
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Mariam Bokeria 156298

CHARACTER RECOGNITION WITH

SPIKING NEURAL NETWORK

Master’s thesis

Supervisor: Eduard Petlenkov

 Associate Professor

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Mariam Bokeria 156298

SÜMBOLITE TUVASTAMINE

IMPULSSNÄRVIVÕRKUDEGA

magistritöö

Juhendaja: Eduard Petlenkov

 Associate Professor

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Mariam Bokeria

04.05.2017

4

Abstract

This work aims to show the image, in this case English uppercase letters, to be recognized

by spiking neural network. Different types of neural network models are introduced,

which are modeled for neural network and pattern recognition. For this case of work

Izhikevich model is used and implemented in MATLAB. Finally, as a conclusion and

result the solution to the image processing problem is shown.

This thesis is written in English and is 45 pages long, including 8 chapters, 19 figures and

0 tables.

5

Annotatsioon

Sümbolite tuvastamine impulssnärvivõrkudega

Töö eesmärgiks on spiking-tüüpi närvivõrkude tööprintsiipide ja kujundite tuvastamise

jaoks rakendatavuse uurimine. Töös käsitletakse erinevaid impulssi närvivõrkude

struktuure. Töös on demonstreeritud Ižikevitši mudel realisatsioon MATLABis ning see

on rakendatud kujundite tuvastamise ülesande lahendamiseks. Meetodi rakendamine on

demonstreeritud tähtede tuvastamise näitel.

Töö on kirjutatud inglise keeles ning sisaldab teksti 45 leheküljel, 8 peatükki ning 19

joonist.

6

List of abbreviations and terms

SNN Spiking Neural Network

IF Integrate-and-Fire

LIF Leaky Integrate-and-Fire

STDP Spike-Timing-Dependent Plasticity

LTP Long Term Potentiation

LTD Long Term Depression

SAPR Synaptic Activity Plasticity Rule

RGB Red, Green, Blue color model

7

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annotatsioon Sümbolite tuvastamine impulssnärvivõrkudega .. 5

List of abbreviations and terms .. 6

Table of contents .. 7

List of figures ... 9

1 Introduction ... 10

2 A Brief History Of Neural Networks .. 14

3 Neuron Models .. 16

3.1 McCulloch-Pitts Model .. 16

3.2 Hodgkin-Huxley-type model .. 16

3.3 Integrate-and-fire (IF) model .. 17

3.4 The Leaky Integrate-and-Fire Neuron Model .. 18

3.5 Izhikevich model .. 20

4 Neural Coding Techniques .. 22

4.1 Input Encoding ... 23

4.2 Rate Coding .. 23

4.3 Sine Wave Encoding .. 23

4.4 Spike Density Encoding ... 24

4.5 Temoporal Encoding .. 24

4.6 Rank Order Encoding ... 25

5 Learning Rules ... 25

5.1 Synaptic weight modification ... 25

5.2 Spike Timing-Dependent Plasticity .. 26

5.3 Synaptic Activity Plasticity Rule .. 26

6 Character Recognition – Review Analyses ... 26

7 Conclusion ... 38

8 Summary .. 39

8

References .. 41

Appendix 1 – SNN Code .. 44

9

List of figures

Figure 1. Neural network with spike .. 14

Figure 2. Spiking Neural Network for character recognition ... 27

Figure 3. Input Letter “A” .. 28

Figure 4. Input letter “B” .. 28

Figure 5. English uppercase letter “A” ... 30

Figure 6. English uppercase letter “B” ... 30

Figure 7. As a result the recognized letter “A” and spike reactions 31

Figure 8. Spike reaction to the input amount of neurons (10) .. 31

Figure 9. Spike reaction to the input amount of neurons (400) 32

Figure 10. As a result the recognized letter “B” and spike reactions 33

Figure 11. spike reaction to the input amount of neurons or input pixels (10) for letter

“B” .. 34

Figure 12. spike reaction to the input amount of neurons or input pixels (795) for letter

“B” .. 34

Figure 13. Spike reactions to the image “letter A” the size of 5x7 35

Figure 14. Spike reactions to the image “letter B” the size of 5x7................................. 36

Figure 15. The result matrice. Recognized letter “A” .. 36

Figure 16. The result matrice. Recognized letter “B” .. 37

Figure 17. Letter A with noise .. 37

Figure 18. Spike reactions to the image of letter “A” with noise 38

Figure 19. Recognized image of letter “A” with noise... 38

10

1 Introduction

This paperwork is about image or character recognition using an artificial spiking neural

network. The goal of this work is to present historical background of the artificial neural

networks in computer science, name some existing famous models of neural networks

and descuss examples. The problem to be highlighted is image or character wich must be

recognized using spiking neural network (SNN). This paperwork mostly contains the

survey about SNN, but the problem to be solved is English upper case letters of alphabet

which must be recognized by the network.

The first section is going to be the introduction, the second section will be the brief history

of neural networks, the third section will be about existing neural network models, it will

contain the subsections about some famous models (McCulloch-Pitts, Hodgkin-Huxley-

type model, Integrate-and-fire (IF), Leaky Integrate-and-fire (LIF) and Izhikevich

models). In the fourth section, there will be descussed some neural coding techniques.

The next fifth section will be about network learning rules. After that in the sixth section

there will be shown the solution to the main problem defined above. Finally, as a

conclusion and summery there will be the main goal presented and shown the answers to

the problem stated in here.

Before starting to introduce the SNN let’s compare the brain and the computer, artificial

and biological neuron [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15].

The main differences between the brain and the computer are:

• The basic building blocks of the brain are biological neurons and they are slower

than silicon logic gates. The neurons operate in milliseconds while the silicon

gates operate in the nanosecond range which is about six orders of magnitude

faster.

• The brain makes up for the slow rate of operation with two factors: one is that it

has huge amount of neurons and interconnections between them. The human brain

11

contains approximately 1014 to 1015 interconnections. The ohter thing is that the

function of biological neuron is much more complex than the logic gate.

• The brain is very energy efficient. It consumes about 10-16 joules per operation

per second while a digital computer consumes 10-6 joules per operation per

second.

• Brain is a highly complex, non-linear, parallel information processing system. It

performes tasks like: pattern recognition, preception, motor control much more

faster than the digitaal computers.

• If we consider the efficiency of a visual system like a complex task of perceptual

recognition for example a recognition of a familiar face can be accomplished in

100-200 ms while tasks of much less coplexity takes hours or even days on

conventional computers.

Here are introduced the differences between atrificial and biological neuron:

Speed: neural networks are faster in processing information than biological neurons. The

cycle time corresponding to execution of one step of a programm in the central processing

unit is in the range of few nano seconds while for biological neuron it takes milliseconds.

Processing: many programs have large number of instructions and they operate in a

sequential mode, one instruction after another on a conventional computer while

biological neural networks can perform massively parallel operations.

Size and complexity: The size and complexity of connections gives the brain the power

of performing complex pattern recognition tasks, which can not be realized on a

computer.

Storage: In a computer the information is stored in a memory which is addressed by its

location. Any new information in the same location can destroy the old information. Here

it is strictly replaceable. Biological neurons store information in the strength of

interconnections. Information in the brain is adaptable because the new information is

added by adjusting the interconnection strengths without destroying the old information.

12

Fault tolerance: Artificial nets are not fault tolerant, since the information corrupted in

the memory can not be retrieved while in biological neurons if few connections are not

working the information is still preserved due to the distributed nature of the encoded

information.

Control mechanism: In computer there is a control unit which monitores all the activities

of computing while in the brain there is no central control for processing information.

The neuron acts based on the information locally available and transmits its output to the

neurons connected to it. So there is no specific control mechanism.

After defining the main differences between artificial and biological neurons, let’s

introduce SNN.

Biological neurons use short or sudden increases in voltage to send the information. These

signals are called spikes or pulses.

Humans have sensors all over the body. We constantly receive sensory inputs from the

environment, we process the information, we can recognize danger, food, subjects, etc.

and act according to that information. Not only humans are like this, but animals and

everything that interacts with its environment needs to do so.

Millions of neurons are interconnected with each other. They cooperate to efficiently

process incoming signals and decide on actions. In fact, scientists still don’t understand

completely how the single neuron is functioning, but it is understood how they are

working. Neurons send out short pulses, spikes as signals. Basically this was used and

mathematicaly modeled in computer use, as it’s called artificial neural networks.

Artificial neural networks are already becoming a fairly old technique within computer

science. There are three generations of artificial neurons. The first idea and model is over

fifty years old. The first generation of artificial neural networks was a very simple model

conceptually: a neuron sends a binary signal if the sum of its weighted incoming signals

rises above a threshold value. This kind of neurons have been successfully applied in

powerful artificial neural networks like multi-layer perceptrons. For example, any

function with Boolean output can be computed by a multilayer perceptron with a single

hidden layer. These networks are called universal for digital computations.

13

Neurons of the second generation do not use a step- or threshold function to compute their

output signals, but a continuous activation function, making them suitable for analog in-

and output. Commonly used examples of activation functions are the sigmoid and

hyperbolic tangent. Typical examples of neural networks consisting of neurons of these

types are feed-forward and recurrent neural networks.

Neuron models of the first two generations do not employ individual pulses, but their

output signals typically lie between 0 and 1.

In the third generation of neural networks neurons use pulse coding instead of using the

rate coding. For example humans analyse and classify visual input (i. e. facial recognition)

in under 100 ms. This leaves about 10 milliseconds of processing time per neuron. Such

a time-window is very little to allow an averaging mechanism like rate coding. This does

not mean that rate coding is not used, but when speed is an issue pulse coding schemes

are favoured.

Computers communicate with bits; neurons use spikes. Incoming signals change the

voltage of the neuron and when this reaches above a threshold-value the neuron sends out

an action potential itself. Such an action potential is a short (1ms) and sudden increase in

voltage that is created in the cell body or soma. Due to their form and nature we refer to

them as spikes or pulses [16] [17].

SNN models are the third generation of neural networks and are considered to be one of

the most biologically accurate models [18].

Figure 1 shows the example of neural networks with spiks visualy, which was prvided in

[19].

14

Figure 1. Neural network with spike

2 A Brief History Of Neural Networks

The study of human brain dates back thousands of years. The recent advances in science

(such as electronics, cognitive and computer science) have allowed us to partially emulate

the human brain and its innate cognitive ability.

Here, in this section, some of the most significant neural network designs and models are

introduced.

In 1943, Warren McCulloch and Walter Pitts designed and built a primitive artificial

neural network using simple electric circuits that formed the basis for modern era of

neural network research.

With the emergence of computers in the 1950s, the neural models were ported from

hardware to the digital realm. Alan Lloyd Hodgkin and Andrew Huxley described a

scientific model of a spiking neuron in 1952. They explained the ionic mechanisms

underlying the initiation and propagation of action potentials in the squid giant axon.

15

Hodgkin-Huxley model is widely regarded as one of the great achievements of 20th-

century biophysics that describes how action potentials in neurons are initiated and

propagated.

Later, in 1954 Marvin Minsky carried out research on neural networks.

In 1958, based on the idea of McCulloch-Pitt’s theory and research done, a neurobiologist

named Frank Rosenblatt worked on the idea of perceptron. He built the first artificial

neural network realized in hardware.

In 1960, Bernard Wildrow and Marcian Hoff developed the Adaptive Linear Neuron or

later known as Adaptive Linear Element and Multiple Adaptive Linear Neuron models

which were the first neural networks applied to real problems. Adaptive Linear Element

is a convergent type single layer neural network based on the McCulloch-Pitts neuron

consisting of a weight, a bias and a summation function. It’s used for prediction involving

binary patterns as its input and one output. Similarly, for problems requiring multiple

outputs, multiple sets of Adaptive Linear Elements are used in parallel and this model is

known as Multiple Adaptive Linear Neuron.

First introduced by Bryson and Ho (1975), the Backpropogation neural networks gained

recognition through the work of David E. Rumelhart, Geoffrey E. Hinton and Ronald J.

Williams in 1986. They extended the Widrow and Hoff’s delta rule to networks with

multiple hidden layers by means of generalized delta rule. This model was based on the

perceptron and came to be known as the Back Propagation Network, which requires

differentiable activation (transfer) function. It is one of the most widely used artificial

neural network model.

In 1990 Jeff Elman presented a simple recurrent neural network, which is a feed-forward

network modified by one or more feedback connections.

More recently spiking neural networks (Gerstner & Kistler, 2002; Izhikevich, 2003) have

been developed. It belongs to the third generation of neural networks. Their mechanism

is more realistic in terms of their spiking processes resembling the biological neurons

[20].

16

3 Neuron Models

Here, in this section some famous neuron models will be descussed. Spiking neural

network consists of many interconnected neurons. So as previously descussed in the

above section the history of artificial neural network already starts from the beginning of

the 20th century. I’ve chosen some famous neuron models to name and to talk about.

3.1 McCulloch-Pitts Model

The McCulloch-Pitts model of neuron is one of the earliest and simplest model which

was firstly introduced n 1943. It is also known as linear threshold gate. It is a neuron of a

set of inputs 𝐼1, 𝐼2, 𝐼3, … , 𝐼𝑚 and one output y. The inputs could be either a zero or one and

the output also zero or one. Also each input could be either excitatory or inhibitory. So

the linear threshold gate simply classifies the set of inputs into two different classes and

the output y is binary. Such a function can be described mathematically using following

equations:

𝑆𝑢𝑚 = ∑ 𝐼𝑖𝑊𝑖
𝑁
𝑖=1 (1)

𝑦 = 𝑓(𝑆𝑢𝑚) (2)

𝑊1, 𝑊2, 𝑊3, … , 𝑊𝑚 are weight values normalized in the range of either (0, 1) or (-1, 1)

and associated with each input line, Sum is the weighted sum. The function 𝑓 is a linear

step function at threshold value [21].

The whole point of this model is to sum the inputs. If the the input is one and is

excitatory it added one, if the input is again one and is inhibitory it substructed one from

the sum. This is done for all the inputs and the final sum is calculated.

If this final sum is less than some threshold value, then the output is zero. Otherwise the

output is one.

3.2 Hodgkin-Huxley-type model

As known from [22] Reference Hodgkin-Huxley neuron model which was firstly

introduced in 1952 represents a relatively high degree of biological accuracy describing

17

neuron function. This model has been widely and successfully used in neuroscience

research [22].

The Hodgkin–Huxley model is considered to be one of the most biologically accurate

spiking neuron models. It consists of four differential equations and a large number of

parameters. The differential equations describe the neuron membrane potential, activation

of 𝑁𝑎 and 𝐾 currents, and inactivation of 𝑁𝑎 currents. The model can exhibit almost all

types of neuronal behavior if its parameters are properly tuned. This model is very

important to the study of neuronal behavior and dynamics as its parameters are

biophysically meaningful and measurable. A time step of 0.01 ms was utilized to update

the four differential equations as this is the most commonly used value [18].

𝑑𝑣

𝑑𝑡
= (

1

𝐶
) {𝐼 − 𝑔𝑘𝑛4(𝑉 − 𝐸𝑘) − 𝑔𝑁𝑎𝑚3ℎ(𝑉 − 𝐸𝑁𝑎) − 𝑔𝐿(𝑉 − 𝐸𝐿)} (3)

𝑑𝑛

𝑑𝑡
= (𝑛∞(𝑉) − 𝑛)/𝜏𝑛(𝑉) (4)

𝑑𝑚

𝑑𝑡
= (𝑚∞(𝑉) − 𝑚)/𝜏𝑚(𝑉) (5)

𝑑ℎ

𝑑𝑡
= (ℎ∞(𝑉) − ℎ)/𝜏ℎ(𝑉) (6)

3.3 Integrate-and-fire (IF) model

The most widely used and best-known model of thresholdfire neurons, and spiking

neurons in general, is the integrate-and-fire neuron.

Once the voltage over the capacitor goes above threshold value ϑ the neuron sends out a

pulse itself. Mathematically we write:

𝜏𝑚
𝜕𝑢

𝜕𝑚
= −𝑢(𝑡) + 𝑅𝐼(𝑡) (7)

To describe the effects on membrane potential 𝑢 over time, with 𝜏𝑚 being the membrane

time constant in which voltage „leaks“ away. As with the spike-response model the

neuron fires once 𝑢 crosses threshold 𝜗 and a short pulse 𝛿 is generated. To force a

refractory period after firing we set 𝑢 to 𝐾 < 0 for a period of 𝛿𝑎𝑏𝑠.

𝐼𝑖(𝑡) = ∑ 𝑐𝑖𝑗𝑗𝜖Γ𝑖
∑ 𝛿(𝑡 − 𝑡𝑗

(𝑓)
)

𝑡
𝑗
(𝑓)

𝜖𝐹𝑗
 (8)

18

The input current 𝐼 for neuron 𝑖 will often be 0, as incoming pulses have a finite short

length. Once a spike arrives, it is multiplied by synaptic efficacy factor 𝑐𝑖𝑗 forming the

postsynaptic potential that charges the capacitor. This model is computationally simple

and can easily be implemented in hardware. It is closely linked to the more general spike-

response model and can be used like it by rewriting it into the correct kernels 𝜂 and 𝜀

[17].

3.4 The Leaky Integrate-and-Fire Neuron Model

According to [23] research article I found out that the leaky integrate-and-fire neuron is

one of the simplest spiking neuron models which is still very popular. In the simplest

form the neuron is modeled as a “leaky integrator” of its input 𝐼(𝑡):

𝜏𝑚
𝑑𝑣

𝑑𝑡
= −𝑣(𝑡) + 𝑅𝐼(𝑡) (9)

where 𝑣(𝑡) represents the membrane potential at time t, 𝜏𝑚 is the membrane time constant

and R is the membrane resistance. This equation describes a simple resistor-capacitor

(RC) circuit where the leakage term is due to the resistor and the integration of 𝐼(𝑡) is due

to the capacitor that is in parallel to the resistor. The spiking events are not explicitly

modeled here but when the membrane potential 𝑣(𝑡) reaches a certain spiking threshold

𝑣𝑡ℎ value, it is reset to a lower value 𝑣𝑟 (reset potential) and the leaky integration process

described by first Equation starts a new with the initial value 𝑣𝑟. Also it is possible to add

an absolute refractory period ∆𝑎𝑏𝑠 immediately after 𝑣(𝑡) hits 𝑣𝑡ℎ. During the absolute

refractory period, membrane potential 𝑣(𝑡) might be clamped to reset potential 𝑣𝑟 and

the leaky integration process is re-initiated following a delay of absolute refrectoriness

∆𝑎𝑏𝑠 after the spike.

Stimulation by a constant input current: If considering the case with constant input

current 𝐼(𝑡) = 𝐼 and 𝑣𝑟 = 0 then the solution to first given equation will be this:

𝑣(𝑡) = 𝑅𝐼[1 − exp (−
𝑡

𝜏𝑚
)] (10)

The asymptotic value of the membrane potential is 𝑅𝐼. If this value is less than the spiking

threshold, 𝑣𝑡ℎ, no spike can be generated. If, however, 𝑅𝐼 > 𝑣𝑡ℎ, then the neuron

generates spikes. If 𝑣(0) = 𝑣𝑟 = 0, the time of the first spike 𝑡(1) can be found like this:

19

𝑣𝑡ℎ = 𝑅𝐼[1 − exp (−
𝑡(1)

𝜏𝑚
)] (11)

𝑡(1) = 𝜏𝑚𝑙𝑛
𝑅𝐼

𝑅𝐼−𝑣𝑡ℎ
 (12)

This equation also shows the time between each successive spike the neuron fires. But

this is only because of the case when 𝑣(0) = 𝑣𝑟. If adding the absolute refrectory period

∆𝑎𝑏𝑠 also then the equation will be:

𝑇 = ∆𝑎𝑏𝑠 + 𝜏𝑚𝑙𝑛
𝑅𝐼

𝑅𝐼−𝑣𝑡ℎ
 (13)

𝑓 is the mean firing rate of the neuron and it is given by 1/𝑇:

𝑓 = [∆𝑎𝑏𝑠 + 𝜏𝑚𝑙𝑛
𝑅𝐼

𝑅𝐼−𝑣𝑡ℎ
]

−1

 (14)

Stimulation by a time-varying input current: For a general time-varying input current

𝐼(𝑡) the solution to the main first equation will be:

𝑣(𝑡) = 𝑣𝑟 exp (−
𝑡−𝑡0

𝜏𝑚
) +

𝑅

𝜏𝑚
∫ exp (−

𝑠

𝜏𝑚
)

𝑡−𝑡0

0
𝐼(𝑡 − 𝑠)𝑑𝑠 (15)

Where the initial condition 𝑣(𝑡0) = 𝑣𝑟. This equation also describes the dynamics of the

membrane potential between successive spiking events. When the membrane potential

reaches the threshold, it is immediately reset to 𝑣𝑟 and starts to evolve according to the

equation again until the next spiking event.

Stimulation by synaptic currents: Previous examples considered the stimulation of the

Leaky Integrate-and-Fire neuron by the direct injection of constant or time-varying

currents. Now, consider a more realistic situation where the neuron is stimulated by pre-

synaptic spikes arriving at its synapses. Each pre-synaptic spike makes a stereotyped

contribution, described by a function 𝛼(𝑡), to the post-synaptic current and contributions

of different pre-synaptic spikes are linearly summed to obtain the total post-synaptic

current.

The total post-synaptic current to the i-th neuron is this:

𝐼𝑖(𝑡) = ∑ 𝜔𝑖𝑗 ∑ 𝛼(𝑡 − 𝑡𝑗
(𝑓)

)𝑓𝑗 (16)

20

Where 𝑡𝑗
(𝑓)

 represents the time of the 𝑓-th spike of the 𝑗-th pre-synaptic neuron; 𝜔𝑖𝑗 is the

strength of synaptic efficacy between neuron i and neuron j. Common choices for 𝛼

include the instantaneous Dirac 𝛿-pulse: 𝛼(𝑡) = 𝑞𝛿(𝑡), where q is the total charge

injected into the synapse;

The alpha synapse:

𝛼(𝑡) = 𝛼
𝑡

𝜏
exp (1 −

𝑡

𝜏
) (17)

The bi-exponential synapse:

𝛼(𝑡) = 𝛽
𝜏2

𝜏2−𝜏1
[exp (−

𝑡

𝜏1
) − exp (−

𝑡

𝜏2
)] (18)

Where 𝛼 and 𝛽 are normalizing constants and 𝜏, 𝜏1 and 𝜏2 are the time constants of the

synapses [23].

3.5 Izhikevich model

Izhikevich, has developed a class of models of spiking neurons that balances the

computational efficiency of Integrate-and-Fire models with the biological plausibility and

versatility of Hodgkin-Huxley type models.

By generating sequences of action potentials, nerons process data. Neurons encode

computations into sequences of spikes which are biophysically determined by the cell’s

action-potential-generating mechanism. Izhikevich proposed a simplified model, which

contains two coupled differential equations, but is able to reproduce complex neural

behaviour. The model is based on following equations:

𝑑𝑣

𝑑𝑡
= 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 (19)

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢) (20)

with the auxiliary after-spike resting equations:

𝑣 ≥ 𝑉𝑡ℎ 𝑡ℎ𝑒𝑛 {
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
 (21)

21

Here, 𝑣 represents the membrane potential of the neuron and 𝑢 represents a membrane

recovery variable, which accounts for the activation of 𝐾+ ionic currents and inactivation

of 𝑁𝑎+ ionic currents, and it provides negative feedback to 𝑣. After the spike reaches the

threshold value 𝑉𝑡ℎ the membrane voltage and the recovery variable are reset according

to the equations above. If 𝑣 skips over 𝑉𝑡ℎ, then it first is reset to 𝑉𝑡ℎ and then to 𝑐 so that

all spikes have equal magnitudes. The part 0.04𝑣2 + 5𝑣 + 140 is chosen so that 𝑣 is in

the mV scale and time is in ms. If we rewrite the Izhikevich model, here we have:

𝑢̇ = 𝑎(𝑢 − 𝑢𝑟)(𝑢 − 𝑢𝑡) + 𝐼 (22)

If 𝑢 ≥ 𝑢𝑝𝑒𝑎𝑘 then 𝑢 ← 𝑢𝑟𝑒𝑠𝑒𝑡. It can be simplified by applying a first-order Euler

approximation to the quadratic model:

𝑢𝑘+1 = 𝑢𝑘 + 𝐼𝑘 + 𝑎(𝑢𝑘 − 𝑢𝑟)(𝑢𝑘 − 𝑢𝑡) (23)

If 𝑢𝑘+1 ≥ 𝑢𝑝𝑒𝑎𝑘 then 𝑢𝑘+1 ← 𝑢𝑟𝑒𝑠𝑒𝑡; where 𝑘 is the step number. The last term can be

approximated using two taps:

𝑢𝑘+1 = 𝑢𝑘 + 𝐼𝑘 + ⌊
𝑢𝑘

𝑃2
⌋ + ⌊

𝑢𝑘

𝑃2
⌋ (24)

Where 𝑃𝑖 = (−1)𝑠𝑖 ∗ 2𝑝𝑖 with 𝑝𝑖 and 𝑠𝑖 being the parameters of the 𝑖𝑡ℎ tap. On the other

hand, in equilibrium (without input), the Izhikevich model is:

𝑢 = 0.004𝑣2 + 5𝑣 + 140 (25)

𝑢 = 𝑏𝑣 (26)

These equations, from a geometrical viewpoint, represent a parabolic curve and a line.

The crossing points of these curves give the equilibrium points of the system (neuron).

Different spiking patterns are produced by changing these crossing points and the

threshold action potential. The crossing points can be calculated as 𝐸1 = (𝑒𝑣1, 𝑒𝑢1) and

𝐸2 = (𝑒𝑣2, 𝑒𝑢2), where [14]:

𝑒𝑣1,2 = 12.5 ((𝑏 − 5) ± √𝑏2 − 10𝑏 + 2.6) (27)

𝑒𝑢1,2 = 𝑏𝑒𝑣1,2 (28)

22

4 Neural Coding Techniques

The system composes of 3 functional parts: the encoding part, the learning part and the

readout part.

Each part performs different functional role in the system: the encoding one generates the

set of specific activity patterns that represent the various attributes of external stimuli; the

learning one tunes the neurons’ weights making sure particular neurons can respond to

certain patterns correctly; the readout part extracts information about the stimulus from a

given neural response. Through this architecture, the problem of getting data into and out

of the spiking neural network is solved, and the task of pattern recognition could be

fulfilled.

The aim of the encoding part is to generate spiking patterns that represent the input

stimuli. The encoding neuron has 𝑀 input points which are selected from the components

of the stimulus. It performs a specific function to convert the input points into latencies

within the encoding window. For example, if the stimulus is composed of binary values

(0 or 1), the function of the encoding neuron is to convert the binary string into a decimal

value.

The learning part of network is composed of one layer of tempotrons. The encoding

neurons are fully connected to the learning neurons. The number of encoding neurons is

determined by the number of patterns. The tempotron can perform the classification task

as long as the load is less than a critical value. Therefore, as long as the number of patterns

does not exceed the critical load value, the network can perform the task well. If there are

too many patterns, the number of encoding neurons should be increased correspondingly.

The tempotrons comprise the learning neurons. The learning neuron fires or not when it

is presented to a stimulus and then the synaptic efficacies are updated according to the

learning rule.

The aim of the readout part is to extract information about the stimulus from the response

of learning neurons. Each learning neuron responds to a stimulus by firing (1) or not firing

23

(0). So, the total 𝑁 learning neurons as the output can represent a maximum number of

2𝑁 classes of patterns. The number of learning neurons is determined by the number of

classes in the recognition task. For example, four readout is sufficient for a group of

patterns containing 16 classes [24].

In subsections below there are some coding techniques discussed and in the next Section

– learning rules.

4.1 Input Encoding

Spiking neural networks differ significantly from early neural networks. The presence

and precise timing of spikes encapsulates meaning. Therefore different techniques are

required to submit a stimulus to the network. Here I will name and descuss techniques of

transforming data into a suitable form for network submission [22].

4.2 Rate Coding

The notion of rate coding assumes that a significant portion of information is encoded in

the firing rate or frequency of neurons. Probabilistic firing rates can be used to encode

information. This technique of encoding has been criticized for several reasons. In

particular, behavioral experiments show that human response times to visual stimuli are

very short, which would not leave enough time for an average firing rate to be determined

by the system [22].

4.3 Sine Wave Encoding

In the supervised classification problem there exists input features which must be

transformed to an acceptable format for the spiking neural network. One method of

transformation is sine wave encoding. The raw feature values are normalized and then the

amplitude of the sine wave is adjusted based on the normalized feature value. This signal

is presented to the network for some portion of the total simulation time. Since the

amplitude of the signal is encoding the information this technique is very similar to the

continuous inputs of traditional neural networks [22].

24

4.4 Spike Density Encoding

A spike density code is a form of population coding that measures how many neurons are

firing. In other words, a pool of neurons could be set up so that neurons fire stochastically

relative to the size of the input value. Therefore, the density of the spikes generated by

the pool as an entire unit encodes the input information. One issue with this method is the

apparent inefficiency of using such a large number of neurons to encode a relatively few

number of inputs [22].

4.5 Temoporal Encoding

Temporal coding is a way of encoding input information as time differentials. This

technique may also be called latency coding or time-to-first-spike coding. This technique

takes advantage of the spiking neural networks ability to encode information temporally

[22].

Pattern recognition is a general task that assigns an output value to a given input pattern.

The first step for pattern recognition is to understand how the information is stored in a

pattern. How the information is represented in the brain still remains unclear. However,

there is a strong evidence showing that using pulses to encode, as a basic means of

information transfer, is optimal in terms of information transmission. Two basic and

widely studied coding schemes using these pulses are rate coding and temporal coding.

In rate coding the number of spikes within a time window is considered while the precise

timings of each spike are considered in temporal coding. Temporal patterns in the spike

train can carry more information than rate-based coding. A simple example of temporal

encoding is spike latency code.

Temporal learning rule aims on dealing with information encoded by precise timing

spikes. One of the most commonly studied rules is the spike-timing-dependent plasticity

(STDP) which has emerged in recent years as experimentally most studied form of

synaptic plasticity. According to STDP learning rule, the plasticity depends on the

intervals between pre- and postsynaptic spikes. The basic mechanisms of plasticity found

in STDP are the long term potentiation (LTP) and the long term depression (LTD).

However, STDP characterizes synaptic changes solely in terms of the temporal contiguity

of the presynaptic spike and the postsynaptic potential or spike [24].

25

4.6 Rank Order Encoding

Coding by rank order is a technique where the order of the spikes is used to encode

information. Such a coding scheme would require the mapping of input values to a rank

order over n neurons. The spike emissions are among one of the n! possible orderings of

n neurons. Therefore, log2(𝑛!) bits may be used to represent such an ordering. Such a

capacity is optimistic as using this method within computer simulations necessitates the

ability to differentiate between two spike timings [22].

The neurons within rank order coding scheme are considered as "integrate-and-fire"

devices. A neuron integrates its inputs over time until it reaches a threshold, and fires a

single action potential. The neuron is then reset and after a certain refractory period starts

integrating information again. Based on this property of neurons we can assume that the

firing rate of neuron is a monotonous function of the strength of its input. The neural

system needs a relatively long time to stabilize the firing rate of neurons.

Since the firing rate of neuron is a monotonous function of the strength of its input, it is

natural to assume that neuron with highest input would firstly arrive the threshold value

and fire a spike. In other words, the latency of firing of a neuron also reflects the strength

of its input. We can conclude that the input of the neuron with shorter latency of firing is

higher than the neuron with longer latency of firing [1].

5 Learning Rules

Biologically founded neural networks like spiking neural networks are capable of self-

learning from their input. The network’s behavior is shaped by inputs that it has received

over time. Here we can have a look at two different synaptic plasticity rules that may be

used for networks of spiking neurons [22].

5.1 Synaptic weight modification

A common method used to modify the connection weights is based on the observations

of Konorski and Hebb. Such synaptic weight modifications are termed plasticity. The

26

Konorski/Hebbian learning rule changes the weight of a synaptic connection based upon

the pre- and post-synaptic neuron activity. When the firing of a pre-synaptic neuron

regularly participates in the firing of a post-synaptic neuron, the strength of the action of

the pre-synaptic neuron onto the post-synaptic neuron increases. If the pre-synaptic

neuron regularly fires after the post-synaptic neuron, the strength of the action from the

pre-synaptic neuron onto the post-synaptic neuron decreases [22].

5.2 Spike Timing-Dependent Plasticity

Spike timing-dependent plasticity (STDP) is a temporally asymmetric form of

Konorski/Hebbian learning that modifies synaptic connections between pre- and post-

synaptic neurons that are temporally correlated. In addition, a winner takes all approach

is often used where only the weight of the first post-synaptic neuron to fire is updated.

Such plasticity is believed to be an underlying learning and information storage

mechanism and possibly contributes to the development of neuronal circuits during brain

development [22].

5.3 Synaptic Activity Plasticity Rule

The Synaptic Activity Plasticity Rule (SAPR) is a temporally symmetric form of

Konorski/Hebbian learning. The synaptic connection strength in SAPR is modified using

an update function that takes advantage of the membrane potential of the post-synaptic

neuron. In contrast to the STDP function, SAPR is continuous when the time difference

between pre- and post-synaptic firing times is zero, where STDP is undefined. Values for

STDP approach ±∞ as the time difference nears zero, whereas SAPR is bounded to a

finite range [22].

6 Character Recognition – Review Analyses

What is pattern recognition? Given input image is first sense and then segmentation of

image is done. For each segment of image features are extracted and then classification

is done which include adjustment for missing feature. Then post processing is done which

27

include adjustment for missing context and cost. Finally decision is made by comparison

of evaluating parameters such as average firing rate, accuracy, efficiency, simulation time

for image processing in pattern recognition [19].

So, to define pattern recognition we can say that it is a part of machine learning that

focuses on the recognition of patterns in data. In other words it is a process of classifying

input data into objects or classes based on key features.

For this work English uppercase letters are used to be recognized with SNN. According

to studies SNN is one of the layers of feed forward neural network. It is also known as

the third generation of artificial neural network. It is a two layered structure. There are

both, excitatory and inhibitory connections. In general, There are three broad classes of

neurons based on their effect on other neurons’ membrane potential: excitatory, inhibitory

and modulatory neurons [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37]

[38] [39] [40].

In pattern recognition there are two classification methods: supervised and unsupervised

classification. In previous sections I generaly descussed about neural coding techniques

and Learning rules. Later, I will continue to talk about the case which I’ve chosen for this

work (English uppercase letters).

Figure 2 shows the basic structure of SNN for character recognition which was provided

in [2].

Figure 2. Spiking Neural Network for character recognition

28

In our case the example which is provided for this work, as I already mentioned, are

English uppercase letters. Figure 3 shows how the input layer of one letter looks like.

Figure 3. Input Letter “A”

For all the other letters we have similar input matrices. Here is another example of letter

“B” (see Figure 4).

Figure 4. Input letter “B”

For solving the letter recognition problem I’ve chosen Izhikevich model of spiking

neurons. In one of the sections above (3.5) I talked about Izhikevich model. This model

is more simple and computationally efficient than Integrate-and-Fire (IF) or other neuron

models. This mathematical model was proposed by Eugene Izhikevich in 2003 and it is

the most recent of models used to study individual neurons that display spiking/bursting

behavior.

Izhikevich model is pretty much interesting because it is compact model and suitable

change of some parameters can simulate a large array of neurons behavior.

As shown in section 3.5 the Izhikevich model consists of two differential equations. There

are two main variables: the membrane potential 𝑣 (in millivolts mV) and the generic

recovery variable 𝑢. There are also five free parameters in the equation: 𝐼 – the external

input to the neuron; 𝑎 – the rate of recovery of 𝑢; 𝑏 – the sensitivity of recovery to

subthreshhold fluctuations of membrane potential; 𝑐, 𝑑 are the after spike resets of 𝑣 and

𝑢.

29

Later in Appendix 1 is shown MATLAB code provided for this paperwork which solves

the letter recognition problem. The code is written according to Izhikevich model which

uses Euler method for computations.

As I already showed in section 3.5 the Izhikevich model consists of a system of two

differential equations:

𝑣′ = 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼 (29)

𝑢′ = 𝑎(𝑏𝑣 − 𝑢) (30)

With the auxiliary after-spike resetting:

𝑣 ≥ 𝑉𝑡ℎ 𝑡ℎ𝑒𝑛 {
𝑣 ← 𝑐

𝑢 ← 𝑢 + 𝑑
 (31)

Here 𝑣 and 𝑢 are dimensionless variables and 𝑎, 𝑏, 𝑐 and 𝑑 are dimensionless parameters.

The model does not have a fixed threshold but after the spike reaches +30 mV the

membrane voltage 𝑣 and the recovery variable 𝑢 are reset. The synaptic current is

delivered via the variable 𝐼.

The membrane potential 𝑣 has mV scale and the time 𝑡 has ms scale. The value of the

parameter 𝑎 = 0.02. It describes the time scale of the recovery variable 𝑢. The smaller

the value, the slower the recovery.

The parameter 𝑏 describes the sensitivity of the recovery variable 𝑢 to the subthreshold

fluctuations of the membrane potential 𝑣. A typical value is chosen 𝑏 = 0.2. The greater

the values 𝑣 and 𝑢, the stronger is the result in spiking dynamics.

The parameter 𝑐 describes the after-spike reset value of the membrane potential 𝑣 and the

value is chosen 𝑐 = −65 mV. The parameter 𝑑 describes the after-spike reset of the

recovery variable 𝑢 and the value is chosen 𝑑 = 2.

There exist different types of spiking reactions. For different images spiking responses or

reactions can be different. As already mentioned the given input images for the network

are English letters. I’ve chosen first two letters “A” and “B” images for my first

experiment.

First I’ve set each image size as small as possible and I took 35x26 pixels size because

the main variable “Rec_record” in the code (see Appendix 1) to be smaller or in other

30

words to say, the amount of input neurons to be less. The simulation time step “t” equals

200 and the amount of input neurons for each image is 910 (in case 35x26 pixels size).

So by changing the parameters of “Rec_record”, in other words, by setting the amount of

neurons in the last part (lines) of the code we can observe the spike reactions to each input

image.

There is also one important fact about this experiment - the RGB colors. For this

paperwork the chosen input images are black and white. So while plotting the spike

responses for image we choose the parameters of input neurons from 0 to 910 for white

color and for black. Mostly the spike response is type of fast spiking.

Figure 5 shows how the input image of letter “A” looks like.

Figure 5. English uppercase letter “A”

Figure 6 shows how the input image of letter “B” looks like.

Figure 6. English uppercase letter “B”

So, as I already said, I’ve chosen the image to be 35x26 pixels size. Firstly, for letter “A”

I’ve chosen parameters 10 and 400. As I already explained this are amount of input

neurons for white and black color. Figure 7 shows the result of recognized letter.

31

As you can see, there is a letter “A” recognized by the network and different spike

reactions to the image. The spike reaction to the function “Rec_record (10, 1:t)” is shown

in Figure 8.

Figure 8. Spike reaction to the input amount of neurons (10)

Figure 7. As a result the recognized letter “A” and spike reactions

32

Figure 9 shows the spike reaction to the function “Rec_record (400, 1:t)”.

Figure 9. Spike reaction to the input amount of neurons (400)

As you can see there is a difference between neuron reactions to the image. The result

shown in Figure 8 is type of fast spiking and the result shown in Figure 9 is type of low-

threshold spiking. This result, spike reaction, depends on which neurons are activated. In

this case it is considered that each pixel of the image is one neuron. So the reaction

depends on which pixels we take for the experiment, like now it was taken 10 and 400.

Let’s see another example of experiment for the letter “B”. We can observe the recognized

letter “B” on the Figure 10.

33

So, as we can see on Figure 10 the letter was recognized but the spike reactions to the

mage are very different. For this experiment next parameters, pixels were chosen 10 and

795. Figure 11 shows the spike reaction to the function “Rec_record (10, 1:t)”.

Figure 10. As a result the recognized letter “B” and spike reactions

34

Figure 12 shows the spike reactions to the input pixels or same as input neurons of which

amount is 795.

As you can observe, there is also a big difference between spike reactions depending on

which pixels are taken for the experiment. The reaction shown on Figure 11 is again fast

spiking type and the reaction shown on Figure 12 looks more like regular spiking type.

Figure 11. spike reaction to the input amount of neurons or input

pixels (10) for letter “B”

Figure 12. spike reaction to the input amount of neurons or input

pixels (795) for letter “B”

35

So, we can observe different behaviors of neurons and their reactions for different kinds

of images choosing different input neurons, in our case same as pixels.

Besides these experiments, the main problem is to somehow analyse the neurons and get

the final result as recognized image. On the output it should be obvious weather the letter

or image was recognized or not.

The script provided in Appendix 1 was taken from Izhikevich model and it only shows

the graphycal part, spike reactions, but still it is unclear if the image was recognized. As

mentioned above the image taken was the size of 35x26 which means that there are 910

pixels or same as 910 neurons which are pretty hard to analyse. Also the simulation time

step which is 200 is hard to analyse.

So for the next experiment I took the simulation length of time step 50 but as for image it

would be easier to analyse if the image was 5x7 pixels of size because in this case we

would have only 35 neurons.

I took again letters “A” and “B” and applied the same algorithm to see the spike reactions.

Figure 13 shows the result for letter “A”.

Figure 14 shows the result, spike reactions for letter “B”.

Figure 13. Spike reactions to the image “letter A” the size of 5x7

36

As I mentioned once, the image is black and white color. So, whatever neurons we take

from 0 to 35 (as we have 5x7 image size and 35 neurons) the reaction will be according

to color. For instance, the blue line on the figures 13 and 14 shows the reaction of the

neuron for the white color.

After visual result of spike reactions let’s see the result as matrice for the receptor’s

membrane potential.

Figure 15. The result matrice. Recognized letter “A”

As you can see on the figure 15 there is a matrice which shows the recognized letter “A”.

As the image was the size of 5x7 it is easy to analyse that the pixels or the same as nurons

for the black color are highlighted in red here and the number or the meaning of those

pixels are approximately -70. Same result of the receptor’s membrane potential is shown

for the letter “B” on figure 16.

Figure 14. Spike reactions to the image “letter B” the size of

5x7

37

Figure 16. The result matrice. Recognized letter “B”

The highlighted pixels with numbers of approximately -70 are again for black color. So.

We can easily see the recognized letters on the matrices of receptor’s membrane potential.

We could see the same matrice of the receptor’s recovery variable, but there instead of -

70 the meaning of highlighted or black pixels would be approximately -13.

There is another experiment that I tried. I took the image and added the noise and then I

applied the same algorithm for recognition. Figure 17 shows the image with noise.

For this experiment I took again the image of letter “A” with noise with the size of 5x7.

Figure 17. Letter A with noise

38

Figure 18. Spike reactions to the image of letter “A” with noise

Now for the image with noise the colors are no more only black and white, as you can see

there is a little bit of different kinds of grey. So, the figure 18 shows the spike reactions

to the image. The recognized result shown again with matrice as receptor’s memrane

potential is presented on figure 19.

As you can see the areas where pixels were black is still recognized with approximate

number -70 and the less highlighted areas with blur grey color have less meaning.

7 Conclusion

In this paperwork were presented the brief history of artificial neural network and how it

was developed during the years, survey about spiking neural network (SNN) and the way

it works. Different kinds of neural models were presented starting from the very first, the

simplest McCullogh-Pitts perceptron model to the latest Izhikevich spiking neuron

Figure 19. Recognized image of letter “A” with noise

39

model, also including Integrate-and-fire (IF) and the other neuron models. There were

theoretically introduced several neural coding techniques and learning rules.

Later, it was the simplest Izhikevich model taken, using Euler method caclulations which

was implemented in MATLAB for image recognition experiment. The model consists of

the simple system of two differential equations. For the images English alphabet was

used, uppercase letters. The experiment was presented using MATLAB environment. The

input neurons behavior and their reactions during simulated time steps were observed.

Each pixel of given image was considered to be one neuron. Depending on which pixel

or neuron to choose as parameter of a function we could observe the reaction of the chosen

neuron.

Finally, we have shown how to use mathematical model to build networks of spiking

neurons. We used Izhikevich model in MATLAB code for recognizing English uppercase

alphabet letters. As a result we observed reactions of neurons during simulated time steps.

Also, as a result we have got the recognized image by the network.

8 Summary

The main purpose of this paperwork was the assignment according to which

implementation of spiking neural networks and learning algorithms in Matlab had to be

done. Application of spiking neural networks had to be for image recognition. The text

mostly contains the survey about spiking neural networks. According to studies and

research done, there are some important and famous models introduced in the work.

The text is devided into eight chapters. First two chapters are the introduction and the

brief history of neural networks. The third chapter and its subchapters introduce existing

famous models of neural network. The fourth and the fifth sections present some neural

coding techniques and learning rules. The main work of the experiment is introduced in

the sixth chapter, where the image rocognition with spiking neural network is explained

in detail and the rsults are shown. Finally, the conclusion is made and presented.

40

According to the paper we understand the differencies between biological and artificial

neurons. Studies of artificial intellignce already were started from the beginning of the

20th century. Spiking neural network (SNN) is the most recent and biologically accurate,

the third generation of neural networks. The main idea of SNN is that neurons don’t fire

at each propagation cycle, but they fire when a membrane potential, membrane electric

charge reaches a specific value. The information is transferred from one input neuron to

another through the electric pulses/spikes.

The first model of neural network was very sipmle and the neurons used for that model

were called perceptrons. Later so called feed forward neural network was developed and

the latest version of artificial neural network is spiking neural network. Izhikevich

developed the simple model of spiking neurons combining Hodgkin–Huxley type model

and Integrate-and-fire (IF) models. It is used for image recognition problems, what we’ve

seen in the main part of the work.

For the experiment of this paperwork English alphabet, uppercase letters were used and

Izhikevich model. The model consisted of the system of two simple differential equations

and we’ve seen the networks behavior and neurons reactions for each image. By changing

or modifying some small parameters in the code we could see different results and

reactions. The main result was the recognized alphabet letter.

This work was mostly about research and observations. For the future the code presented

in the work can be modified and improved for better recognition.

41

References

[1] Daqi Liu and Shigang Yue, "Spiking Neural Network for Visual Pattern

Recognition," University of Lincoln, Lincoln.

[2] Shruti R Kulkarni and Maryam Shojaei Baghini, "Spiking Neural Network based

ASIC for Character Recognition," Ninth International Conference on Natural

Computation (ICNC), Mumbai, 2013.

[3] Francois Christophe, Tommi Mikkonen, Vafa Andalibi, Kai Koskimies and

Teemu Laukkarinen, "Pattern recognition with Spiking Neural Networks: a simple

training method," Tampere University of Technology, Tampere, Finland.

[4] Kshitij Dhoble, Nuttapod Nuntalid, Giacomo Indiveri and Nikola Kasabov,

"Online Spatio-Temporal Pattern Recognition with Evolving Spiking Neural

Networks utilising Address Event Representation, Rank Order, and Temporal

Spike Learning," World Congress on Computational Intelligence, Brisbane,

Australia, 2012.

[5] N. Kasabov, "Evolving Spiking Neural Networks and Neurogenetic Systems for

Spatio- and Spectro-Temporal Data Modelling and Pattern Recognition," IEEE

WCCI, Springer-Verlag Berlin Heidelberg, 2012.

[6] Taras Iakymchuk, Alfredo Rosado-Munoz, Juan F Guerrero-Martinez, Manuel

Bataller-Mompean and Jose V Frances-Villora, "Simplified spiking neural

network architecture and STDP learning algorithm applied to image

classification," EURASIP Journal on Image and Video Processing, Valencia,

Spain, 2015.

[7] Simei Gomes Wysoski, Lubica Benuskova and Nikola Kasabov, "Adaptive

Spiking Neural Networks for Audiovisual Pattern Recognition," Springer-Verlag

Berlin Heidelberg, Auckland, New Zealand, 2008.

[8] Zhenmin Zhang, Qingxiang Wu, Zhiqiang Zhuo, Xiaowei Wang and Liuping

Huang, "Wavelet transform and texture recognition based on spiking neural

network for visual images," Elsevier, Fuzhou, China, 2014.

[9] Nikola Kasabov, Kshitij Dhoblea, Nuttapod Nuntalid and Giacomo Indiveri,

"Dynamic evolving spiking neural networks for on-line spatio- and spectro-

temporal pattern recognition," Elsevier, Zurich, Switzerland, 2013.

[10] Joo-Heon Shin, David Smith, Waldemar Swiercz, Kevin Staley, J. Terry Rickard,

Javier Montero, Lukasz A. Kurgan and Krzysztof J. Cios, "Recognition of

Partially Occluded and Rotated Images With a Network of Spiking Neurons,"

IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010.

[11] Mrs.Soni Chaturvedi, Dr. A.A. Khurshid and Dr. S.S. Dorle, "Reconfiguration of

Spiking Neural Network for Optimization with Applications to Image

Processing," Sixth International Conference on Emerging Trends in Engineering

and Technology, Nagpur, 2013.

[12] J.L. Rossello, V. Canals, A. Oliver, M. Alomar and A. Morro, "SPIKING

NEURAL NETWORKS SIGNAL PROCESSING," IEEE, Palma, Majorca, 2014.

42

[13] D.T. Pham, M.S. Packianather and E.Y.A. Charles, "Spiking neural network for

control chart pattern recognition," Proceedings of the European Control

Conference, Kos, Greece, 2007.

[14] Arash Ahmadi and Mark Zwolinski, "A Modified Izhikevich Model For Circuit

Implementation of Spiking Neural Networks," University of Southampton,

Southampton, 2010.

[15] E. Y. A. Charles, "An Efficient Discrete Model for Implementing Temporal

Coding Spiking Neural Network," International Conference on Advances in ICT

for Emerging Regions, Thirunelveli, Sri Lanka, 2014.

[16] S N Sivanandam, S Sumathi and S N Deepa, "Comparison between the brain and

the computer, Comparison between artificial and biological neural network," in

Introduction to neural networks using MATLAB 6.0, New Delhi, McGraw-Hill

Offices, 2006, p. 17.

[17] J. Vreeken, "Spikin neural networks, an introduction," Utrecht.

[18] Mohammad A. Bhuiyan, Rommel Jalasutram and Tarek M. Taha, "Character

recognition with two spiking neural network models on multicore architectures,"

IEEE, Clemson, 2009.

[19] Soni Chaturvedi, Neha R. Sondhiya and Rutika N.Titre, "Izhikevich Model Based

Pattern Classifier For Hand Written Character Recognition - A Review Analysis,"

International Conference on Electronic Systems, Signal Processing and

Computing Technologies, Nagpur, 2014.

[20] K. Dhoble, "Spatio-/Spectro-Temporal Pattern Recognition using Evolving

Probabilistic Spiking Neural Networks," The Auckland University of Technology

(PHD Thesis), Auckland, 2013.

[21] Kiyoshi Kawaguchi, Bsee, "A multithreaded software model for backpropagation

neural network applications," The University of Texas at El Paso (Thesis), Texas,

2000.

[22] S. Donachy, "Spiking Neural Networks: Neuron Models, Plasticity, and Graph

Applications," Virginia Commonwealth University, Virginia, 2015.

[23] E. Orhan, "The Leaky Integrate-and-Fire Neuron Model," 2012.

[24] Qiang Yu, K.C. Tan and Huajin Tang, "Pattern Recognition Computation in A

Spiking Neural Network with Temporal Encoding and Learning," IEEE World

Congress on Computational Intelligence, Brisbane, 2012.

[25] Jinling Wang, Ammar Belatreche, Liam Maguire and T. M. McGinnity,

"Dynamically Evolving Spiking Neural Network for Pattern Recognition," IEEE,

UK, 2015.

[26] Evangelos Stromatias and John S. Marsland, "Supervised learning in Spiking

Neural Networks with Limited Precision: SNN/LP," IEEE, Manchester,

Liverpool, UK, 2015.

[27] Long Peng, Zeng-Guang Hou, Nikola Kasabov, Gui-Bin Bian, Luige Vladareanu

and Hongnian Yu, "Feasibility of NeuCube Spiking Neural Network Architecture

for EMG Pattern Recognition," International Conference on Advanced

Mechatronic Systems, Beijing, China, 2015.

[28] Xiurui Xie, Hong Qu, Zhang Yi and Jürgen Kurths, "Efficient Training of

Supervised Spiking Neural Network via Accurate Synaptic-Efficiency Adjustment

Method," IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS, 2016.

43

[29] Yevgeniy Bodyanskiy, Artem Dolotov, Iryna Pliss and Mykola Malyar, "A Fast

Learning Algorithm of Self-Learning Spiking Neural Network," IEEE First

International Conference on Data Stream Mining & Processing, Lviv, Ukraine,

2016.

[30] Elahe Eskandari, Arash Ahmadi, Shaghayegh Gomar, Majid Ahmadi and

Mehrdad Saif, "Evolving Spiking Neural Networks of Artificial Creatures Using

Genetic Algorithm," IEEE, Ontario, Canada, 2016.

[31] Anne Abbott, Neelava Sengupta and Nikola Kasabov, "Which Method to Use for

Optimal Structure and Function Representation of Large Spiking Neural

Networks: A Case Study on the NeuCube Architecture," IEEE, Auckland, New

Zealand, 2016.

[32] Khadeer Ahmed, Amar Shrestha, Qinru Qiu and Qing Wu, "Probabilistic

Inference Using Stochastic Spiking Neural Networks on A Neurosynaptic

Processor," IEEE, NY, USA, 2016.

[33] Nikola Kasabov, Lei Zhou, Maryam G. Doborjeh, Zohreh Gholami and Jie Yang,

"New Algorithms for Encoding, Learning and Classification of fMRI Data in a

Spiking Neural Network Architecture: A Case on Modelling and Understanding of

Dynamic Cognitive Processes," IEEE Transaction on Cognitive and

Developmental Systems, Auckland, New Zeland; Shanghai, China, 2016.

[34] Aleksandr A. Maliavko and Andrey V. Gavrilov, "Towards Development of Self-

Learning and Self-Modification Spiking Neural Network as Model of Brain," 13th

International Scientific-Technical Conference APEIE, Novosibirsk, Russia, 2016.

[35] E. M. Izhikevich, "Simple Model of Spiking Neurons," IEEE TRANSACTIONS

ON NEURAL NETWORKS, 2003.

[36] N. Nuntalid, "Evolving Probabilistic Spiking Neural Networks for Modelling and

Pattern Recognition of Spatio-temporal Data on the Case Study of

Electroencephalography (EEG) Brain Data," PhD Thesis, Auckland, New Zeland,

2012.

[37] PRTools, "A Matlab Toolbox for Pattern Recognition," Pattern Recognition

Group, The Netherlands, 2000.

[38] "The Integrate-and-Fire Model".

[39] IVAN BOGDANOV, RADU MIRSU and VIRGIL TIPONUT, "MATLAB

MODEL FOR SPIKING NEURAL NETWORKS," Proceedings of the 13th

WSEAS International Conference on SYSTEMS, Timisoara, Romania.

[40] Tianqi Tang, Lixue Xia, Boxun Li, Rong Luo, Yiran Chen, Yu Wang and

Huazhong Yang, "Spiking Neural Network with RRAM: Can We Use It for Real-

World Application?," EDAA, Beijing, China; Pittsburgh, USA, 2015.

44

Appendix 1 – SNN Code

temp = imread('letterA1.jpg'); temp = double(temp); % Convert the

image file onto numeric array
input_image = temp(:,:,1); clear temp % Load only one matrix entry in

case of color images

%% Parameters
int_time_step_v_EXC =0.2500; % integration rate of variable v
int_time_step_u_EXC = 0.0200; % integration rate of variable u

% coefficient that multiplies the input RGB value (in this case, it is

a single value between 0 and 255)
inp_ratio = 0.2500;

resting_potential = -65; % the resting potential of the cell
simulation_length = 200; % the simulated time steps

%% Size population
N_Rec = size(input_image); % Receptors; total # of receptor neurons

%% Receptors variables
Rec_record =

resting_potential*ones(N_Rec(1)*N_Rec(2),simulation_length);

%Initialize Receptors' cell voltages
Rec_v = resting_potential*ones(N_Rec); % Initialise Receptors'

membrane potential
Rec_u = .2*Rec_v; % Initialise Receptors'

recovery variable

% Initialize figure for plots
h = figure; set(h, 'DoubleBuffer', 'on', 'color', 'white', 'Name',

'Reduced spiking equation demo');

%% Simulate for t time steps
for t = 1:simulation_length; %there will be simulation_length # of

time steps

 %%%%%%%%%%%%% Receptors %%%%%%%%%%%%%
 Rec_fired = find(Rec_v >= 30); % Search the indices of

receptor neurons for spikes by seeing whether it has crossed the

threshohold of 30mV
 if ~isempty(Rec_fired) % Reset F1 neurons

after firing if Rec_v has crossed the spiking threshhold
 Rec_v(Rec_fired) = resting_potential; % The receptor's

membrane potencial is reset to its resting potencial
 Rec_u(Rec_fired) = Rec_u(Rec_fired)+ 8; % The receptor's

recovery variable is increased by a parameter value equal to 8
 end

 % Perform numerical integration using Euler's method

45

 Rec_v = Rec_v + int_time_step_v_EXC*((0.04*Rec_v + 5) .* Rec_v +

140 - Rec_u + input_image * inp_ratio);
 Rec_u = Rec_u + int_time_step_u_EXC .*(0.2 * Rec_v - Rec_u);

 % Store Receptors variables
 Rec_record(:,t) = reshape(Rec_v, 1, N_Rec(1)*N_Rec(2));
 Rec_record(Rec_record >= 30)=30; % Normalize spikes: in real

neurons they cannot be above 30mV

 % Create PLOT

 subplot(2,2,1), imagesc(input_image), title(['Input image, cycle

', num2str(t), ' of ', num2str(simulation_length)]), axis off,...
 colormap gray, drawnow % display the loaded image and t time

step
 subplot(2,2,2), imagesc(Rec_v>30, [0 1]), drawnow,

title('Receptor spikes'), colormap gray, drawnow % Display the neurion

that are spiking at time t

 subplot(2,2,3), drawnow, plot(Rec_record(10,1:t), 'linewidth', 1),

xlim([0 200]), ylim([-75 40]), title('Voltage of receptor #10') %Plot

the voltage change of receptor #10
 subplot(2,2,4), drawnow, plot(Rec_record(400,1:t), 'red',

'linewidth',1), xlim([0 200]), ylim([-75 40]), title('Voltage of

receptor #200') %Plot the voltage change of receptor #200
end

	Author’s declaration of originality
	Abstract
	Annotatsioon Sümbolite tuvastamine impulssnärvivõrkudega
	List of abbreviations and terms
	Table of contents
	List of figures
	1 Introduction
	2 A Brief History Of Neural Networks
	3 Neuron Models
	3.1 McCulloch-Pitts Model
	3.2 Hodgkin-Huxley-type model
	3.3 Integrate-and-fire (IF) model
	3.4 The Leaky Integrate-and-Fire Neuron Model
	3.5 Izhikevich model

	4 Neural Coding Techniques
	4.1 Input Encoding
	4.2 Rate Coding
	4.3 Sine Wave Encoding
	4.4 Spike Density Encoding
	4.5 Temoporal Encoding
	4.6 Rank Order Encoding

	5 Learning Rules
	5.1 Synaptic weight modification
	5.2 Spike Timing-Dependent Plasticity
	5.3 Synaptic Activity Plasticity Rule

	6 Character Recognition – Review Analyses
	7 Conclusion
	8 Summary
	References
	Appendix 1 – SNN Code

