
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Nikolai Jefimov 143689IASM

IMAGE RECOGNITION BY SPIKING
NEURAL NETWORKS

Master's thesis

Supervisor: Eduard Petlenkov

 PhD

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Nikolai Jefimov 143689IASM

KUJUTISE TUVASTAMINE IMPULSI
NÄRVIVÕRKUDEGA

Magistritöö

Juhendaja: Eduard Petlenkov

 PhD

3

Author’s declaration of originality
I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Nikolai Jefimov

30.05.2017

4

Abstract
The aim of this thesis is to present opportunities on implementations of spiking neural

network for image recognition and proving learning algorithms in MATLAB

environment.

In this thesis provided examples of the use of common types of artificial neural networks

for image recognition and classification. Also presented spiking neural network areas of

use, as well as the principles of image recognition by this type of neural network.

The result of this work is the realization of the learning algorithm in MATLAB

environment, as well as the ability to recognize handwritten numbers from the MNIST

database. Besides this presented the opportunity to recognizing Latin letters with

dimensions of 3x3 and 5x7 pixels.

In addition, were proposed User Guide for masters course ISS0023 Intelligent Control

System in TUT.

This thesis is written in English and is 62 pages long, including 6 chapters, 61 figures and

4 tables.

5

Annotatsioon

Kujutise tuvastamine impulsi närvivõrkudega
Selle väitekiri eesmärgiks on tutvustada impulsi närvivõrgu kasutamisvõimalused, samuti

näidata õpetamise algoritmi MATLAB keskkonnas.

Töös esitatakse levinumaid tehisnärvivõrgu kasutamise näidet kujutise tuvastamiseks ja

klassifitseerimiseks. Esitatud impulsi närvivõrkude kasutamise alad ja kujundite

tuvastamise põhimõtted.

Magistritöö lõpptulemusena on rakendatud õpetamise algoritm MATLAB keskkonnas,

lisaks on võimalik tuvastada käekirja numbrit MNIST andmebaasist. Peale selle on

võimalik tunnustada ladina tähestiku suurusega 5x7 ja 3x3 pikslit.

Välja on töötatud õpematerjal/ praktilise töö juhend magistriõppe aine ISS0023 Arukad

juhtimissüsteemid jaoks.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 62 leheküljel, 6 peatükki, 61

joonist, 4 tabelit.

6

List of abbreviations and terms

ANN Artificial neural network

FFNN
SLNN

FeedForward neural network
Self-Learning neural network

RBFN Radial based function network

RNN Recurrent neural network

HTM Hierarchical temporal memory

SNN Spiking neural network

FPGA Field-programmable gate array

nPU Neural processing unit

IBM International Business Machines

CMOS Complementary metal-oxide-semiconductor

STDP-learning Spike-timing-dependent plasticity

LIF Leaky integrate-and-fire

jAER Java tools for Address-Event Representation

DVS Dynamic Vision Sensor

AER-EAR Address-event representation ear

DBN Deep belief network

RBM Restricted Boltzmann machine

MNIST Mixed National Institute of Standards and Technology

7

Table of contents
1.	 Artificial neural networks ... 12	

1.1 Feedforward neural network ... 13	

1.2 Radial basis function network ... 14	

1.3 Recurrent neural network .. 15	

1.4 Physical neural network .. 16	

1.5 Other types of network .. 17	

1.5.1 Neuro-fuzzy networks .. 17	

1.5.2 Hierarchical temporal memory .. 18	

1.5.3 Spiking neural networks .. 19	

1.6 Comparison ... 20	

2.	 Spiking neural network as a tool ... 21	

2.1 Spiking models .. 21	

2.2 Application where used spiking neural networks ... 22	

2.2.1 Prosthetics .. 23	

2.2.2 Robotics ... 24	

2.2.3 Hardware .. 25	

2.2.4 Computer vision ... 26	

3.	 Handwriting processing in MATLAB with spiking neural network 28	

3.1 Methodology ... 28	

3.1.1 Deep Belief Neural Network and Restricted Boltzmann Machines 28	

3.1.2 Discrete-time and event-driven neuron models ... 30	

3.2 Training the network ... 31	

3.2.1 Input data ... 31	

3.2.2 Network Architecture .. 32	

3.2.3 Training .. 33	

3.3 Result .. 33	

4.	 Minimal recognition size .. 36	

4.1 Dataset ... 36	

4.2 Setup ... 36	

4.3 Result .. 37

8

5.	 Character recognition .. 39	

5.1 Task ... 39	

5.2 Training results with FeedForward Neural Network .. 40	

5.3 Training with Self-Learning Neural Network ... 41	

5.4 Training with Spiking Neural Network .. 44	

5.5 Comparison of the results ... 46	

6.	 Summary ... 47	

User guide ... 48	

References ... 58	

User guide

References

53

48

9

List of figures
Fig. 1.1 Human neuron; artificial neuron; biological synapse; ANN synapses 12	

Fig. 1.2 Structure of feedforward neural network .. 13	

Fig. 1.3 Feedforward neural network recognition demo .. 13	

Fig. 1.4 Feedforward neural network recognition workflow .. 13	

Fig. 1.5 Structure of radial basis function .. 14	

Fig. 1.6 Example of area categorizing using RBFN ... 14	

Fig. 1.7 The architecture of a recurrent neural network .. 15	

Fig. 1.8 RNN in combine with convolutional neural network can be used 15	

Fig. 1.9 Physical neural network liquid state machine utilizing nanotechnology 16	

Fig. 1.10 Physical robots and neural network controller ... 16	

Fig. 1.11 Example of Takagi-Sugeno rules. Equivalent Neuro-fuzzy network 17	

Fig. 1.12 Emotion recognition with neuro-fuzzy logic .. 17	

Fig. 1.13 HTM network with four levels ... 18	

Fig. 1.14 Visualization of estimated results with HTM recognition 18	

Fig. 1.15 Example of “brain-like” model of spiking neural network 19	

Fig. 2.1 Principal components of SNN-based neuroprosthetic control paradigm 23	

Fig. 2.2 BrainOS build-in module in cleaning machine ... 24	

Fig. 2.3 Qualcomm's brain-inspired chip ... 25	

Fig. 2.4 IBM Neuromorphic System .. 26	

Fig. 2.5 Video feed recognition with TrueNorth chip ... 27	

Fig. 3.1 Boltzmann and Restricted Boltzmann Machines ... 28	

Fig. 3.2 Example of MNIST and MATLAB dataset sample (7) 32	

Fig. 3.3 Spiking DBN architecture for image recognition .. 32	

Fig. 3.4 Training result for MNIST dataset recognition ... 33	

Fig. 3.5 RBM weights for MNIST recognition .. 34	

Fig. 3.6 Recognition of MNIST sample 48 (7) .. 34	

Fig. 3.7 Recognition of MNIST sample 655 (1) .. 34	

Fig. 3.8 Recognition of MNIST sample 6592 (4) .. 35	

Fig. 3.9 Recognition of MNIST sample 7362 (0) .. 35	

Fig. 3.10 Recognition of MNIST sample 74 (9) .. 35	

Fig. 3.11 Recognition of MNIST sample 492 (8) .. 35	

Fig. 4.1 Fakoo alphabet .. 36	

10

Fig. 4.2 Training result of Fakoo alphabet recognition ... 37	

Fig. 4.3 Recognition of Fakoo alphabet sample 3 (C) .. 37	

Fig. 4.4 Recognition of Fakoo alphabet sample 15 (O) .. 37	

Fig. 4.5 Recognition of Fakoo alphabet sample 20 (T) .. 38	

Fig. 4.6 Recognition of Fakoo alphabet sample 24 (X) .. 38	

Fig. 5.1 Example of characters A, B and C as matrix .. 39	

Fig. 5.2 Example of characters A, B and C as image ... 39	

Fig. 5.3 Letter A with noise 20%, 30% and 22% .. 39	

Fig. 5.4 FFNN lab task accuracy result .. 40	

Fig. 5.5 FFNN lab task time result ... 40	

Fig. 5.6 FFNN lab task epoch ... 40	

Fig. 5.7 Lab task testing data sample 4 (D) .. 40

Fig. 5.8 Lab task testing data sample 15 (O) .. 40	

Fig. 5.9 Lab task self-learning verification with 10 epoch ... 41	

Fig. 5.10 Lab task self-learning verification with 20 epoch ... 41	

Fig. 5.11 Lab task self-learning verification with 25 epoch ... 42	

Fig. 5.12 Lab task self-learning verification with 30 epoch ... 42	

Fig. 5.13 SLNN lab task accuracy result .. 43	

Fig. 5.14 SLNN lab task time result .. 43	

Fig. 5.15 SLNN lab task epoch ... 43	

Fig. 5.16 Lab task testing data sample 3 (C) .. 43

Fig. 5.17 Lab task testing data sample 17 (Q) .. 43	

Fig. 5.18 SNN lab task accuracy result ... 44	

Fig. 5.19 SNN lab task time result .. 44	

Fig. 5.20 SNN lab task epoch .. 44	

Fig. 5.21 Recognition of sample 3 (C) .. 45	

Fig. 5.22 Recognition of sample 4 (D) .. 45	

Fig. 5.23 Recognition of sample 15 (O) .. 45	

Fig. 5.24 Recognition of sample 17 (Q) .. 45	

11

List of tables
Table 1.1 Comparison of usage different ANN for image processing 20	

Table 4.1 SNN setup for Fakoo alphabet recognition ... 36	

Table 5.1 Lab task self-learning neural network recognition verification 41	

Table 5.2 Lab task result comparison ... 46	

12

1. Artificial neural networks
Artificial neural network is a software and/or hardware realization of a mathematical

model, based on principles of organization and functioning of the biological neural

network.

Fig. 1.1(A) Human neuron; (B) artificial neuron; (C) biological synapse; (D) ANN synapses [1]

Last generation neural network usually operates up to several million artificial neurons

and axons. But this size is not enough to fully reproduce human brain and can be

compared to thinking level of a protozoa [2].

To “teach” neural network can be used one of the learning technics:

• Supervised learning – for each case provided situation and requested solution

• Unsupervised learning – provided only situation, agent categorize results itself

• Reinforcement learning – network cooperate with “environment” without

knowledge about system

In general, ANN can be classified in a groups, which are listed and explained below.

Additionally, provided an example of image processing/recognition with this network

type.

13

1.1 Feedforward neural network

First and, basically, most simple type on ANN. Information goes only in one direction –

forward. No cycles or loops in the network. Can have from 1 to N numbers of inputs and

outputs. Also, from 0 to N hidden layers [3].

Fig. 1.2 Structure of feedforward neural network

This approach can be used for simple optical character recognition.

Fig. 1.3 Feedforward neural network recognition demo [4]

Fig. 1.4 Feedforward neural network recognition workflow [4]

14

1.2 Radial basis function network

RBFN have some advantages over FFNN [5]:

• This type of network models arbitrary nonlinear function only with one hidden

layer. This helps to remove requirements in additional hidden layers

• The parameters of the linear combination in the output layer can be fully

optimized using well-known linear optimization methods that work quickly.

• In addition, the RBFN network is trained very quickly.

Fig. 1.5 Structure of radial basis function

Fig. 1.6 Example of area categorizing using RBFN [6]

15

1.3 Recurrent neural network

The main point of the RNNs in an opportunity to use feedback. In the classical neural

network, a signal flows only straight forward and this limits implementation field. Every

single calculation had influence to the follows input Presence of feedback allows access

to networks internal memory, which can help it field of recognition and classification

problem [7].

Fig. 1.7 The architecture of a recurrent neural network

Fig. 1.8 RNN in combine with convolutional neural network can be used

for generation description of unlabeled images [8]

16

1.4 Physical neural network

The main difference from “traditional” artificial neural networks is that in physical neural

networks electrical components are used to imitate brain activity.

Fig. 1.9 Physical neural network liquid state machine utilizing nanotechnology [9]

Fig. 1.10 Physical robots and neural network controller [10]

17

1.5 Other types of network

A few words about self-sustained neural networks

1.5.1 Neuro-fuzzy networks

From the network name it is clear, that this method based on the fuzzy logic implemented

in ANN. Using this approach reveals opportunity to use neuro-fuzzy networks as

universal approximators with focus to IF-THEN rules [11].

Fig. 1.11 (a) Example of Takagi-Sugeno rules. (b) Equivalent Neuro-fuzzy network [11]

Fig. 1.12 Emotion recognition with neuro-fuzzy logic [12]

18

1.5.2 Hierarchical temporal memory

Hierarchical temporal memory is an unsupervised to semi-supervised online machine

learning model, which models some of the structural and algorithmic properties of

the neocortex. HTM is a biomimetic model based on the memory-prediction theory of

brain function [13].

Fig. 1.13 HTM network with four levels [14]

Fig. 1.14 Visualization of estimated results with HTM recognition [14]

19

1.5.3 Spiking neural networks

At the moment, SNNs are considered one of the most advanced neural networks. The

reason is in the very close representation of the concept of the human brain. Besides

synaptic and neuronal state, SNN has included an idea of time in the workflow. The point

of the SNN is in the activity of the neurons. Unlike traditional multi-layer ANNs, in SNNs

neurons is active only then the membrane potential, a difference in electric potential

between neurons, is exceeded predetermined value. After neuron activation, generated

spikes reach other neurons and cause a neurons potentials change in favor with received

value (increase or decrease of potential) [15].

Fig. 1.15 Example of “brain-like” model of spiking neural network [16]

Opportunities of using spiking neural networks as the most advanced technic for image

processing and recognition I will provide in the next chapter.

20

1.6 Comparison

Any of mentioned above ANNs can be used for image processing and recognition, but all

of them have they own pros and cons.

 Field of use
(most common)

Complexity of
images to
process

Ability to
learn

Computation
power

(similar task
or close to it)
in abstract
units [17]

Feedforward
neural network

Recognition Simple image
with minimal

noise and
disturbance

Training
Pattern

1

Radial basis
function
network

Classification Must present
similar pattern

for classification

Training
Pattern

0.7

Recurrent
neural network

Classification Must be
combined with

other NN

Training
Memory

0.8

Physical neural
network

Control Live image Training
Pattern

0.5

Neuro-fuzzy
network

Recognition Live image Training
Pattern

1.3

Hierarchical
temporary
memory

Recognition Live image with
minimal

disturbance

Training
Memory

1.6

Spiking neural
network

Recognition Live image Learn in
process

Prediction

0.9

Table 1.1 Comparison of usage different ANN for image processing

Based on the requirement assigned for neural network for image recognition, the best

choice is spiking neural network. It can work with work with large live feed using less

computational power.

21

2. Spiking neural network as a tool

As was mentioned before, spiking neural networks are the most advanced development

in intention to replicate human brain. It was achieved by implementing individual spike.

It's revealing opportunity to include spatial-temporal information in cross layer

connection. Traditionally rate coding was used, now neurons use pulse coding. This

means that neurons process individual pulses what is allows for information multiplexing.

Research shows that this is how real neurons work [18].

2.1 Spiking models

As a model, spiking artificial neural network have the same internals as their biological

analogs [19]:

• They can process information coming from many inputs and release single spike

as response.

• The probability of spike generations is increased by excitatory inputs and

decreased by inhibitory inputs

• When neuron activation threshold is achieved, spikes most be generated.

Spiking neural network models can be divided in three main categories [20]:

1. Feedforward networks – no feedback connection. Signal move only straight

forward from input to output. Can be applied multilayer system.

2. Recurrent networks – neurons interact with each other not only forward, but also

with feedback connection to the previous layer. This approach helps SNNs

remonstrate dynamic temporal behavior.

3. Hybrid networks – in this category presented 2 types of SNNs in which have in

structure feedforward and recurrent combined:

• Synfire chain – A multi-layered architecture in which spike pulses can spread

as a synchronous wave of neuron activation from one layer of the chain to

other.

• Reservoir computing – Abstraction paradigm, that uses opportunities of

recurrent network, but at the same time don’t have training disadvantages.

22

2.2 Application where used spiking neural networks

The last decade was marked by the rapid development of the third generation of neural

networks - spiking neural networks. This was caused by the emergence of the opportunity

to develop and produce large hardware neural networks implemented in the form of chips,

which made it possible to introduce a replacement in many areas of application of the

traditional von Neumann architecture computers to a spiking neural network based

solution with low energy consumption.

There are some advantages which have SNN over neural networks of previous

generations [21]:

• SNNs are dynamic, and therefore perfectly suited for working with dynamic

processes (speech recognition and dynamic images);

• SNNs have multitasking, because the input data is processed in a neural network

with feedbacks, and different groups of reading neurons can be trained to solve

different tasks;

• SNNs are able to perform foresight recognition (it is not necessary to have

complete information about the object or to know the result of the process);

• SNN is simply to teach since it is sufficient to train only the output reading

neurons;

• SNNs have increased information processing and noise immunity because they

use a timeline information presentation;

• SNN requires a smaller number of neurons since each neuron of a pulsed neural

network replaces two neurons (exciting and inhibitory) of the classical ANN;

• SNNs have a high speed of operation and a great potential for parallelization since

for the transmission of the pulse it is necessary to send 1 bit, rather than a

continuous value, as in frequency ANNs;

• SNN can be trained in the process of work.

23

Disadvantages are also presented:

• It is not advisable to use the SNNs in systems with a small number of neurons;

• There is no perfect learning algorithm.

Based on the opportunities of using SNNs, main directions of implementations can be

highlighted.

2.2.1 Prosthetics

At the moment most developed field of implementation of SNNs in medicine. Especially

in neuroprosthetics. Since the principles of coding sensory information entering the brain

are known, appeared the idea to emulate the signals in diseased, injured or amputated

sense organs and feed them through the electrodes to the nerves coming from these senses

or even directly to regions of the cerebral cortex responsible for processing of relevant

sensory information. Similarly, knowledge of the coding of commands coming from the

brain to the muscles makes it possible for them to be interpreted by special prostheses

controlled by microprocessors that reproduce the actions normally performed by a healthy

limb [22].

Fig. 2.1 Principal components of SNN-based neuroprosthetic control paradigm [23]

24

For over 10 years, there are visual neuroprostheses that provide signals from arrays of

light-sensitive elements that are encoded as a series of spikes in the visual cortex

departments completely blind patients, giving them the ability to navigate in space and

even read. Another long and successful history of developing the use of hearing

neuroprosthesis in patients with profound hearing loss (including the deaf from birth)

[23].

Another area of neuroprosthetics is direct electrical stimulation of the brain. The sending

of spike sequences through electrodes implanted in certain deep structures of the brain

helps to alleviate or completely eliminate the symptoms of Parkinson's disease, dystonia,

chronic pain and even psychiatric diseases (manic-depressive psychosis, schizophrenia).

Here we are talking about directed intervention in the brain.

2.2.2 Robotics

Since spiking neural networks have ability to “see” and analyze they can be used as a part

of advanced robotics. Here is needed to mention a company named “Brain Corporation”

from San-Diego, USA. Founder of this company is Dr. Eugene Izhikevich. He is known

for his foremost of the theory of spiking networks. Dr. Izhikevich with his team

implemented the world’s largest thalamo-cortical model. “Brain Corporation” is software

company specializing in the development of intelligent, autonomous systems that

automate commercial equipment. The company is now focused on developing advanced

machine learning and computer vision systems for the next generation of self-driving

vehicles [24].

Fig. 2.2 BrainOS build-in module in cleaning machine [24]

25

2.2.3 Hardware

At the moment 2 major player in the field of computing power are working on they own

so-called “neural processing unit”.

“Intel is interested in this because use of this approach can accelerate specific functions

(e.g. complex neural networks, video codecs or search algorithms) and could deliver up

to 10x performance efficiency across a variety of workloads, and integrating the FPGA

with coherent and non-coherent links within the Xeon package (versus discreet FPGAs)

could lead to an additional 2x performance improvement.” [25]

Qualcomm have they own research in neurocomputing. Advantages of Zeroth processor

is in the ability to recreate the way of brain behavior. Zeroth are created for image and

sound processing. It means that it can recognize and analyze faces, gestures and also

speech. Besides that, it can be used for optimizing processes, for example for battery life

extension [26].

Fig. 2.3 Qualcomm's brain-inspired chip [26]

26

2.2.4 Computer vision

SNN have been successfully used for image classification. They provide a model for the

mammalian visual cortex, image segmentation and pattern recognition. Different spiking

neuron mathematical models exist, but their computational complexity makes them ill-

suited for hardware implementation at the moment [27].

But still, IBM has developed neuromorphic chip called “True North”. “True North

consists of 1 million programmable neurons and 256 million programmable synapses

conveying signals between the digital neurons. With a total of 5.4 billion transistors, the

computer chip is one of the largest CMOS chips ever built. Yet it uses just 70 mW in

operation and has a power density about 1/10,000 that of most modern microprocessors.

That brings neuromorphic engineering closer to the human brain’s marvelous efficiency

as a grapefruit-size organ that consumes just 20 W.” [28]

Applying this approach can eliminate von Neumann computing restriction, when

several tasks cannot be performed in one processing unit in the same time.

Fig. 2.4 IBM Neuromorphic System [29]

27

Fig. 2.5 Video feed recognition with TrueNorth chip [30]

“A video camera on Hoover Tower at Stanford University is looking down at the plaza,

below. A simulated network of IBM TrueNorth chips takes in the video data and locates

interesting objects. Objects might look interesting to the system because they are moving

or have a different color or texture than the background. The system then further processes

those portions of the interesting video to determine what the objects are. It is trained in

several specific categories, such as buses, cars, people, and cyclists. In a monitoring

application, the camera would only need to communicate when it found an interesting

object, rather than continually streaming video to a central location.” [30]

28

3. Handwriting processing in MATLAB with spiking neural

network
As an example of image processing, I will consider handwriting recognition solution

developed by research team from Institute of Neuroinformatics, University of Zurich and

ETH Zurich, Zurich, Switzerland. This method is based on the jAER open-source project

and training process is implemented in MATLAB environment [31].

This project was developed as proof-of-concept for real time recognition of handwritten

digits and letters from 128x128 Dynamic Vision Sensor with pre training in MATLAB.

I will focus only in the part of recognition and result analysis for MATLAB environment.

3.1 Methodology

3.1.1 Deep Belief Neural Network and Restricted Boltzmann Machines

DBN can be described as graphical model with several hidden layers. This means that

neurons within one layer are not connected with each other, but connected with neurons

from other layers. RBM are using stochastic structure approach but based on the same

principles. Connections inside this model are only between “visible” and “hidden” group

nodes, not within one group. In comparison with Standard Boltzmann Machine in

Restricted model nodes of one layer are not connected. This makes learning and

classification process tractable in RBM [32].By stacking RBM in form of a DBN, the

lower layer of RBM become of the visible layer of the higher RBM. This structure allows

teach RBM to analyze more specific tasks [33].

Fig. 3.1 Boltzmann and Restricted Boltzmann Machines [31]

29

“In a binary RBM the units stochastically take on states 0 or 1, depending on their inputs

from the other layer. Denoting the states of visible units with vi, the states of hidden units

with hj, the weights connecting these units with wij, and the biases of visible and hidden

units with bi
(v) and bj

(h) respectively, a RBM encodes a joint probability distribution

p(v, h|θ), defined via the energy function” [31]

! ", ℎ; & = −)*+
+

*

"*ℎ+ − ,*
-

*
"* − ,+

.

+
ℎ+, (1)

where θ = (w, b(v), b(h)). The encoded joint probability can then be written as�

/ ", ℎ & =
012 34 -,.;5

01267
87

34 -7,.7;5
. (2)

“From equations (1) and (2) the following stochastic update rules for the states of units

were derived, such that on average every update results in a lower energy state, and

ultimately settles into an equilibrium [34]:” [31]

3/("* = 1|ℎ, &) = ?)*+
+

ℎ+ + ,*
- (3)

4/ ℎ+ = 1 ", & = ?)*+
*

"* + ,+
.
, (4)

“where σ(x) = 1/(1 + exp(−x)) is the sigmoid function, and the units will switch to state 0

otherwise. When left to run freely, the network will generate samples over all possible

states (v, h) according to the joint probability distribution in (2). This holds for any

arbitrary initial state of the network, given that the network has enough time to become

approximately independent of the initial conditions.” [31]

Previously was mentioned that we creating DBN by stacking RBM. This approach allows

us to transform hidden layer of the RBM to the visible layer of next level. The upper

levels of RBM will handle more abstract functions, which provides improved

classification parameters [35].

30

3.1.2 Discrete-time and event-driven neuron models

 “In the standard formulation, units within RBMs are binary, and states are sampled

according to the sigmoidal activation probabilities from Equations (3) and (4). Such

neuron are called models sigmoid-binary units. It was shown that an equivalent threshold-

linear model can be formulated, in which zero-mean Gaussian noise N (0, σ
2

n) with

variance σ2
n is added to the activation functions [36]:” [31]

	ℎ+ = max	(0,)*+"* + ,+
. + N(0, σI

J)	,* (5)

“In this model, each incoming event adds to the membrane potential Vm according to the

strength wij of the synapse along which the event occurred. Incoming spikes within an

absolute refractory period tref after an output spike are ignored. Spikes are generated

deterministically whenever the membrane potential crosses the firing threshold Vth,

otherwise, the membrane potential decays exponentially with time constant τ. Simple

versions of LIF neurons can be simulated in an event-based way since membrane

potentials only need to be updated upon the arrival of input spikes, and spikes can only

be created at the times of such input events. For a LIF neuron representing hj, which

receives a constant input current K+ =)*+"** corresponding to the weighted i sum of

inputs from connected visible units, the expected firing rate ρj(sj) is [37]:” [31]

L+(K+) =
MNOP − Q log 1 −

UV6

WX

3Y

0

Z[ K+ ≥ _̂.

`Mℎab)ZKa
 (6)

“The above equation holds when the neuron is injected with a constant input, but under

realistic conditions, the neuron receives a continuous stream of input spike trains, each

arriving to first approximation as samples from a Poisson process with some underlying

firing rate. For this case, a more accurate prediction of the average firing rate can be

obtained using Siegert neurons [38]. Siegert neurons have transfer functions that are

mathematically equivalent to the input-rate output-rate transfer functions of LIF neurons

with Poisson- process inputs. In order to compute the Siegert transformation for a neuron

receiving excitatory and inhibitory inputs with rates (/O,	/*) and weights ()O,)*)

respectively, we first have to compute the auxiliary variables

31

 cd = 	Q∑)OLO +)fLf (7) ϒ =	 N̂OW_ + cd (8)

 g = 	 QWhI Q (9) 	?d
J 	= 	

i

J
∑)O

JLO +)f
JLf (10)

 j = 	?d (11) 	k = l
Y

J
 (12)

where τsyn is the synaptic time constant (for our purposes considered to be zero), and ζ is

the Riemann zeta function. Then the average firing rate ρout of the neuron with resting

potential Vrest and reset potential Vreset can be computed as [39]:” [31]

Lmn_ = (MNOP +
i

o

p

J
· exp[

(n3ϒ)u

Jou
] · [1 + ab[(

n3ϒ
o J

)]wx)3Y
UV6 z {|o

U}~�~V z {|o

 (13)

“A RBM trained using Siegert units can thus be easily converted into an equivalent

network of spiking LIF neurons: By normalizing the firing rate in Equation (13) relative

to the maximum firing rate 1/tref , ρout can be converted into activation probabilities as

required to sample RBM units in Equations (3, 4) during standard Contrastive Divergence

learning with continuous units. After learning, the parameters and weights are retained,

but instead of sampling every time step, the units generate Poisson spike trains with rates

computed by the Siegert formula Equation (13).” [31]

3.2 Training the network

The source code for MATLAB can be found in the repository of developers [40]. From

this point, a solution will be considered from the theoretical point of view. More detailed

implementation can be observed in User Guide at the end of this work.

Point of this chapter is to evaluate recognition capability of this approach and understand,

can it be used for other recognition and classification tasks.

3.2.1 Input data

As was mentioned previously, for understanding of opportunities of this solution will be

used MNIST dataset. MNIST is a database of handwritten digits. By itself consists of

60000 training samples and 10000 test samples. Unfortunately, original data is stored in

a format, which is not suitable for MATLAB.

32

We will use mnist_uint8.mat which is taken from Deep Learning Toolbox for

MATLAB[41]. This is converted MNIST database for usage in MATLAB environment.

In original MNIST input image is 28x28 pixels, but here it is modified as one vector

input layer with 784 visual input units.

 Fig. 3.2 Example of MNIST and MATLAB dataset sample (7)

3.2.2 Network Architecture

Because DBN was created by stacking RBMs, we can consider this network as

“traditional”. In the simplified view, it will look like:

Fig. 3.3 Spiking DBN architecture for image recognition

Visual input layer with 784 neurons because the of input vector, equal 28x28 pixel dataset

image.

Visual abstraction and Associative layers have both 50 neurons, this is not an optimal or

perfect amount, but for understanding of opportunities, this is enough.

Label layer have 10 neurons in favor with digits from 0 to 9.

33

3.2.3 Training

Spiking neural network training process divided into a few steps. Since our model consists

of many RBM, they should be trained individually.

• As an independent RBM, determinates weight coefficients within Input and

Abstract layers.

• After that established supervised learning between Associative and Label layer.

But as input in Associative layer used previously trained RBM (Input and

Abstract)

• Every RBM must be trained predefined epoch times

3.3 Result

After the execution example.m with parameters from above, was achieved recognition

rate 90.46%.

Fig. 3.4 Training result for MNIST dataset recognition

In fig 3.5 we can see the distribution of weight coefficient in Abstract layer. Every single

square represents a set of weight inside a neuron after performing a learning process.

34

Fig. 3.5 RBM weights for MNIST recognition

Below are provided some recognition examples. More spikes represent more concern.

Fig. 3.6 Recognition of MNIST sample 48 (7)

Fig. 3.7 Recognition of MNIST sample 655 (1)

35

Fig. 3.8 Recognition of MNIST sample 6592 (4)

Fig. 3.9 Recognition of MNIST sample 7362 (0)

Due to the % of recognition, some numbers cannot be recognized or are recognized

wrongly.

Fig. 3.10 Recognition of MNIST sample 74 (9)

Fig. 3.11 Recognition of MNIST sample 492 (8)

This approach allows recognizing MNIST dataset with 90.46% probability, what is a very

good percentage. Research team reports that with more advanced setup can be obtained

recognition level 95.52% [40].

36

4. Minimal recognition size
Within discussion about solving capabilities of this approach was asked a question about

minimal resolution of input.

4.1 Dataset

The same approach from chapter 6 was used for data generation, but instead of 5x7 input

matrix was used 3x3 matrix. This is square form is used for LCD or LED display and

named “Fakoo alphabet” [42].

Fig. 4.1 Fakoo alphabet [42]

4.2 Setup

Following setup was used for SNN training. Example of program listing can be reviewed

in User Guide chapter 5.

edbn.sizes = [9 45 52 26];

opts.alpha = 0.5;
opts.momentum = 0.5;
opts.f_decay = 0.006;
opts.f_alpha = 3;
opts.pcd = 0.8;
opts.sp = 0.2;
opts.sp_infl = 0.7;
opts.ngibbs = 2;
opts.batchsize = 13;

opts.numepochs = 50;

Table 4.1 SNN setup for Fakoo alphabet recognition

37

4.3 Result

Fig. 4.2 Training result of Fakoo alphabet recognition

After training was achieved recognition capability: 100%.

Fig. 4.3 Recognition of Fakoo alphabet sample 3
(C)

Fig. 4.4 Recognition of Fakoo alphabet sample 15
(O)

38

Fig. 4.5 Recognition of Fakoo alphabet sample 20
(T)

Fig. 4.6 Recognition of Fakoo alphabet sample 24
(X)

Considering very small size of an input image, this is quite impressive that all characters

was recognized.

39

5. Character recognition
The next task was taken from TUT course named Intelligent Control Systems (ISS0023)

[43] by Eduard Petlenkov. This course provides overview of artificial intelligence

methods based classification and recognition techniques.

5.1 Task

Course task is to train FFNN for alphabet character recognition in two ways (supervised

and unsupervised). My aim is to solve the same task with spiking neural network and

compare opportunities of this networks by accuracy, used time and number of epoch.

All character is given as 5x7 matrix. In total 26 samples.

Fig. 5.1 Example of characters A, B and C as matrix

Fig. 5.2 Example of characters A, B and C as image

For training purpose, set consist of pure image and images with applied noise

5%,10%,20% and 30%. Testing data are designed with 22% noise.

Fig. 5.3 Letter A with noise 20%, 30% and 22%

40

5.2 Training results with FeedForward Neural Network

After training and verification, were achieved following results:

• Accuracy – 100% (all letters recognized correctly)

Fig. 5.4 FFNN lab task accuracy result

• Time – 3.571 seconds (CPU usage)

Fig. 5.5 FFNN lab task time result

• Number of epoch – 1744

Fig. 5.6 FFNN lab task epoch

Examples of test data:

Fig. 5.7 Lab task testing data sample 4 (D) Fig. 5.8 Lab task testing data sample 15 (O)

As we can see, Feedforward neural network performed training and recognition

task as needed.

41

5.3 Training with Self-Learning Neural Network

Here will be presented optimal epoch number for self-learning neural network training.

To find it, I will use comparison between clean letter and with noise.

for	i=1:26	
	
test=alphabet(:,i);	
test_n=test+randn(35,1)*0.22;	

Cycle	for	every	letter		
	
Clean	letter																																																																																		
Same	latter	with	22%	noise		

t=sim(net_c,test);		
t_n=sim(net_c,test_n);	

Recognition	of	clear	letter																													
Recognition	of	letter	with	noise		

test_out	(i)	=	vec2ind(t);	
test_out_n	(i)	=	vec2ind(t_n);	
end	

Writing	recognition	results	

test_out	(26)	=	vec2ind(t)	
test_out_n	(26)	=	vec2ind(t_n)	

Final	result	of	recognition	

test_out	==	test_out_n	
	
match=isequal(test_out,test_out_n)	

Comparison	side-by-side	
	
Does	2	vectors	equal	or	not	

Table 5.1 Lab task self-learning neural network recognition verification

Epoch = 10, not enough for all character recognition.

Fig. 5.9 Lab task self-learning verification with 10 epoch

Epoch=20, also not enough.

Fig. 5.10 Lab task self-learning verification with 20 epoch

42

Epoch=25, not enough.

Fig. 5.11 Lab task self-learning verification with 25 epoch

Epoch=30, enough, all characters recognized.

Fig. 5.12 Lab task self-learning verification with 30 epoch

30 epochs were enough for correct recognition of all character and will be used in

recognition methods comparison for self-learning network.

43

After training and verification, were achieved following results:

• Accuracy – 100% (all letters recognized correctly, attempts are presented in Appendix 1)

Fig. 5.13 SLNN lab task accuracy result

• Time – 4.590 seconds (CPU usage)

Fig. 5.14 SLNN lab task time result

• Number of epoch – 30

Fig. 5.15 SLNN lab task epoch

Examples of test data:

Fig. 5.16 Lab task testing data sample 3 (C) Fig. 5.17 Lab task testing data sample 17 (Q)

Self-learning network also performed well.

44

5.4 Training with Spiking Neural Network

Detailed setup and training process presented in User Guide chapter 7.

After training and verification, were achieved following results:

• Accuracy – 100% (all letters recognized correctly)

Fig. 5.18 SNN lab task accuracy result

• Time – 1.691 seconds (CPU usage)

Fig. 5.19 SNN lab task time result

• Number of epoch – 50 (25 epochs for each RBM)

Fig. 5.20 SNN lab task epoch

45

Fig. 5.21 Recognition of sample 3 (C)

Fig. 5.22 Recognition of sample 4 (D)

Fig. 5.23 Recognition of sample 15 (O)

Fig. 5.24 Recognition of sample 17 (Q)

46

5.5 Comparison of the results

Obtained learning results can be easily compared.

 Accuracy Neurons in

hidden layer

Time Epoch

Feedforward neural

network

100% 35+26 3.571 1744

Self-learning neural

network

100% 26 4.590 30

Spiking neural network 100% 35+26 1.691 50

Table 5.2 Lab task result comparison

Based on the obtained data, spiking neural network can be considered as one of the

solution of image recognition problem and can be demonstrated as entry point for more

advanced neural network.

47

6. Summary

In this thesis was presented one of the approaches in recognition technics. Wide range of

future development in this field can be implemented in everyday life. But the complexity

of the recognition and classification process requires the synergy of different

methodology from a different field. At the moment neuromorphic computing faces the

problem of big data. Existing applications and solutions give as a place of improvement

and development to overcome the barrier and reach a new level in artificial neural

networks.

Spiking neural network can be used in digitizing handwriting materials or speech

recognition. Ability to make real-time recognition great opportunity to use in mobile

applications or in robotics. A lot of existing solution require a data connection with

external servers. This connection can be restricted, for example in remote areas.

This particular solution is a proof-of-concept and good starting point for learning spiking

neural network recognition opportunities.

As a future development of this real-time solution can be adjusting other external

equipment and processing more complex problem.

58

References

[1] Vinícius Gonçalves Maltarollo, Káthia Maria Honório and Albérico Borges Ferreira

da Silva, “Applications of Artificial Neural Networks in Chemical Problems”,

Artificial Neural Networks - Architectures and Applications, pp. 204-206, 2013

[2] Intel software developer zone, “Can Technology Replace The Eye?”,

 https://software.intel.com/en-us/articles/can-technology-replace-the-eye

(30.05.2017)

[3] Stanford university class “The Intellectual Excitement of Computer Science”

 https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-

networks/Architecture/feedforward.html (30.05.2017)

[4] Feedforward neural network in javascript

https://robertbeisicht.wordpress.com/2014/07/04/feed-forward-neural-network-in-

javascript/ (30.05.2017)

[5] Mark J.L. Orr, “Introduction to Radial Basis Function Networks”, Technical report,

1996

[6] Radial Basis Function Network (RBFN) Tutorial

http://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/

(30.05.2017)

[7] Recurrent neural networks tutorial, part 1 – introduction to rnns

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-

introduction-to-rnns/ (30.05.2017)

[8] Deep Visual-Semantic Alignments for Generating Image Descriptions

http://cs.stanford.edu/people/karpathy/deepimagesent/ (30.05.2017)

48

59

[9] Physical neural network liquid state machine utilizing nanotechnology
 https://www.google.com/patents/US7392230 (30.05.2017)

[10] Marcus Waibel, Dario Floreano and Laurent Keller, “A Quantitative Test of

Hamilton’s Rule for the Evolution of Altruism”, PLoS Biology, 2011

[11] Linda Corucci, Andrea Masini, Marco Cococcioni, “Approaching bathymetry

estimation from high resolution multispectral satellite images using a neuro-fuzzy

technique”, Journal of Applied Remote Sensing Volume 5, Issue 1, 2011

[12] Spiros Ioannou, Amaryllis Raouzaiou, Vasilis Tzouvaras, Theofilos Mailis, Kostas

Karpouzis, Stefanos Kollias, “Emotion recognition through facial expression

analysis based on a neurofuzzy network“, Neural Networks. 18 (4), 2005

[13] Jeff Hawkins, “On Intelligence”, NY:Times Books, 2004

[14] Zhou Lai, Gu Hongbin and Niu Ben, “Visual Hand Pose Estimation Based on

Hierarchical Temporal Memory in Virtual Reality Cockpit Simulator”, Information

Technology Journal 10, 2011

[15] Wolfgang Maass, “Networks of spiking neurons: The third generation of neural

network models”, Neural Networks. 10 (9),1997

[16] Chung-Chuan Lo’s lab, Drosophila whole brain simulation,

http://life.nthu.edu.tw/~lablcc/research_ch.html (30.05.2017)

[17] MIT Technology review, Deep learning

https://www.technologyreview.com/s/513696/deep-learning/ (30.05.2017)

[18] Wulfram Gerstner, Richard Kempter, J. Leo van Hemmen and Hermann Wagner,

“Hebbian Learning of Pulse Timing in the Barn Owl Auditory”, MIT press, 1999

49

60

[19] Fred Rieke, David Warland, Rob de Ruyter van Steveninck, William Bialek,

“Spikes: Exploring the Neural Code“, MIT Press, 1997

[20] David Ferster, Nelson Spruston, “Cracking the neuronal code”, Science, vol. 270

p.756- 757, 1995

[21] Колесницкий О. К., Бокоцей И. В., Яремчук С. С., “Аппаратная реализация

элементов импульсных нейронных сетей с использованием биспин-приборов,

Часть 1”, XII Всеросиийская научно-техническая конференция

«Нейроинформатика», 2010

[22] Julie Dethier, Paul Nuyujukian, Chris Eliasmith, Terrence C. Stewart, Shauki A.

Elasaad, Krishna V. Shenoy and Kwabena A. Boahen, “A Brain-Machine Interface

Operating with a Real-Time Spiking Neural Network Control Algorithm”,

Advances in neural information processing systems, 2011

[23] Mehmet Kocaturk, Halil Ozcan Gulcur and Resit Canbeyli, “Toward building

hybrid biological/in silico neural networks for motor neuroprosthetic

control”, Frontiers in Neurorobotics 9, 2015

[24] BrainCorp https://www.braincorp.com/technology/ (30.05.2017)

[25] Electronics360, Intel Follows Qualcomm Down Neural Network Path

 http://electronics360.globalspec.com/article/4318/intel-follows-qualcomm-down-

neural-network-path (30.05.2017)

[26] Introducing Qualcomm Zeroth Processors: Brain-Inspired Computing

 https://www.qualcomm.com/news/onq/2013/10/10/introducing-qualcomm-zeroth-

processors-brain-inspired-computing (30.05.2017)

[27] Taras Iakymchuk, Alfredo Rosado-Muñoz, Juan F. Guerrero-Martínez, “Simplified

spiking neural network architecture and STDP learning algorithm applied to image

classification”, EURASIP Journal on Image and Video Processing, 2015

 50

61

[28] IEEE spectrum, How IBM Got Brainlike Efficiency From the TrueNorth Chip

http://spectrum.ieee.org/computing/hardware/how-ibm-got-brainlike-efficiency-

from-the-truenorth-chip (30.05.2017)

[29] Lawrence Livermore National Laboratory, “The 16-chip IBM TrueNorth platform”

https://www.llnl.gov/news/lawrence-livermore-and-ibm-collaborate-build-new-

brain-inspired-supercomputer (30.05.2017)

[30] IBM Research, Neurosynaptic systems,

http://www.research.ibm.com/cognitive-computing/neurosynaptic-

chips.shtml#fbid=w89hb0votSW (30.05.2017)

[31] Peter O’Connor, “Real-Time Classification and Sensor Fusion with a Spiking Deep

Belief Network” Frontiers in Neuroscience 7, 2013

[32] Yosua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle, “Greedy

layer-wise training of deep networks”, Advances in Neural Information Processing

Systems 19, MIT Press, 2006

[33] Vinod Nair, Geoffrey E. Hinton, “Rectified linear units improve Restricted

Boltzmann Machines”, Proceedings of ICML, 807–814, 2010

[34] Geoffrey E. Hinton, Terrence J. Sejnowski, “Learning and Relearning in

Boltzmann Machines“,MIT Press, pp. 282–317, 1986

[35]Geoffrey E. Hinton, Ruslan R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks”, Science 313, pp. 504–507, 2006

[36]Geoffrey E. Hinton, Simon Osindero, Yee Whey Teh, “A fast learning algorithm

for deep belief nets”, Neural Comput. 18, 1527–1554, 2006

[37] Wulfram Gerstner, Werner Kistler, “Spiking Neuron Models. Single Neurons,

Populations, Plasticity”, Cambridge University Press, 2002

 51

62

[38] Arnold J. F. Siegert, “On the first passage time probability problem”, Phys, 1951

[39] Florian Jug, Matthew Cook and Angelika Steger, “Recurrent competitive networks

can learn locally excitatory topologies”, International Joint Conference on Neural

Networks, 2012

[40] SNN model for MATLAB https://github.com/dannyneil/edbn (30.05.2017)

[41] Deep Learning Toolbox for MATLAB

https://se.mathworks.com/MATLABcentral/fileexchange/38310-deep-learning-

toolbox (30.05.2017)

[42] Fakoo alphabet example http://www.fakoo.de/fakoo/fakoo-alphabet_en.html

(30.05.2017)

[43] Intelligent Control Systems (ISS0023) course homepage

http://a-lab.ee/edu/ISS0023 (30.05.2017)

[44] Spiking neural network files

https://github.com/dannyneil/edbn/archive/master.zip (30.05.2017)

[45] Spiking neural network solution introduction

https://github.com/dannyneil/edbn/blob/master/README.md (30.05.2017)

4852

48

User guide
Following manual is designed as entry point for those, who wants to try and understand
basics of this particular solution for image recognition using spiking neural network in
MATLAB environment.

1. Software
First thing that you must have is MATLAB/SIMULINK program. I have used version
R2014b. Also you must have following toolboxes:
To check which modules are installed, enter in Command Window “ver”

2. Package
Since at the moment there is no proper toolbox for spiking neural network in MATLAB,
main files can be downloaded from Github repository [44].

After download and extraction, you should have folder with name “edbn-master” with
following set of files.

Optional: because this solution is a part of bigger project, only files with green cycle is needed
for work

53

49

3. MATLAB
After extraction “edbn-master” folder must be placed as a current working folder in
MATLAB. Easiest way to do it is drag-n-drop folder in “Current Folder” section in
MATLAB. After that, double tap on this folder in MATLAB.

If all previous steps done correctly, in MATLAB should be followed file structure.

3.1 Installation verification

To proof, if everything is set correctly, enter “example” in Command Window and press
enter.

Training of the network takes time. At the end in the command window you should see
similar result, but mean error, score and time can be different.

Also, 2 new window must appear.

Meaning of this values and graphs will be explained later.

54

50

4. Files
Here are listed all used filed with short explanation what this files used for [45].

• edbnclean.m - cleans out all the temporary activations to save a minimum-size

EDBN file.

• edbnsetup.m - initializes the network and load defaults.

• edbntest.m – perform testing comparison

• edbntoptrain.m - performs supervised training by concatenating the top layer to
the top-2 layer, and jointly training a (top-2, top) <-> (top-1) RBM, then unrolling
again.

• edbntrain.m - performs unsupervised training of the network.

• erbmup.m / erbmdown.m - propagates rate-based activations up or down
through LIF neurons.

• erbmtrain.m - trains a single RBM layer in the DBN. This is the core source file
for the algorithm.

• example.m - runs an example.

• live_edbn.m - run the weights on an actual spiking network of neurons.

• mnist_uint8.mat – prepared MNIST dataset

• siegert.m - calculates the output spike rate of an input rate and input weights for
LIF neurons.

• visualize.m – visualize weights of the RBM

55

51

5. Settings
As was mentioned before, we deal with a part of bigger project. So, to simplify
understanding and remove unnecessary errors, some changes in example.m can
be made.
Removed code lanes will be highlighted.

5.1 Basic
Main work file in this approach is example.m. Below are explained what is
inside this file and how it can be used.

%% Load paths
addpath(genpath('.'));

Returns path to MATLAB toolbox folder
and ad this path to search path for this
session

%% Load data
load mnist_uint8;

Load MNIST dataset as training and testing
data

% Convert data and rescale between 0
and 0.2
train_x = double(train_x) / 255 * 0.2;
test_x = double(test_x) / 255 * 0.2;
train_y = double(train_y) * 0.2;
test_y = double(test_y) * 0.2;

Data in dataset in uint8 format and must be
converted to double. Also inputs (*_x files)
are given from 0 (white) to 255 (black) and
must be rescaled for range from 0 to 1.
Multiplication by 0.2 is needed for
maximizing spike firing.

%% Train network
% Setup
rand('seed', 42);
clear edbn opts;
edbn.sizes = [784 100 10];
opts.numepochs = 6;

Seeds the random number generator using
the nonnegative integer.
Removes previously entered network
settings.
Set number of inputs, neurons in hidden
layer and number of outputs.
Number of training cycles for each hidden
layer.

[edbn, opts] = edbnsetup(edbn, opts); Load setting in network initializing file.
% Train
fprintf('Beginning training.\n');
edbn = edbntrain(edbn, train_x, opts);
% Use supervised training on the top
layer
edbn = edbntoptrain(edbn, train_x,
opts, train_y);

Prints message about training start.
Perform supervised training of every single
layer.
Train the top layer by merging the top layer
to a lower layer and jointly training the set.

% Show results
figure;
visualize(edbn.erbm{1}.W'); %
Visualize the RBM weights
er = edbntest (edbn, test_x, test_y);
fprintf('Scored: %2.2f\n', (1-
er)*100);

Create a figure.
Shows vector of weigh for each neuron.
Calculates an error in recognition set.
Prints message with percent of recognition.

%% Show the EDBN in action
spike_list = live_edbn(edbn, test_x(1,
:), opts);
output_idxs = (spike_list.layers ==
numel(edbn.sizes));

Show feed with spike activity.

figure(2); clf;
hist(spike_list.addrs(output_idxs) -
1, 0:edbn.sizes(end));
xlabel('Digit Guessed');
ylabel('Histogram Spike Count');
title('Label Layer Classification
Spikes');

Show result of recognition.

%% Export to xml
edbntoxml(edbn, opts, 'mnist_edbn');

Creates a base64-encoded representation of
the network.

56

52

5.2 Advanced
More specific setting can be found in edbnsetup.m.

opts.alpha =
1

Learning rate

opts.decay =
0.0001

Spike decay speed

opts.momentum =
0.0

Impuse

opts.temp =
0.005

Noise for Siegert function

opts.tau_m =
5.0

Membrane time constent

opts.tau_s =
0.001

Synaptic response time constant

opts.t_ref =
0.002

Absolute refractory time

opts.v_thr =
0.005

Threshold of Siegert function

opts.f_infl =
1

Fast weight coefficient

opts.f_decay =
0.05

Fast weight incorporate decay

opts.f_alpha =
5

Fast weight learning rate

opts.pcd =
1

Persistent contrastive divergence

opts.sp =
0.1

Sparsify

opts.sp_infl =
0.2

Sparsify fast weight coefficient

opts.ngibbs =
2

Fast weight restriction for obtaining model sample

opts.initscl =
0.01

Weight coefficient

opts.batchsize =
50

Number of training samples in one neuron

opts.reup =
1

Train the composite layer

opts.wtreset =
1

Weights and biases update

To change recognition feed setting, open live_edbn.m file.

opts.recreate =
1

Show recognized image

opts.timespan =
4

Time of live feed

opts.numspikes =
2000

Number of spikes used

opts.delay =
0.001

Delay between spikes firing

opts.show_dt =
0.010

Dependency for spike exp(-opts.show_dt / opts.vis_tau);

opts.vis_tau =
0.05
opts.makespikes =
1

Create spike proportional to intensity

opts.makevisdim =
1

Build show dimensions

57

53

6 Results

6.1 Training
After execution “example.m” in Command Window will appear:

Beginning training.
Training has started.

Epoch 1: mean error: 0.00843.
Passed training cycles and error between desired and obtained error. Lower value
means better result.

6.2 Feedback

When training is finished, following information will be available in Command
Window.

Scored: 91.80
Percentage of recognized inputs.

Completed 2000 input spikes occurring over 4.00 seconds, in 5.557 seconds of real
time.
Number of spikes and time, used for active processing.

6.3 Visual representation

First graph – weight coefficients

Each square represents vector of weight merged into each neuron.

58

54

Second graph – spike activity

Input image processing with
spikes

Inner spike
activity

Recognized
input

Restored input

Third graph – recognized input

Number of activated spikes used for recognition.

59

55

7 Laboratory work
As a part of TUT course named Intelligent Control Systems (ISS0023) below will be
provided example of alphabet recognition.

7.1 Task
The task is to train spiking neural network for character recognition. Every character is
given as 5x7 matrix. In total 26 samples.

7.2 Training and testing data
For dataset creation will be used lectures materials ([43]- materials - laboratory works –
image recognition lab). From the archive we will use letter.m (dataset) and
recognition_by_FF_net (training and test data).

Letter.m file must be placed in the same folder where are files from Section 3 of this
guide.

After merging letter.m should be look like:
letterA = [0 0 1 0 0 ...
 0 1 0 1 0 ...
 0 1 0 1 0 ...
 1 0 0 0 1 ...
 1 1 1 1 1 ...
 1 0 0 0 1 ...
 1 0 0 0 1]';

Letter A as 5x7 matrix
written as vector

… Letters from A to Z
letterZ = [1 1 1 1 1 ...
 0 0 0 0 1 ...
 0 0 0 1 0 ...
 0 0 1 0 0 ...
 0 1 0 0 0 ...
 1 0 0 0 0 ...
 1 1 1 1 1]';

Letter Z as 5x7 matrix
written as vector

alphabet =
[letterA,letterB,letterC,letterD,
letterE,letterF,letterG,letterH,...
letterI,letterJ,letterK,letterL,
letterM,letterN,letterO,letterP,...
letterQ,letterR,letterS,letterT,
letterU,letterV,letterW,letterX,...
letterY,letterZ];

Dataset

targets = eye(26); Matrix with 1 on diagonal
P=[alphabet, alphabet+randn(35,26)*0.05,...
 alphabet+randn(35,26)*0.1,...
 alphabet+randn(35,26)*0.2,...
 alphabet+randn(35,26)*0.3,...
];

Training data generation

T=[targets targets targets targets targets
];

Training data answers

test_data=alphabet+randn(35,26)*0.22; Test data generation
test=eye(26); Test data answers, for error

calculation

60

56

7.3 Setup
To run Spiking neural network with this dataset changes in example.m must be applied.
Main modifiers will be highlited.
%% Load data
run letters.m;

Load alphabet dataset as training and
testing data

%% Convert data %without advanced better use 0.3
train_x = double(abs(P.'))*0.4;
test_x = double(abs(test_data.'))*0.4;
train_y = double(abs(T.'))*0.4;
test_y = double(abs(test.'))*0.4;

(*.’) is needed for input, because
system accept sample as row. In dataset
samples stored as column. abs(*)
removes negative values.
Multiplication by 0.4 is needed for
maximizing spike firing.

%% Train network
% Setup
rand('seed', 42);
clear edbn opts;
edbn.sizes = [35 35 26 26];%without advanced better
use 35 50 50 26
opts.alpha = 0.4;
opts.momentum = 0.3;
opts.f_decay = 0.003;
opts.f_alpha = 1;
opts.pcd = 0.6;
opts.sp = 0.1;
opts.sp_infl = 0.9;
opts.ngibbs = 3;
opts.batchsize = 13; % Can be 1,2,5,10,13,26,65,120

opts.numepochs = 25; %without advanced better use 50

Seeds the random number generator
using the nonnegative integer.
Removes previously entered network
settings.
Set number of inputs, neurons in hidden
layer and number of outputs.
Number of training cycles for each
hidden layer.
Number of samples per neuron.

[edbn, opts] = edbnsetup(edbn, opts); Load setting in network initializing file.
% Train
fprintf('Beginning training.\n');
edbn = edbntrain(edbn, train_x, opts);
% Use supervised training on the top layer
edbn = edbntoptrain(edbn, train_x, opts,
train_y);

Prints message about training start.
Perform supervised training of every
single layer.
Train the top layer by merging the top
layer to a lower layer and jointly
training the set.

% Show results
figure;
visualize(edbn.erbm{1}.W'); % Visualize the
RBM weights
er = edbntest (edbn, test_x, test_y);
fprintf('Scored: %2.2f\n', (1-er)*100);

Create a figure.
Shows vector of weigh for each neuron.
Calculates an error in recognition set.
Prints message with percent of
recognition.

%% Show the EDBN in action
spike_list = live_edbn(edbn, test_x(1, :),
opts);
output_idxs = (spike_list.layers ==
numel(edbn.sizes));

Show feed with spike activity.

Highlighted digit represents testing
sample.
In this case can be changed from 1 up
to 26.

figure(2);
hist(spike_list.addrs(output_idxs) - 1,
0:edbn.sizes(end));
xlabel('Letter Guessed');
ylabel('Histogram Spike Count');
xlim([0 25]);
set (gca,'xtick', [0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22 23 24 25]);
set (gca,'xtickLabel',{'A','B','C','D','E',
'F','G','H','I','J','K','L','M','N','O','P',
'Q','R','S','T','U','V','W','X','Y','Z'});
title('Label Layer Classification Spikes');

Show result of recognition.

Add scale tick for each alphabet letter.

Name this tick with letter

For more deep setup, see chapter 5.2 of this guide.

61

57

To achieve better visualization, in live_edbn.m file in section «% Build show dimensions» is
needed to change
opts.show_dims{i} = [prod(factors(2:2:end)) prod(factors(1:2:end))];
to
opts.show_dims{i} = [prod(factors(1:2:end)) prod(factors(2:2:end))];
otherwise, matrix will be displayed in first graph as 7x5, but not 5x7.

7.4 Result
After the setup preparation and execution of the modified letter.m will start training
process.
Since we used 2 hidden layers and 120 epoch training will take some time.

When training is finished. In Command Window “Score” should be 100.00. It means
that all of the 26 testing samples are recognized as correct letter.
Also graphs with recognition results will be created.

First one is graph with weight coefficient for each neuron for hidden layer.

The second group represents recognition process and obtained result. In our case letter A.

62

