atomicname>[. <simplename>]

As one can see from the syntactic definition, the name following the dot in a dot-name can
only be simple, it cannot be a row element name. It is not possible to reference elements of
the row of a first-level object.

the NUT Language Report 20 December 1996

Page 13 Objects and classes

To achieve access to objects of level >2, it is possible in user class texts to define alias
names for deep components of the class (see Sec 5.4).

Alternatively to referencing by name, but only in programs (see Sec 6.3) and right-hand
sides of initializations (see Sec 5.5), a component of a first-level object can be referenced
positionally, by an expression evaluating to the ordinal number (index) of the component
in the object.l Expressions are explained in Sec 6.1.

<indexname> ::=
<atomicname>[[<expression>]]

If an index expression evaluates to a real number, the integer part of the value is used.2

Components of array and struct objects do not have names, and can be referenced
only positionally.

Examples:
a, #curr, a.b, #next.x, #3.y, a[8]
In the following, we shall use the syntactic notions of lists of names.

<simplenames> ::=
<simplename> [, <simplename>]...

<dotnames> ::=
<dotname> [, <dotname>]...

1. Also only in programs and right-hand sides of initializations, a certain combination of the two referring
modes enables direct access to objects of levels deeper than two:

<dotindexname> ::=
<indexname>[. <simplename>[[<expression>]1]]

Examples:
#2[abs(k)].x, a.bl[i+2], al[5].b[2]
2. If the index expression evaluates to a negative number, an unclear situation arises (this error is not caught
by the NUT interpreter).

20 December 1996 The NUT Language Report

User class texts Page 14

5.0 User class texts

Each user class is defined in its own class text window, named after the class. The text of a
class consists of sections specifying the components, relations (methods), and initializa-
tions of objects of the class.

<userclass—text>1 =
[<section>] ...

<section> ::=
<super-section> | <var-section> | <vir-section>
<rel-section> | <alias-section> | <init-section>

The object context of a user class text consists of the components of the class.

Generally, object names appearing in a user class text are interpreted in the object context
of the user class text. The rules for naming objects in a given object context were
explained in Sec 4.4.

There are four exceptions from this general rule:

« names in the left-hand sides of amendments in the prototype of a component declara-
tion refer to components of the component being declared (cf Sec 5.6);

o names in the left-hand sides of amendments in the prototype of a new-expression refer
to components of the object being created (cf Sec 6.4.5);

« the denotation of the receiver in a relation call is determined by a special rule outlined
in Sec 6.3.2;

« the denotation of the called prog object in a prog object call is determined by a spe-
cial rule outlined in Sec 6.3.

5.1 super-sections

A user class can inherit properties from one or more classes, called superclasses of the
class. Only user-defined classes can act as superclasses. In the super-sections of a user
class text, the user indicates the superclasses of the class being defined:

<super-section> ::=
super <super-description>...

<super-description> ::=
<userclass-name>;

The text of a user class can only extend or concretize the properties that the class inherits
from the superclasses, e.g. it can add components or methods, concretize the class of a
component which was declared to have class any in a superclass. It is impossible in a
class text to redefine the properties inherited from the superclasses, e.g. overloading of
relation definitions is impossible.

1. Since all sections end with a semicolon, a user class text should always end with a semicolon. It is
allowed by the class compiler to omit this very last semicolon in user class texts.

the NUT Language Report 20 December 1996

Page 15 User class texts

Examples:
super Document;
super Vehicle;

5.2 var- and vir-sections

In the vax- and vir-sections of a user class text, the user declares the names and classes
the proper and virtual components and (if the class has a row) the class of the elements of
the row of the class he/she is defining:

<var-section> ::=
var <var-declaration>...

<var-declaration> ::=
<simplenames> : <class-name>;
| <simplename> : <prototype-in-component-declaration>;
| <row-specifier> : <class-name>;
| <row-specifier> : <prototype-in-component-declaration>;

<row-specifier> ::=
1 .. [<unsigned-integer>]

<vir-section> ::=
vir <vir-declaration>...

<vir-declaration> ::=
<simplenames> : <class-name>;
| <simplename> : <prototype-in-component-declaration>;

The simple name(s) to the left of the colon in a component declaration are the name(s) of
the component(s) being declared. The class name to the right of the colon in a component
declaration is the name of the class of the component(s) being declared. Component decla-
ration prototypes are explained in Sec 5.6.

Each component of a class can be declared only once in the text of the class. If a usage of
a simple name (either alone or as the name to the left of the dot in a dot-name, but not as a
receiver in a relation call or a called prog object in a prog object call) in a purely declar-
ative part of a class text (i.e. elsewhere than in procedure texts, see Sec 5.3) precedes its
declaration, then it is treated as naming a proper component having class any.

A var-declaration which has a row specifier to the left of the colon tells that the class being
defined has a row, tells the class of the row elements (-- the class name to the right of the
colon), and may tell a bound on the length of the row (-- the unsigned integer following
. .). There can be only one such var-declaration in a class text.

A component or elements of the row may be declared to be of an non-existent class; this
does not cause any diagnostics to be displayed. This non-existent class is considered
empty (the compound class of structures of length 0, without relations and initializations).

Recursive class definitions are allowed, i.e. a class can have components of the same class.
Even mutual recursion is possible.

20 December 1996 The NUT Language Report

User class texts Page 16

Examples:
var x, y: Point;
line: array 5 of Point;
vir nl, n2, n3: num;

5.3 rel-sections

In the rel-sections of a user class text, the user defines the relations of the class he/she is
defining. Relations are procedures performable on instances of the class.

<rel-section> ::=
rel <relation-definition>...

<relation-definition> ::=
[<relation-name>:] <relation-definiens>;

<relation-name> ::=
<identifier>

A relation can be defined only once in a class text. To provide a name for a relation is
optional.

Relations are procedures. Procedures encode imperative algorithms for object manipula-
tion, and the regular way of defining them is in the form of procedure texts that contain a
specification and may contain a program. The specification of a procedure determines the
input/output interface (external view) of the procedure: it states parameters of the proce-
dure, defines certain order on them, an tells their roles (input, output, weak). The program
of a procedure determines the inner behaviour of the procedure. Procedure texts, specifica-
tions, and programs are explained in Sec’s 6.0, 6.1, 6.3, respectively.

Relations are used in two ways. First, relations are used as methods: a relation can be
called on an object explicitly, if the relation has a name, by sending a message to the
object (relation calls are explained in Sec 6.3.2). Second, programmed relations are used
in synthesis of values for objects and of programs for procedures and their subtasks. Syn-
thesis of an object value can be prompted by a compute-statement (explained in Sec
6.3.4), synthesis of programs for a procedure (if it is unprogrammed) and for its subtasks
is prompted by calling the procedure (explained in Sec 6.3.2). In planning, which is the
difficult part of synthesis, only the specifications of relations are used: they are interpreted
as axioms about computability. The mechanism of synthesis is explained in Sec 7.0. Rela-
tions without name cannot be called explicitly, they are only used in synthesis.

The names of parameters of relations and of parameters of dependent subtasks of relations
are also names of deep components of the class being defined. The names of parameters of
independent subtasks of relations are names of deep components of the class mentioned in
the specification of the respective subtask.

Both for synthesis of a program for an unprogrammed relation and for a call of (either pro-
grammed or unprogrammed) relation, the parameters of the relation are identified with the
homonymic deep components of the object who is being asked to perform the relation.
(‘Homonymic’ means ‘having same names’.) This means that values are directly written

the NUT Language Report 20 December 1996

Page 17 User class texts

into/read from the state of the object in the course of parameter passing, when the relation
is performed.

For synthesis of a program for a subtask, the parameters of the subtask are identified with
the homonymic deep components of the class named in the specification of the subtask, if
the subtask is independent, and with the homonymic deep components of the object on
whom some value or relation program is to be synthesized, if the subtask is dependent. For
a call of a subtask of either kind, however, the parameters of the subtask are purely formal.

Besides procedure texts, the language facilitates certain forms of relation definienses that
contain a specification and a program in an implicit form (equations, equivalences). It is
the task of the class compiler (more exactly, the equation solver) to complete such defin-
ienses. Summing up, four kinds of relation definienses are facilitated in the language:

¢ procedure texts,
e multi-way equations,
e one-way equations,

¢ equivalences.

<relation-definiens> ::=
<procedure-text>
| <multi-way-equation> | <one-way-equation> | <equivalence>

Procedure texts are explained in detail in Sec 6.0.
Multi-way equations have the following form:

<multi-way-equation> ::=
<expression-in-equation> = <expression-in-equation>

where all deep components mentioned in the two expressions have classes coercible to
num, and the denotations of the two expressions have also class num under coercions.
Expressions are explained in Sec 6.4. All deep components mentioned in the equation are
weak parameters of the relation.

The specification derivable by the class compiler from a multi-way equation el = €2
whose list of names (in the order of first occurrences) is cl, ..., cn is:

--cl, .., cn
and the program derivable is:

if ¢l == nil ->
cl := eel

fi

where eei (i = 1, ..., n) is an explicit expression for ci in terms of cl, ..., ci-1, ci+l, ..., cn
derived from the equation by the the built-in equation solver of the system.

20 December 1996 The NUT Language Report

User class texts Page 18

One-way equations have the following form:

<one-way-equation> ::=
<dotname> = <expression-in-equation>

where the deep component named in the left-hand side and the denotation of the expres-
sion in the right-hand side have compatible non-numeric classes. The deep component
named in the left-hand side is an output parameter, the deep components named in the
right-hand side are input parameters of the relation.

The specification derivable by the class compiler from a one-way equation ¢ = e where
the list of names in e (in the order of first occurrences) is c/, ..., cn is:

cl, ..., ecn=>c
and the program is:

c :=e¢
(i.e. a single assignment statement).
Equivalences have the following form:

<equivalence> ::=
<dotname> = <dotname>

where the two named deep components have compatible classes.
The specification derivable by the class compiler from an equivalence c¢1 = c2 is:
--cl, 2

Equivalence of two deep components is implemented via locating their values at the same
place in the memory. Thus, values of deep components that are declared to be equivalent
are automatically kept identical.

A relation whose definiens contains names #curr and #next abbreviates a collection of
relations. Their definienses are derived from that of the given relation by substituting
#curr, #next with #i, #(i+1), respectively, where 0< i <length of the row.

Examples:
rel

methodl: x + ¥ 0;
1l * gin(alpha) Pl.y - P2.y;
method2: res = inl & in2;
how_long: new_text = length(’This is a text’);
proceed: [inl, in2 -> res],
[schema |- old_state -> new_state] x -> vy {
subtask 1(x, 1, a);
subtask 2(x, b);
y:=a & b

}:
symmetric: -- x, ¥, 2 {

the NUT Language Report 20 December 1996

Page 19 User class texts

if (x == nil) & (y /= nil) & (z /= nil) ->
X 1= Z - ¥;

|| (x /= nil) & (y == nil) & (z /= nil) ->
Yy 1= z2 - %X;

|| (& /= nil) & (y /= nil) & (z == nil) ->

Z =X +Y

5.4 alias-sections

In alias-sections, the user defines the aliases of the class he/she is defining.

<alias-section> ::=
alias <alias-definition>...

<alias-definition> ::=
<simplename> = <alias-definiens>;

The name to the left of = in an alias definition is the name of the alias being defined.

Aliases provide short names for second-level components and for groups of first- and sec-
ond-level components:

<alias-definiens> ::=
<name-with-dot> | <group>

<name-with-dot> ::=
<atomicname> . <simplename>

An alias for a second-level component has always the class and the value of this second-
level component.

<group> ::= (<pseudodotnames>)

<pseudodotnames> ::=
<pseudodotname> [, <pseudodotname>]...

<pseudodotname> ::=
<dotname> | all.<simplename>

A group alias has class struct, and its value is a structure formed of the values of the
members of the group. Components of a group alias can be referenced via the alias name

positionally.

The all construction is used in the definienses of group aliases in the following way. The
construction all.x is a short form forc1.x, ..., cn.x, where cl, ..., cnis the list of all
components of the class being defined that possess a component named x.

Alias definitions are implemented via common memory, exactly as equivalences (cf Sec
5.3). Therefore, the value of an alias is automatically kept identical to the value its defin-
iens. In synthesis, alias definitions function exactly as equivalences.

20 December 1996 The NUT Language Report

User class texts Page 20

Examples:
alias
Px = P.x;
all _states = (all.state);
states = (current_state, next_state);

5.5 init-sections

In init-sections, the user tells the initializations of the class he/she is defining.

<init-section> ;=
init <initialization>...

Initializations allow the user to provide deep components of instances of his/her class with
default (initial) values. Initializations are assignments that are performed, when an
instance of the class is created. The order of performing the initializations is the order of
their appearance in the class text. Objects are created by means of new-expressions, which
are explained in Sec 6.4.5. Assignments are explained in Sec 6.3.1.

<initialization> ::=
<dotname> <assign-symbol> <expression>;

<assign-symbol> ::=
:=|<-

Though similar to one-way equations, initializations are not used in synthesis in the same
way as relations are. But: initializations assign values to deep components of objects at
creation-time, and definedness of objects is used in synthesis. For details on the mecha-
nism of synthesis, see Sec 7.0.

Examples:
init P.x := 0;
structure := [1, 2, 3];
len <- length(’This is a text’) + 5;

5.6 Component declaration prototypes

Prototypes are used in component declarations of user class texts for giving components
more properties than they would acquire just from their classes alone. Component declara-
tions were explained in Sec 5.2.

A prototype for a component consists of the name of the component’s class and amend-
ments. Amendments state the extra properties of the component. Amendments are really a
shortcut device, the programmer can always do without them. However, class texts with
amendments is often more elegant and simpler.

<prototype-in-component-declaration> ::=
<userclass-name> <amendments>

<amendments> ::=
<amendment> [, <amendment>]...

the NUT Language Report 20 December 1996

Page 21 User class texts

There are two kinds of amendments:
« initialization amendments,

e equivalence amendments.

<amendment> ::=
<initialization-amendment> | <equivalence-amendment>

An initialization amendment enriches the component being declared with extra initializa-
tions.

<initialization-amendment> ::=
[<simplename> <assign-symbol>1] <expression>

The name to the left of the assignment symbol refers to a component of the component
being declared. The names in the expression to the right of the assignment symbol refer to
deep components of the class being defined, according to the general rule about denota-
tions of object names. The class of the value of the expression in the right-hand side must
be coercible into the class of the object in the left-hand side. The semantics of initializa-
tion amendments is exactly the same as that of initializations, see Sec 5.5.

An equivalence amendment enriches the component being declared with extra equivalence
relations.

<equivalence-amendment> ::=
[<simplename> =] <dotname>

The name to the left of = refers to a component of the component being declared. The
name to the right of = refers to a deep component of the class being defined, according to
the general rule about denotations of object names. The two objects must be of compatible
classes. The semantics of equivalence amendments is exactly the same as that of equiva-
lence relations, see Sec 5.3.

Amendments without left-hand parts are called positional amendments, in contrast to
“normal” amendments, that are called amendments by name.

If the first amendments in a list of amendments are positional, they refer to the first com-
ponents of the class. The positional amendments that follow an amendment by name refer
to the components succeeding the component of the amendment by name.

The type of a positional amendment is determined as follows. If the right-hand side of the
positional amendment is a name, then the amendment is an equivalence amendment, oth-
erwise it is an initialization amendment. Positional initialization amendments work as if
the assignment symbol were :=.

Examples:
trl: triangle sidel = 10;

1. For reasons of backward compatibility, even = is allowed as an assignment symbol in initialization
amendments, synonymously to =, if the right-hand side expression of the amendment is not a name. We

discourage this usage of = for clarity reasons.

20 December 1996 The NUT Language Report

Page 22

User class texts
= 30;
tr2.side2 + 5;

tr2: triangle sidel := 10, 20, alpha :
tr3: triangle sidel = trl.sidel, side2 :=
When an object of a user class is created, the order of performing the initializations stated
in the class text (these appear either in init-sections or in amendments of component

declaration prototypes) is the order of their appearance in the class text.

20 December 1996

the NUT Language Report

Page 23 Procedurc texts

6.0 Procedure texts
Procedures encode imperative algorithms for manipulating objects.
Procedures can be programmed or unprogrammed:

<procedure-text> ::=
<programmed-procedure-text} | {unprogrammed-procedure-text }

The text of a programmed procedure contains a specification-part (also called axiom) and
an implementation-part:

<programmed-procedure-text> ::=
<procedure-specification> { <procedure-implementation> }

The text of a unprogrammed procedure does not contain a program:

<unprogrammed-procedure-text> ::=
<procedure-specification> { spec }

(The keyword spec says: “the program has to be synthesized from the specification”.)

The specification-part of a procedure text determines the input/output interface (external
view) of the procedure: it states parameters of the procedure, defines certain order on
them, an tells their roles (input, output, weak). Specifications are explained in Sec 6.1. The
implementation-part of a procedure text determines the inner behaviour of the procedure.

An implementation can be given by a program or by a reference to a C-function:

<implementation> ::=
<program> | ¢_fun <c-function-name>

Programs are explained in Sec 6.3.

In the texts of NUT packages, procedure texts appear in two Kinds of positions: as relation
definienses in relation definitions (see Sec 5.3) and as prog object definienses in new-
expressions (programmed procedures only, see Sec 6.4.5).

Procedures can be called, see Sec 6.3.2. When a procedure is called, first programs are
synthesized for the procedure (if it is unprogrammed) and for its subtasks by the inter-
preter (more exactly, the synthesizer). Besides, programmed relations are used in synthesis
of values for objects and of programs for unprogrammed relations. Synthesis is explained

in Sec 7.0.

The main programs of NUT packages are programs that are not part of any procedure text.
They do not have parameters. Main programs are written in the NUT main window.

6.1 Specifications (axioms)

The specification of a procedure states the parameters of the procedure, defines certain
order on them, an tells their roles (input, output, weak).

20 December 1996 The NUT Language Report

Procedure texts Page 24

Specifications of procedures are used in two ways. First, specifications determine how
parameter passing should be carried out in procedure calls and subtask calls (see Sec
6.3.2, 6.3.3). Second, specifications of programmed relations are interpreted as axioms
about computability in synthesis (see Sec 7.0).

The specification of a procedure consists of the specifications of the subtasks of the proce-
dure and of a pattern of the procedure.

<procedure-specification> ::=
[<subtask-specifications>] <procedure-pattern>

<subtask-specifications> ::=
<subtask-specification> [,<subtask-specification>]...

Subtasks are a special kind of input parameters of procedures. They have always class
prog. A subtask of a procedure is specified by a subtask specification in the procedure
specification. The program for the subtask of the procedure is to be synthesized by the
interpreter (more exactly, the synthesizer), whenever the procedure is needed in synthesis
of some object value or relation program.

<subtask-specification> ::=
[[<userclass-name> |-] <subtask-pattern> 1]

The main part of the specification of a subtask is the subtask’s pattern. Optionally, also a
user class name may be indicated in the specification of a subtask. If this is so, then the
subtask is called independent. Otherwise, the subtask is dependent.

Procedure patterns have the following form:

<procedure-pattern> ::=
<dotnames>] [-- <dotnames>] -> [<dotnames>]
| -- [<dotnames>]

The names in the pattern of a procedure are parameters of the procedure.
Subtask patterns have the following form:

<subtask-pattern> ::=
<dotnames> -> <dotnames>

The names in subtask pattern are names of the parameters of the subtask.

The names to the left of -> (and --) in the pattern of a procedure or a subtask are names
of the input parameters of the procedure or subtask. The names to the right of -> are names
of output parameters.

The names to the right of --, but not to the right of -> in the pattern of a procedure are
weak parameters of the procedure. In an explicit call of a procedure, its weak parameters
function as input-output parameters.

the NUT Language Report 20 December 1996

Page 25 Procedure texts

A name can be listed at most once in each of the at most three lists of a pattern. Note that
it thus is allowed for a parameter to be an input-output parameter, weak-output parameter
etc.

Both for synthesis of a program for an unprogrammed relation and for a call of (either pro-
grammed or unprogrammed) relation, the parameters of the relation are identified with the
homonymic deep components of the object who is being asked to perform the relation.

For a call of a prog object, the parameters of its specification are formal.

For synthesis of a program for a subtask, the parameters of the subtask are identified with
the homonymic deep components of the class named in the specification of the subtask, if
the subtask is independent, and with the homonymic deep components of the object on
whom some value or relation program is to be synthesized, if the subtask is dependent. For
a call of a subtask of either kind, its parameters are formal.

Unprogrammed procedures are not allowed to have subtasks or weak parameters.

6.2 Object contexts of programs

The object context for a program consists of its parameters and its local variables. Local
variables are not declared in programs The default class for local variables is any, and the
default value for them is nil.

Recall that the parameters of an object’s relation are always identified with deep compo-
nents of the object (see Sec 6.1).

Variables local to main programs are global objects to the package.

Generally, object names appearing in a program are interpreted in the object context of the
program. The rules for naming objects in a given object context were explained in Sec 4.4.

There are three exceptions from this general rule:

 names in the left-hand sides of amendments in the prototype of a new-expression refer
to components of the object being created;

« the denotation of the receiver in a relation call is determined by a special rule outlined
in Sec 6.3.2;

« the denotation of the called prog object in a prog object call is determined by a spe-
cial rule outlined in Sec 6.3.

6.3 Programs

Programs encode imperative instructions for manipulating objects.

<program>1 =

<statement>

1. A program that is just an empty statement is considered illegal.

20 December 1996 The NUT Language Report

Procedure texts Page 26

<statement> ::=
<assignment>
| <function-call>
| <procedure-call>
| <subtask-call>
| <compute-call>
| <produce-call>
| <sequence>
| <empty-statement>
| <if-statement>
| <for-statement>
| <do-statement>
| <exit-statement>

Function calls are explained in Sec 6.4.3. Other kinds of statements are explained below.

6.3.1 Assignments
Assignments are used for changing values of objects.

<assignment> ::=
<dotindexname> <assign-symbol> <expression>

<assign-symbol> ::=
=] <-

Expressions are explained in Sec 6.4.

An assignment is performed as follows. The right-hand side expression is evaluated and
the result is assigned to the object named in the left-hand side.

How assignment is carried out technically, depends on the assignment symbol. If it is ==,
then the assignment is done by copying of a value. If it is <-, the assignment is done by
copying a reference (pointer) to a value. The latter kind of assignment is faster and saves
memory, when dealing with large structures.

Generally, the value of the right-hand side expression must be coercible into a value of the
class of the object named in the left-hand side. But: if the object named in the left-hand
side had class any prior to assignment, its class is concretized into that of the assigned
value.

Examples:
P2.x := 1 * cos(alpha) + Pl.x
table[length(table) + 1] <- a.state
string := ‘this is a text’
tri <- (new triangle alpha := 0.7)

6.3.2 Procedure calls

Procedure calling is one of the main tools of manipulating objects in the NUT system.

the NUT Language Report 20 December 1996

Page 27 Procedure texts

Two kinds of entities do have procedural values: relations and prog objects. Accordingly,
there are two kinds of procedure calls:

e relation calls,
e prog object calls.

<procedure-call> ::=
<relation-call> | <prog-object-call>

Relation calling corresponds to message sending in OO languages.

In a relation call, some object, titled the receiver of the call, is prompted to perform one of
its relations whereby the actual parameters of the call give values to and receive values
from the parameters of the called relation. Recall that, in a relation call, the parameters of
the called relation are identified with the homonymic deep components of the receiver, i.e.
the relation is performed directly on the receiver (Sec 6.2).

<relation-call> ::=
[<receiver-name>.] <relation-name> (<expressions-and-holes>)

<receiver-name> .=
<simplename> | <userclass-name>

The receiver name in a relation call determines the receiver. If the receiver name is a sim-
ple name, then it refers to the first existent among the following alternatives:
« to a first-level object wrt the program where the call appears,

« to a component of the SELF-object, i.e. of the object who is performing the program
where the given relation call appears,

» or to a global object,

If the receiver name is a user class name, a temporary object of the mentioned class is cre-
ated which performs the named relation, and is deleted immediately thereupon. If no
receiver name is given in the call expression, the named relation is performed by the
SELF-object, i.e. by the object who is performing the program where the given relation
call appears.

In a prog object call, a prog object is prompted to perform itself whereby the actual
parameters of the call give values to and receive values from the parameters of the called
prog object.

<prog-object-call> ::=
<simplename>(<expressions-and-holes>)

The simple name in a prog object call determines the prog object that has to perform
itself. It refers to the first existent among the following alternatives:
e to a first-level object wrt the program where the call appears,

« to a component of the SELF-object, i.e. of the object who is performing the program
where the given prog object call appears,

e or to a global object,

20 December 1996 The NUT Language Report

Procedure texts Page 28

Lists of expressions and holes as well as expressions are explained in Sec 6.4. The expres-
sions listed in the parentheses in a procedure call represent the actual parameters of the
call. The correspondence between actual parameters of the call and the parameters of the
called procedure is established by the following rule. Let n be the number of subtasks of
the called procedure. Then, the i-th subtask of the called procedure corresponds to the i-th
element in the list of actual parameters of the call. Further, the i-th parameterl in the pat-
tern of the called procedure corresponds to the (n+i)-th element in the list of actual param-
eters of the call.

One does not need to use the mechanism of holes for omitting the actual parameters that
are the last in the list. Instead, it is allowed just to leave the list of actual parameters

shorter.

A procedure call is performed as follows. First, programs are synthesized for the called
procedure (if it is unprogrammed) and its subtasks. Failure to synthesize results in a run-
time error. Then, the given actual input and weak parameters of the call are evaluated, and
their non-nil values are copied into the corresponding parameters of the called proce-
dure?. Thereafter, the receiver performs the called relation, or the called prog object per-
forms itself. Finally, the values of the weak and output parameters of the called procedure
are copied into the corresponding given actual parameters of the call. If some actual
parameter is not given in the call expression, then no copying is done into or from the cor-
responding parameter of the called procedure.

Note that, for relation calls, the state of the receiver always provides the default input val-
ues for computation. If some actual input parameters are not given in a relation call, no
copying is done into the corresponding deep components of the receiver. Thus, the values
they happen to possess at the moment of the relation call, serve as the input values for the
computation.

The classes of the actual parameters of a relation call must be compatible with those of the
corresponding deep components of the receiver. The actual output parameters of a proce-
dure call have to be dot-index-names, since values are copied into them.

The return value of a procedure call is formed from the final values of the weak and output
parameters of the called procedure. If the called procedure has only one weak parameter
that did not obtain an initial value from an actual parameter of the call, or it has only one
output parameter, then the call returns the final value of this weak or output parameter. If
the called procedure has several such parameters, then the call returns a struct object
formed of the final values of these parameters in their order of appearance in the pattern3
of the called procedure.

Examples:
a.put(b.x + 3, , length(b.x))
c.get()

1. Exception: the occurrences of input-output parameters among the outputs in the pattern are excluded
from the count.

2. The actual input parameters corresponding to subtasks are neither evaluated nor copied. They are simply
ignored.

3. Exception: if a parameter is an input-output parameter, then, instead of its position among the output
parameters in the pattern, its position among the input parameters of the pattern is taken into account.

the NUT Language Report 20 December 1996

C

Page 29 Procedure texts

Besides being used as statements, procedure calls can also be used as expressions, because
they do return values, see Sec 6.4.

6.3.3 Subtask calls

Subtask calls may only appear in the programs of procedures (i.e. not in main programs).
A subtask call in such a surrounding forces one of the subtasks of the procedure to be per-
formed whereby the actual parameters of the call give values to and receive values from
the parameters of the called subtask.

<subtask-call> ::=
subtask <unsigned-integer>(<expressions-and-holes>)

The unsigned integer following the keyword subtask in a subtask call refers to the sub-
task to be performed (it is an ordinal number of a subtask specification in the specification
of the procedure in whose program the given subtask call appears).

Lists of expressions and holes as well as expressions are explained in Sec 6.4. The expres-
sions listed in the parentheses are actual parameters to the called subtask. The correspond-
ence between the actual parameters of the call and the parameters in the pattern of the
subtask is established by the following rule. The i-th parameter in the pattern of the called
subtask! corresponds to the i-th element in the list of actual parameters of the call.

One does not need to use the mechanism of holes for omitting the actual parameters that
are the last in the list. Instead, it is allowed just to leave the list of actual parameters
shorter.

A subtask call is performed as follows. First, the given actual input parameters of the call
are evaluated, and their non-nil values are copied into the corresponding parameters of
the called subtask. Then, the synthetic implementation of the called subtask is performed.
Finally, the values of the output parameters of the called subtask are copied into the corre-
sponding given actual parameters of the call. If some actual parameter is not given in the
call expression, then no copying is done into or from the corresponding parameter of the
called subtask.

The classes of the actual parameters of a subtask call must be compatible with those of the
corresponding parameters of the called subtask (if the subtask is independent). The actual
output parameters have to be dot-index-names, since values are copied into them.

Subtask calls are similar to procedure calls. The important difference, however, is that they
do not return values, i.e. they are not expressions.

Example:
subtask 2(in, out)

1. Exception: the occurrences of input-output parameters among the output parameters in the pattern are
excluded from the count.

20 December 1996 The NUT Language Report

@

Procedure texts Page 30

6.3.4 compute-call

A compute-call prompts synthesis of fully defined values for given deep components of a
given first-level object of the object context. (A value is fully defined if it contains no

nil’s.)

<compute-call> ::=
<simplename>.compute([<dotnames>])

The name to the left of the dot is the name of the object whose deep components have to
be computed. The deep components themselves are referenced by the dot-names listed in
the parentheses. In case if the list of dot-names is omitted, then all proper components of
the object have to be computed.

compute behaves like a predefined relation common to all user classes, since the syntax
of compute-call is similar to that of a relation call. There is, nevertheless, one characteris-
tics that distinguishes compute from relation calls: the actual input parameters of the call
are not evaluated at parameter passing time (they are used as names).

compute returns a bool type value which indicates whether the synthesis succeeded or
not.

In case if the list of dot-names is omitted (all proper components of the object have to be
computed), false is returned, if no components can be computed; if at least one compo-
nent can be computed, true is returned.

In case if the list of dot-names is not omitted, true is returned, if fully defined values can
be computed for all asked deep components; otherwise, false is returned.

Example:
tri.compute(alpha, b)

6.3.5 produce-call

A produce-call prompts that a given applicable first-level object of the object context
performs the first of its relations which it can perform and which could possibly help it in
producing fully-defined values for its given deep components.

<produce-call> ::=
<simplename>.produce([<dotnames>])

The name to the left of the dot is the name of the object whose deep components serve as
computation goals when a performable relation is looked for. The deep components them-
selves are referenced by the dot-names listed in the parentheses. In case if the list of dot-
names is omitted, then all proper components of the object serve as computation goals
when an a performable relation is looked for.

produce behaves like a predefined relation common to all user classes, since the syntax
of produce-call is similar to that of a relation call. There is, nevertheless, one characteris-
tics that distinguishes compute from relation calls: the actual input parameters of the call
are not evaluated at parameter passing time (they are used as names).

the NUT Language Report 20 December 1996

Page 31 Procedure texts

compute returns a bool type value which indicates whether any performable relation was
found. true is returned, if such relation was found (in this case an one-step algorithm is
built and executed), otherwise, false is returned.

6.3.6 Sequences and the empty statement

A sequence is formed of two statements that have to be performed the first prior to the sec-
ond.

<sequence> =
<statement>; <statement>

Example:
X :=y + 2; b := new array x of num

An empty statement is also possible.

<empty-statement> =

6.3.7 if-statements
i£-statements encode choices between guarded alternatives.

<if-statement> ::=
[<label>:] if <alternatives> £i

<alternatives> ::=
<alternative> [| | <alternative>]...

<alternative> ::=
<expression> -> <statement>

<label> ::=
<identifier>

Expressions are explained in Sec 6.4. The expression to the left of -> in an alternative is
called the guard, and must evaluate to a boolean value. The statement to the right of -> in
an alternative is called the body of the alternative. An i£-statement is performed as fol-
lows. The guards of the alternatives are evaluated consecutively until a true guard is found,
whereupon the body of the selected alternative is performed. If all guards evaluate to
false, nothing happens.

if-statements, as well as foxr- and do-statements (see next sections), can be labelled by
identifiers.

Example:
if
x[i] > max -> max := x[il]
|| %#[i] < min -=> min := x[i]
£i

20 December 1996 The NUT Language Report

Procedure texts Page 32

6.3.8 for-statements

for-statements encode loops whose iteration is controlled by a numeric control variable.

<for-statement> ::=
[<label>:] £or <simplename> [:= <expression>] [step <expression>]
to <expression> do <statement> od

Expressions are explained in Sec 6.4. The control variable of a £oxr-statement must have
class num. The three expressions in a for-statement must evaluate to numbers. They give
the initial value, the step, and the bound for the value of the control variable. If the initial
value expression is omitted, the initial value is 1. If the step expression is omitted, the step
is 1.

Example:
for i to n do
tab.x[i] =1 + 1
od

6.3.9 do-statements

do-statements encode loops whose iteration is controlled by guards of alternatives.

<do-statement> ;=
[<label>:] do <alternatives> od

At every round of iteration, the guards of the alternatives are evaluated consecutively until
an alternative with true guard is found, whereupon the body of the this alternative is per-
formed. The execution of the loop terminates when no alternative can be selected (i.e. all
guards evaluate to £alse).

Example:
L: do
c_button(0) ->
NutPrint (/The left button is pressed’)
|| e_button(1l) ->
exit L
|| true ->
NutPrint (/Nothing happens’)
od

6.3.10 exit-statements

An exit-statement forces exiting from an enclosing i£-, for-, or do-statement, or the
whole program.

<exit-statement> =
exit [<label>]

If a label is indicated in an exit-statement, then a statement with the given label is exited.
Otherwise, the enclosing program is exited.

the NUT Language Report 20 December 1996

Page 33 Procedure texts

Examples:
exit bst
exit

6.4 Expressions

Expressions are constructions of the language that encode values, used in programs (see
Sec 6.3) and initializations and initialization amendments (see Sec 5.5, 5.6, 6.4.5). Evalua-
tion of an expression may have side-effects (e.g. change the values of some objects or the

like).

<expression> ::=
<constant>
| <dotindexname>
| <operator-expression>
| <function-call>
| <compute-call>
| <produce-call>
| <procedure-call>
| <structure-expression>
| <new-expression>
| (<expression>)

Procedure calls were explained in Sec 6.3.2. Other kinds of expressions are explained
below.

In equations (see Sec 5.3), expressions of a restricted form, called ‘expressions in equa-
tions’ were used. The syntactic definition of <expression-in-equation> can be obtained
from that of <expression>, by replacing all occurrences of <dotindexname> in the syntac-
tic definition of <expression> with <dotname>.

Examples:
a*» (b *x) + (-¢c) ~ 2
-sqrt(a) - (In(b) / 2 - ¢)
(a /= nil) & (b >=2 | ¢)
~method (a)
delete(a, pos(’This is a text’, ’text’), length(’text’))

The useful syntactic notions of list of expressions and of list of expressions and holes
(throughout this report, the word ‘hole’ is used as a technical term meaning ‘omitted
item’) are defined as follows:

<expressions> ::=
[<expression> [, <expression>]...]

<expressions-and-holes> ::=
[<expression>] [, [<expression>]]...

20 December 1996 The NUT Language Report

Procedure texts Page 34

6.4.1 Constants
Constants evaluate to fixed primitive values.

<constant> ::=
<number> | <string> | true | false | nil

Numbers have class num, strings have class text, true and £alse have class bool.

nil is a constant in every class and represents an undefined value.

6.4.2 Operator expressions

Operators are predefined functions with simplified call syntax. As any functions, they
transform input values of certain classes into output values of certain classes. Operator
expressions are calls of operators.

<operator-expression> ::=
<unary-operator> <expression>
| <expression> <binary-operator> <expression>

<unary-operator> ::=

- |~

<binary-operator> ::=
O B B A B
| & | |

&
|==|/=
| > | <

| >= | <=
The value of an operator expression is the result of applying the operator to the values of
the operand expressions.

The operators have the following semantics (and type schemes):

- negation (num -> num)

+, - addition, subtraction (num num -> num)

* / multiplication, division (num, num -> num)
power (num, num -> num)

~ negation (bool -> bool)

&, | conjunction, disjunction (bool, bool -> bool)

==, /= identical, not identical (x, x ->bool)

<, >, <=, => It, gt, le, ge (num, num -> bool)

The operators == and /= are polymorphic, they can be used for comparing any two values
that are of compatible classes.

The priorities of the operators are the following (starting from the highest):

-y ~
*, /, &
+r —s |

the NUT Language Report 20 December 1996

Page 35 Procedure texts

==, /=

<, >, <=, =>

Examples:
(a >= 3) == true
2 410 - n * 3

6.4.3 Function calls

Functions transform input values of certain classes into output values of certain classes.

<function-call> ::=
<function-name> (<expressions>)

The expressions listed in the parentheses in a function call denote the arguments of the
function call. The value of a function call is the result of applying the function to the val-
ues of the given arguments.

The NUT language has a number of predefined functions. These are organized into librar-
ies. There is one statically loaded (or, built-in) library and a collection of dynamically
loadable libraries. The built-in functions are called standard functions.

<function-name> ::=
<std-function-name> | <dll-function-name>

The names of the standard functions are listed in Sec 3.3. The descriptions of functions
appear in a separate document The NUT Libraries’.

Examples:
NutPrint (‘Hello world!’)
gr text(f, (new Point x := 20, y := 30), ’Cheers!’, 1)
asin(x + 0.1)

Besides being used as expressions, function calls can also be used as statements, when
their return values are not needed, see Sec 6.3.

6.4.4 Structure expressions
Structure expressions are used for forming struct values.

<structure-expression> ::=
[<expressions-and-holes>]

A structure expression evaluates to a struct object formed of the values of its listed
expressions. A hole in a structure expression is just a shortcut for constant nil.Example:
[3, 4, 5, ’Hello’, (new square a:=8), , [2, true]]

1. Available by anonymous ftp from it.kth.se, file labs/se/Software/NUT/doc/libraries.ps.Z.

20 December 1996 The NUT Language Report

Procedure texts Page 36

6.4.5 new-expressions

new-expressions are used for dynamic instantiation of objects from classes or prototypes.

<new-expression> ::=
new <class-name>
| new <userclass-name> <prototype-in-new-expression>
| new prog <programmed-procedure-text>

When a new-expression is evaluated, a new object is created from a given class or proto-
type (i.e. memory is allocated for the object, and initializations are performed). The value
of the expression is the object that was created. This object does not have an identity. To
become able to refer to it, the new-expression must be assigned to an object with name
(typically to an object that previously had class any and value nil).

The purpose and usage of prototypes in new-expressions is the similar to their purpose and
usage in component declarations in user class texts, see Sec 5.6. There is just one differ-
O ences: only initialization amendments are allowed in the prototypes of new-expressions.
<prototype-in-new-expression> ::=
<userclass-name> <initialization-amendments>

<initialization-amendments> ::=
<initialization-amendment> [, <initialization-amendment>]...

<initialization-amendment> ::=
[<simplename> <assign-symbol>] <expression>

The names in the left-hand sides of the initialization amendments of a new-expression
refers to components of the object being created. The names in the right-hand sides refer
to objects of the current object context, according to the general rule about denotations of
object names.

When an object is created from a prototype using new, the initializations originating from
the text of the user class named in the prototype are performed prior to the initializations
O in the amendments of the prototype.

When creating a prog object using new, a procedural value must be assigned to it in the
prototype by presenting a programmed procedure text in the new-expression. Procedure
texts are explained in Sec 6.

Examples:
new triangle a := 5, beta := 0.8, 0.6
new array 100 of text
new prog x, ¥ -> z {z := sqrt(x*2 + y*2)}

the NUT Language Report 20 December 1996

Page 37 Synthesis

7.0 Synthesis

In NUT, synthesis occurs in two kinds of situations:

« synthesis of fully defined values for deep components of an object of the object context
can be prompted by a compute-statement (explained in Sec 6.3.4);

e synthesis of programs for a relation of an object (if its unprogrammed) and for its sub-
tasks is prompted, when the object is asked to perform the relation (relation calls are
explained in Sec 6.3.2);

In synthesis of a value for a deep component of an object or of a program for an unpro-
grammed relation of an object, the following knowledge can be used:

o the states (values) of the fully defined deep components of the object;

« the programmed relations of the object and of its deep components; in synthesis of pro-
grams for independent subtasks of relations, also the programmed relations of the
classes indicated in subtask specifications.

The difficult stage of synthesis is planning of solution, carried out by the planner. The
planner composes the structure of the program that computes the asked value or imple-
ments the asked relation.

The planner interprets specifications of programmed relations as axioms about computa-
bility. (Computability of an object means that a fully defined value can be computed for
the object; computability of a relation or subtask means that a program can be synthesized
for the relation or subtask.)

Recall that a relation whose definiens contains names #curr and #next abbreviates a
collection of relations. Their definienses are derived from that of the given relation by sub-
stituting #curr, #next with #i, #(i+1), respectively, where 0< i <length of the row.
Planning is based on a formal calculus with the following rules:

« if a deep component of an object has a fully defined value (i.e. a value containing no
nil’s), then this deep component is computable on the object:

o has deep component d o.d has a fully defined value

d computable on o

« if an object has a programmed relation whose all input parameters (incl. subtasks) and
all weak parameters, with exception for at most one weak parameter, are computable on
the object, then the remaining weak parameter and all output parameters of the relation
are also computable on the object:

o has prog’d rel’n r with spec. ins -- weaks, w => outs ins, weaks computable on o

w, outs computable on o

e if two deep components of an object are equivalent, and one of them is computable on
the object, then the other is also computable on the object;

20 December 1996 The NUT Language Report

Synthesis Page 38

dl, d2 are equivalent deep components of o d/ computable on o

d2 computable on o

if two deep component of an object are equivalent, then their corresponding compo-
nents are also equivalent:

dl1, d2 are equivalent deep components of o

d1[i], d2[i] are equivalent deep components of o

e if the constituents of an alias of an object are computable on the object, then the alias is
also computable on the object; and, vice versa, if an alias of an object is computable on
the object, then its constituents are also computable on the object:

o has alias a with constituents d1, ..., dn dl, ..., dn computable on o

a computable on o

o has alias a with constituents 41, ..., dn a computable on o

dl, ..., dn computable on o

e if all proper components of a component of an object are computable on the compo-
nent, then the component is computable on the object (note that computability of the
virtual components and of the row of the component is not required to draw this con-
clusion); and, if a component is computable an object, then all components of the com-
ponent are computable on the component:

o has component ¢ ¢’s proper components are cl, ..., cn cl, ..., cn computable on o.c

¢ computable on o

o has component ¢ ¢’s components are cl, ..., cn ¢ computable on o

cl, ..., cn computable on o.c

o if a deep component of a component of an object is computable on the component, then
it is also computable on the object:

o has component ¢ o.c has deep componentd d computable on o.c

c¢.d computable on o

e if computability of the output parameters of a dependent subtask of a relation of an
object can be proved on the object under the hypothesis that the input parameters of the
subtask are computable on the object, then the subtask is computable on the object:

[ins computable on 0]

o has rel’n r with dep. subt. s with spec. ins -> outs outs computable on o

s computable on o

the NUT Language Report 20 December 1996

Page 39 Synthesis

« if computability of the output parameters of an independent subtask of a relation of an
object can be proved on a fresh object! of the class mentioned in the specification of the
subclass under the hypothesis that the input parameters of the subtask are computable
on the same fresh object, then the subtask is computable on the given object:

[ins computable on 0]

o has rel’n r with indep. subtask s with spec. outs computable on o’
cl | - ins -> outs (o’ is a fresh object of class cl)

s computable on o

« if computability of the output parameters of an unprogammed relation of an object can
be proved on the object under the hypothesis that the input parameters of the relation
are computable on the object, then the relation is computable:

[ins computable on o]

o0 has unprogrammed relation r with spec. ins -> outs outs computable on o

r computable on o

1. By a fresh object, we mean a new temporary object

20 December 1996 The NUT Language Report

fage quv

8.0 Standard functions

The predefined functions of the NUT language fall into two categories: standard functions
and C-functions. The main difference between these two kinds of functions is that there
are restrictions on using standard function names as component names etc. (see Sec 3.3),
whereas the names of C-functions are not reserved. Also, differently from standard func-
tions, C-functions form a library in the source code of NUT. New C-functions can be
added to NUT by the user by modifying the source code. C-functions are described in a

separate document, The NUT Libraries'. How functions are called is explained in Sec
6.1.3.

8.1 Arithmetic, algebra

The following is a brief description of arithmetical/algebraic functions.

sin sine (argument value in radians) (num -> num)
cos cosine (argument value in radians) (num -> num)
tan tangent (argument value in radians) (num -> num)
_ asin arcsine (return value in radians) (num -> num)
acos arccosine (return value in radians) (num -> num)
atan arctangent (return value in radians) (pum -> num)
sqrt square root (num -> num)
1n logarithm base e (num -> num)
exp exponent base e (num -> num)
abs absolute value (num -> num)
int rounding to integer (pum -> num)
mod remainder in integer division (npum, num -> num)

A call of an algebraic function causes a run-time error, if the function is undefined for the
given argument. A call of mod causcs a run-time error, if the arguments are not integers.

8.2 String manipulation

pos
find where/whether one string occurs as a substring in another
Synopsis
pos(strl, str2) : num
strl, str2 : text
Inputs
strl the string where to search
str2 the candidate substring

1. Available by anonymous fIp from it .kth. se, file Software/CSlab/Software-Engineering /NUT/
doc/libraries.ps.2.

13 June 1994 2:13 pm The NUT Language Report

Page 41 Standard functions

Returns

the start position in strl of the first occurrence of str2 in stri, if str2 occurs
Instrl;
0, if str2 occurs nowhere in strl

Errors

A run-time error arises, if strl or str2 isnil.

copy
extract a substring from a string
Synopsis

copy(str, pos, len) : text
str : text
pos, len : num

Inputs

str the string from where to extract

pos the start position for extraction

len the number of symbols to be extracted
Returns

the result of extracting from str len symbols (or as many symbols as there
remain until the end) starting at position pos

Error situations

A run-time error arises, if strisnil, if pos is not a position in str, and if 1en is
not a positive integer.

delete
delete a substring from a string
Synopsis

pos(str, pos, len) : num
str : text
pos, len : num

Inputs

str the string from where to delete

pos the start position for deletion

len the number of symbols to be deleted
Returns

the result of deleting from str len symbols (or as many symbols there remain
until the end), beginning at position pos

Error situations

A run-time error arises, if strisnil, if pos is not a position in str, and if 1en is
not a positive integer.

Standard functions Page 42

insert
insert a string into another string
Synopsis

ingert(strl, str2, pos) : num
strl, str2 : text
pos : num

Inputs
strl the string where to insert
str2 the string to be inserted
pos the position where to insert
Returns

the result of inserting string str2 into strl at position pos
Error situations

A run-time error arises, if strl or str2 is nil, and if pos is not a position in
strl.

8.3 Interaction with the Graphics window

This set of functions assumes the following user classes to be present in the package:

Class Frame:

var
x, vy, dx, dy : num;
penSize : Point;
penShape, fillPatt, color, mode : num;
font, fontSize, fontAttr : num;
orgX, orgY, factorX, factorY : num;
selectable, locked, protected, react : num;
init ¢/’
penSize.x := 1; penSize := 0;
penShape := 0;
fillrpatt := 0; 77
color := 0;
mode := 3;
font := 8;
fontSize := 1; fontattr := 1;
orgX := 0; orgY := 0;
factorX := 1; factory := 1;
gselectable: = 0; npjacfed::=cg /
rLec&CT2=C); .
Class Point: locked : =0,
var
X, Yy : num;
Class Line:
var

pl, p2 : Point;

13 June 1994 2:13 pm The NU'{ Language Report

Page 43 Standard functions

Class rRect:

var
x, ¥, 8x, dy : num;

get_ID
get the ident of a picture element, given its ordinal number in the picture
Synopsis
get_ID(ordno) : num
ordno : num
Inputs
ordno the ordinal number of the element whose ident is asked

Action
Displays an error message window, if ord is not a valid ordinal number for the
picture (enumeration of picture elements in pictures is started from 1)

Returns

the ident of the ordno-th element in the picture (the normal case);
0, if ord is not a valid ordinal number for the picture

get_line
get the geometry of a line in the picture (in the form of a Line object)
Synopsis
get_line(id) : struct
id : num
Inputs
id the ident of the line whose geometry is asked

Action
Displays an error message window, if there is no picture element with ident id, or
the picture element with ident id is not a line

Returns

a Line object, representing the geometry of the line with ident id (the normal
case);

nil, if there is no picture element with ident id, or the picture element with ident
idis not aline

get_poly

not implemented

get_rect
get the geometry of a rectangle in the picture (in the form of a Rect object)

13 june 1994 2:13 pm The NUT Language Report

Standard functions Page 44

Synopsis
get_rect(id) : struct
id : num
Inputs
id the ident of the rectangle whose geometry is asked

Action
Displays an error message window, if there is no picture element with ident id, or
the picture element with ident id is not a rectangle.

Returns
a Rect object, representing the geometry of the rectangle with ident id (the nor-

mal case);
nil, if there is no picture element with ident id, or the picture element with ident

id is not a rectangle

get_oval
get the geometry of an oval in the picture (in the form of a Rect object)

Synopsis
get_oval(id) : struct
id : num
Inputs
id the ident of the oval whose geometry is asked

Action
Displays an error message window, if there is no picture element with ident id, or
the picture element with ident id is not an oval.

Returns
a Rect object, representing the geometry of the oval with ident id (the normal

case);
nil, if there is no picture elecment with ident id, or the picture element with ident

id is not an oval

get_text
get the text of a textual element in the picture (in the form of a string)

Synopsis
get_text(id) : text
id : num
Inputs
id the ident of the textual element whose text is asked

Action

Displays an error message window, if there is no picture element with ident id, or
the picture element with ident id is not a textual element.

13 June 1994 2:13 pm “The NUT Language Report

Standard functions

Page 45
Returns
the text of the textual element with ident id (the normal case);
nil, if there is no picture element with ident id, or the picture element with ident
id is not a textual element
get_group
from among a group of picture elements, get the element with a certain ordinal
number
Synopsis
get_group(id, ordno) : num
id : num
ordno : num
Inputs
id the ident of the group
ordno the ordinal number in the group of the desired element
Action
Displays an error message window, if there is no picture element with ident id, the
picture element with ident id is not a group, or ordno is not a valid ordinal
number for the group with ident id (enumeration of elements in groups is started
from 1).
Returns
the ident of the ordno-th element in the group with ident id (the normal case);
0, if there is no picture element with ident id, the picture element with ident id is
not a group, or ordno is not a valid ordinal number for the group with ident id
get_type
get the type of a picture element
Synopsis
get_type(id) : text
id : num
Inputs
id the 1dent of the picture element under investigation
Action
Displays an error message window, if there is no picture element with ident id.
Returns
the type of the picture element as string (the possible values are: ‘1line’, ‘poly’,
‘rect’, ‘oval’, ‘text’, ‘group’) (the normal case);
nil, if there is no picture element with ident id
get_frame

get the attributes of a picture element (in the form of a Frame object)

13 June 1994 2:12 pmn The WUT Language Repont

Standard functions Page 46

Synopsis
get_frame (id) : struct
id : num
Inputs
id the ident of the picture element to be read from

Action
Displays an error message window, if there is no picture element with ident id.

Returns
a Frame object representing the attributes of the picture element with ident id (the

normal case);
nil, if there is no picture element with ident id

get_name

get the name of a picture clement

Synopsis
get_name(id) : text
id : num
Inputs
id the ident of the picture element whose name is asked

Action
Displays an error message window, if there is no picture element with ident id.

Returns

the name of the picture element with ident id (the normal case);
nil, if there is no picture element with ident id, or the picture element with ident

id does not have a name

O

get_status
find out whether a picture element is linked to some object or not

Synopsis
get_gtztus{id) : num
id : num
Inputs
id the ident of the picture element under investigation

Action
Displays an error message window, if there is no picture element with ident id.

Returns

1, if the picture element with ident 14 is linked to an object;
0, if the picture element with ident id is not linked to an object, or if there is no

picture element with ident id

13 June 1994 2:13 pm The NUT Language Repont

Page 47 Standard functions

gr_line
given the attributes and geometry for a line, draw it (and, optionally, link it to the
line object)

Synopsis

gr_line(frame, line, status) : num.
frame : Frame
line : Line
status: num

Inputs
frame specifies the attributes of the line to be drawn
line specifies the geometry of the line to be drawn
[must be given as a name, not expression}
status specifies whether to link the object 1ine to the line to be drawn
or not
Action

Draws a linc with attributes specified in object £rame and geometry specified in
object 1ine, creates an ident for the drawn line. If status is non-0, links the line to
the object 1ine.

Returns
the ident of the drawn line

gr_poly
given the attributes and geometry for a polyline, draw it (and, optionally, link it to
the polyline object)

Synopsis

gr_poly(frame, poly, status): num
frame : Frame

poly : array of Point

status: num

Inputs
frame specifies the attributes of the polyline to be drawn
poly specifies the geometry of the polyline to be drawn
[must be given as a name, not expression]
status specifies whether to link the object poly to the polyline
to be drawn or not
Action

Draws a polyline with attributes specified in object frame and geometry specified
in object poly, creates an ident for the drawn polyline. If status is non-0, links the
polyline to the object poly.

Returns
the ident of the drawn polyline

13 June 1994 2:13 pm The NUT Language Report

Standard functions Page 48

gr_rect

given the attributes and geometry for a rectangle, draw it (and, optionally, link it to
the rectangle object)

Synopsis

gr_rect (frame, rect, status): num
frame : Frame

rect : Rect

status: num

Inputs
frame specifies the attributes of the rectangle to be drawn
rect specifies the geometry of the rectangle to be drawn
[must be given as a name, not expression]
status specifies whether to link the object rect to the rectangle

to be drawn or not

Action

Draws a rectangle with attributes specified in object £rame and geometry specified
in object rect, creates an ident for the drawn rectangle. If status is non-0), links the
rectangle to the object rect.

Returns
the ident of the rectangle drawn

gr_oval
given the attributcs and geometry for an oval, draw it (and, optionally, link it to the
rectangle object)
Synopsis

gr_oval (frame, rect, status): num
frame : Frame

rect : Rect
0 status: num
Inputs .
frame specifies the attributes of the oval to be drawn
oval specifies the geometry of the oval to be drawn
[must be given as a name, not expression]
status specifies whether to link the object rect to the oval to be drawn
or not
Action

Draws a oval with attributes specified in object £rame and geometry specified in
object rect, creates an ident for the drawn oval. If status is non-0, links the oval to
the object rect.

Returns
the ident of the drawn oval

13 June 1994 2:13 pm The NUT Language Report

Page 49 Standard functions

gr_text

given the attributes, upper-left point, and text (string or number) for a textual pic-
ture element, draw it (and, optionally, link it to the textual object)
Synopsns+€,¥ +
gr_peoed+y(frame, point, str, status): num
frame : Frame
point : Point
str : text or num
status: num

Inputs
frame specifies the attributes of the textual element to be drawn
point specifies the upper left corner of the textual element
str specifies the text of the textual object to be drawn
[must be given as a name, not expression]
status specifies whether to link the object str to the textual element
to be drawn or not, and whether the textual element shall be
single-line or multi-line
Action

Draws a textual element with attributes specified in object £rame, with upper-left
point point, and text str (if str is a number, then it is converted into a string);
creates an ident for the drawn textual element. If status is 0, the textual element
is multi-line and linked to the object str; if 1, it is multi-line and not linked; if 2, it
1s single-line and linked to str; if 3, it is single-line and not linked.

Returns

the ident of the drawn textual element

gr_group
group a set of picture clements
Synopsis
gr_group(ids) : num

ids : array of num
Inputs

ids the array of the identis of the picture elements to be grouped
Action

Groups the picture elements with idents from the array ids, deletes the mentioned
idents from the tablec of idents, and invents an ident for the group. Displays an error
message window, if some of the elements of the array ids identifies no element of
the picture.

Returns

the ident of the created group (the normal case);
0, if some of the clements of the array ids identifies no element of the picture

i3 June 1994 2:13 pm The NUT Language Report

Standard functions Page 50

put_frame
change the attributes of a picture element
Synopsis

put_frame (frame, id) : num
frame : Frame

id : pum
Inputs
frame specifies the new values of the attributes of the picture
element to be modified
id the picture element to be modified
Action

Modifies the picture element with ident id, according to the attribute values given
in £frame. If frame is nil, the default frame is used.

D Returns

0

put_name
assign a name to a picture element
Synopsis
put_name (name, id) : num
elname : text
id : num
Inputs

elname the name to be assigned to a picture element
id the ident of the picture element to be assigned a name

Action
Assigns name elname to the picture element with ident id. Displays an error mes-
sage window, if there is no picture element with ident id.

Returns

0

del_elem
delete a picture element
Synopsis
del_elem(id) : num
id : num
Inputs
id the ident of the picture element to be deleted

Action
Deletes the picture element with ident id. Displays an error message window, if
there is no picture element with ident id.

13 June 1994 2:13 pm The NUT Language Report

Page 51

Standard func!.io_ns

Returns

0

del_pict
clear the picture (delete all picture elements)
Synopsis
del _pict() : num
Inputs
none
Action
Clears the picture.

Returns

0

reshow
reshow a picture element
Synopsis

reshow(id) : num
id : num

Inputs

id the ident of the picture element to be reshown
Action

Reshows the picture element with ident id.

Returns

0

reshow_all

reshow the whole picture
Synopsis

reshow_all() : num
Inputs

none
Action

Reshows the whole picture.

Returns

0

13 June 1994 2:13 pm

The NUT Language Report

O

Standard functions

Page 52

add_elem

not implemented

add_pict

add a picture from a file to the picture in the Graphics window at a specified posi-
tion, return the geometry of the added picture

Synopsis

add _pict(filename, point) : struct Or num
filename : text
point : Point

Inputs
filename the name of the file from where a picture is to be read
point the upper left point for placing the picture

Action

Reads a picture from a file named filename (default extension .pic), and adds it
to the picture in the Graphics window, placing its upper left corner at point point.
If point is nil, then the picture is placed exactly as given in the file. Displays an
error message window, if there is no file named filename, or the file named
filename isin a wrong format.

Returns
a Rect object, representing the gcometry of the added picture (the area occupied

by the added picture) (the normal case);
0, if there is no file named £ilename, or the file named filename is in a wrong

format

link_pict

add a picture from a file to the picture in the Graphics window at a specified posi-
tion, return the idents of the clements of the added picture

Synopsis
link_pict(filename, point) : array of num Or num

filename : text
point : Point

Inputs
filename the name of the file from where a picture is to be read
point the upper left point for placing the picture

Action

Reads a picture from a file named £ilename (default extension .pic), and adds it
to the picture in the Graphics window, placing its upper left corner at point point.
If point is nil, then the picture is placed exactly as given in the file. Displays an
error message window, if there is no file named filename, or the file named
filename isin a wrong format.

13 June 1994 2:13 pm The NUT Language Report

Page 53 Standard functions

Returns

an array of the idents of the elements of the added picture (the normal case);
0. if there is no file named filename, or the file named filename is in a wrong
format

link_name
link the picture element with a given name to a given object (the picture element
must have been created by 1ink_pict)
Synopsis

link name (elname, obj) : num
elname : text
obj : arbitrary graphical class (Line, array of num, Rect, text)

Inputs
elname the name of the picture element to be linked to an object
ob3j the object to be linked to a picture element

Action

Finds a picture element named elname, and links it to object obj. Displays an
error message window, if there is no picture element named elname, the type of
picture element named elname and the class of object obj are incompatible, or
the picture element named elname was not created by 1ink_pict.

Returns

the ident of the linked picture element (the normal case);

0, if there was no picture element named elname, the type of the picture element
named elname and the class of object obj are incompatible, or the picture ele-
ment named elname was not created by 1ink_pict

save_elem

not implemented

save_pict

not implemented

8.4 Miscellaneous

chin
transform a string representation of an integer into a number
Synopsis

chin(strrep) : num
strrep: text

Inputs
strrep the string representation of a number

TLLAMITYT cnreana Dannn

Standard functions Page 54

Returns
the integer whom the string strrep represents (the integer is formed from the
digit symbols in strrep until the first non-digit symbol; as an exception to this
general rule, the symbol + or - in the 1st position counts as a sign)

rech
transform a number (integer or real) into its string representation
Synopsis
rech(number) : text
number : num
Inputs
number the number whose string representation is asked
Returns
the string representation of the number number
length
get the length of a string, the number of first-level components of a compound
object
Synopsis
length(obj) : num
obj : arbitrary class
Inputs
obj the object whose length is asked
Returns

the number of symbols in obj, if obj has class text;
the number of components in obj, if obj has a compound class;
0, otherwise

13 Junc 1994 2:13 pm The NUT Language Report

