
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Madis Kerner153158IASM

Hierarchical Temporal Memory Based Predictive
Model and Anomaly Detection Component on FPGA

Master’s thesis

Supervisor: Kalle Tammemäe
Associate Professor

TALLINN 2017

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Madis Kerner153158IASM

Hierarhilise temporaalse mälu printsiibil toimiva
ennustus- ja anomaalsustuvastuse komponent

FPGA-l

magistritöö

Juhendaja: Kalle Tammemäe
professor

TALLINN 2017

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Madis Kerner

23rd May 2017

3

Abstract

This thesis deals with the realization of one of the modern artificial neural networks on the
system on chip (SoC). The underlying neural network for this work, hierarchical temporal
memory (HTM), has been developed by the company Numenta and is functionally similar
to the neocortex mini-columns.

The realization of the HTM algorithm is not computationally demanding. Despite this,
the HTM evaluation and development platform Nupic, provided by the Numenta, is more
suitable for executing on a personal computer.

One of the big obstacles for a hardware based realization is the algorithm’s high demand
for the system memory – neuron connectivity parameters are also stored by the Nupic
platform, for example.

The main proposal presented in this work is to use the linear feedback shift register
(LFSR) as the neuron address decoder. In addition to this, the resource friendly serial
interface based physical layer is prosed for the inter mini-column communication.

In order to prove the usefulness and the feasibility of the proposals the algorithm’s im-
plementation on Xilinx ZYNC system on chip (SoC) platform is provided. Ideas and
proposals for further development and modifications are provided in the conclusions.

This thesis is written in English and is 63 pages long, including 7 chapters, 36 figures and
16 tables.

4

Annotatioon

Hierarhilise temporaalse mälu printsiibil toimiva ennustus- ja anomaalsustuvastuse
komponent FPGA-l

Käesolev lõputöö käsitleb ühe kaasaegse tehisnärvivõrgu realiseerimist kiipsüsteemil.
Töö aluseks olev närvivõrk, hierarhiline temporaalne mälu (HTM), on välja töötatud firma
Numenta poolt ja sarnaneb funktsionaalselt ajukoore närvitulbale.

HTM algoritmi realiseerimine on iseenesest arvutuslikult üsnagi vähenõudlik. Antud as-
jaolule vaatamata on Numenta poolt arendamiseks ja katsetamiseks mõeldud HTM tark-
varaline väljatöötlus Nupic sobilik pigem lauaarvutile.

Üheks peamiseks piiranguks HTMi riistvaraliseks realiseerimiseks näiteks väliprogram-
meeritaval loogikal on suur mälu nõudlus – muuhulgas salvestatakse Numenta poolt pa-
kutud näidis realisatsioonis mällu ka neuronite omavahelisi ühendusi kirjeldavad para-
meetrid.

Antud töös käsitletakse lineaarse tagasisidega nihkeregistri võimalikku kasutamist neu-
ronite ühenduste aadresside dekodeerijana. Lisaks nimetatule vaadeldakse riistvaraliselt
vähenõudliku jadaliidese kasutamist närvivõrgu tulpadevahelise kommunikatsiooni füü-
silise liidesena.

Tõestamaks pakutud ideede kasulikkust ning teostatavust on esitatud ka Xilinx ZYNQ
kiipsüsteemil teostatud käigukatsetuste tulemused. Lisaks esitatakse ka ideesid edasisteks
uurimusteks ning parendusteks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 63-l leheküljel, 7 peatükki, 36
joonist, 16 tabelit.

5

List of abbreviations and terms

ANN Artificial Neural Network
AXI4 Advanced eXtensible Interface 4
BSP Board Support Package
CPS Cyber Physical System
CPU Central Processing Unit
CTS Clear To Send
DMA Direct Memory Access
FIFO First In First Out
FPGA Field-Programmable Gate Array
FWFT First Word Fall Through
HTM Hierarchical Temporal Memory
IOT Internet Of Things
IP Intellectual Property
LFSR Linear Feedback Shift Register
NOC Network On Chip
RTS Request To Send
SDR Sparse Distributed Representation
SOC System On Chip
SP Spatial Pooler
TP Temporal Pooler

6

Table of Contents

1 Introduction 11
1.1 Hierarchical Temporal Memory . 11
1.2 HTM Building Blocks . 12

1.2.1 Spatial Pooler . 12
1.2.2 Temporal Pooler . 14

2 Objectives 15
3 Proposed Methods 16

3.1 Thesis Layout . 16
4 Hardware Description 17

4.1 Serial Interface . 17
4.1.1 Forwarder Mode . 19
4.1.2 Replacer Mode . 20
4.1.3 Arbiter Mode . 21

4.2 Data Buffer . 22
4.2.1 Forwarder Mode . 23
4.2.2 Replacer Mode . 24
4.2.3 Arbiter Mode . 24
4.2.4 Capture Mode . 26

4.3 Spatial Pooler . 28
4.3.1 Feedforward Input . 29
4.3.2 Learning . 32
4.3.3 Output SDR Generation . 33

4.4 Mini-Column Controller . 34
4.4.1 Command Decoder . 35
4.4.2 Feedforward Input and Output SDR Generation 36
4.4.3 Mini-Column Activation . 38
4.4.4 SP Permanence Values Read and Write 39

4.5 HTM controller . 39
4.6 HTM IP . 41

4.6.1 Register Map . 41
4.6.2 Avalon bus HTM IP . 45
4.6.3 AXI4 bus HTM IP . 46

5 Performance Estimation 47
5.1 Feedforward Input . 47
5.2 Mini-columns Activation . 47
5.3 Learning . 47
5.4 Output SDR Generation . 48
5.5 Total SP processing . 48

7

6 Evaluation 49
6.1 Supporting Software Description . 49

6.1.1 Spatial Pooler SW implementation 49
6.1.2 Example Usage . 49
6.1.3 Spatial Pooler Driver . 50

6.2 Functional Evaluation . 51
6.3 Performance Evaluation . 52

7 Conclusions 54
7.1 Future Works . 54

Appendices 58
A DDECS 2017 59

8

List of Figures

1.1 HTM Layered Structure . 12
1.2 Mini-Column Input Connections . 13
1.3 HTM Temporal Pooler Cells . 14
4.1 Overall SoC system . 18
4.2 Mini-Column Connections . 19
4.3 Serial interface . 19
4.4 Serial interface forward mode simulation 20
4.5 Serial interface replacer mode simulation 21
4.6 Serial interface arbitration mode simulation 22
4.7 Data buffer forwarder mode FSM . 23
4.8 Data buffer forwarder mode simulation 23
4.9 Data buffer replacer mode FSM . 24
4.10 Data buffer replacer mode simulation . 24
4.11 Data buffer arbiter mode FSM . 25
4.12 Data buffer arbitration mode simulation 26
4.13 Data buffer capture mode FSM . 27
4.14 Data buffer capture mode simulation . 28
4.15 Spatial pooler FSM . 29
4.16 LFSR . 30
4.17 LFSR as input address decoder . 31
4.18 Spatial pooler feedforward input simulation 32
4.19 Spatial pooler learning simulation . 33
4.20 Spatial pooler output SDR generation 34
4.21 Mini-Column Controller . 35
4.22 Mini-Column’s Command Decoder FSM 37
4.23 Mini-Column’s SP feedforward input and output SDR FSM 37
4.24 Column’s Feedforward Input . 37
4.25 Column’s Output SDR Generation . 38
4.26 Mini-Column’s Activation FSM . 38
4.27 Mini-Column’s Activation packet . 39
4.28 Mini-Column’s SP Permanence Value R/W FSM 40
4.29 Mini-Column overlap value R/W data packet 40
4.30 HTM Controller . 40
4.31 HTM Controller Packet Header . 41
6.1 SDR Encoder Output . 52
6.2 SP Evaluation Output . 52

9

List of Tables

4.1 LFSR register values . 30
4.2 SP connections generated by LFSR . 31
4.3 SP learning . 33
4.4 Mini-column commands . 36
4.5 HTM Controller Packet Header . 42
4.6 HTM IP Control Register 0x00 . 42
4.7 HTM IP Total Mini-Columns Register 0x01 43
4.8 HTM IP total Number of Feedforward Inputs Register 0x02 43
4.9 HTM IP Feedforward Input Connections Register 0x03 43
4.10 HTM IP SP Output Active mini-Columns Count Register 0x04 43
4.11 HTM IP FIFO Register 0x10 . 44
4.12 HTM IP TX FIFO Status Register 0x11 44
4.13 HTM IP RX FIFO Status Register 0x12 44
4.14 Logic usage per HTM Avalon IP mini-column 45
4.15 Logic usage per HTM AXI4 IP mini-column 46
6.1 SP processing time for an input SDR . 52

10

1 INTRODUCTION

The topic of machine intelligence has received a lot of attention and different Artificial
Neural Networks (ANNs) have been developed over the time [1]. Adding intelligence
to the Cyber Physical Systems (CPSs), like emerging Internet Of Things (IOT) network
nodes, adds another criteria to the system design – the hardware resources of the often
battery powered devices are limited.

It has been suggested that the goals as a tools of volitional behavior guide the overall
behavior of the being through the attention [2]. Therefore the system’s ability to pay
attention to only the most important environmental observations (especially anomalies
and novelties), i.e. filter the sensory input data based on it’s importance, can definitely be
considered as an essential property for an intelligent system.

Distinguishing abnormal observations from the entire input data set brings us to the anom-
aly detection. But modeling the entire system’s environment and extracting the abnormal-
ity threshold is often impossible task to perform. Therefore the system should incorporate
learning capabilities – if the environmental action or reaction has been learn previously
and the system knows how to cope with it there is no need to pay additional attention to
it.

1.1 Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM), one of the latest ANNs, is the model of the
neocortex functionality, developed by Numenta, Inc. [3], originally described by Hawkins
and Blakeslee [4].

The HTM is bio-inspired algorithm and has been developed based on the studies of the
mammalians neocortex [5]. Although the entire functionality of the neocortex has not
yet been implemented it has proven to be useful in the anomaly detection applications
[6]. Geo-spatial tracking, natural language based predictions and server monitoring are
another examples of the successful deployments [7]

The behavior of the algorithm can be tested using the Nupic software, provided by the
Numenta [8].

11

1.2 HTM Building Blocks

HTM has the layered sructure, similar to the mammalian neocortex [3]. Every layer
consist of possibly thousands of interconnected neural columns, with tens of cells each
[9](Fig. 1.1).

Figure 1.1: HTM has a layered structure. Every layer consists of possibly thousands of mini-columns and
every mini-column consist of tens of cells. Every layer outputs the predictions to the higher hierarchical
layers (green arrows). Orange arrows indicate the communication between cells of the mini-columns.

Every layer of the HTM constructs predictions based on the previously learned sequences.
In case the received input data was unexpected in the current execution context the an-
omaly gets detected and reported. But if the same sequence is repeated often enough the
HTM learns and remembers it and the sequence will be considered as a normal response
of the environment in the future.

The data format HTM operates on is Sparse Distributed Representation (SDR) [10, 11,
12]. Sparsity means that only few bits of the entire data set are active concurrently and
distributed means that the semantic meaning of the data is distributed across the bits,
allowing sub-sampling of the data and providing fault tolerance.

Important aspect of the input data encoding is that semantically similar inputs should have
similar encodings, i.e. semantically similar inputs should have common active bits in the
SDR. HTM’s ability to make generalizations is based on this feature.

The two main sub-tasks of the HTM algorithm are the Spatial Pooler (SP) and Temporal
Pooler (TP).

1.2.1 Spatial Pooler

Algorithm execution starts from the SP receiving the feedforward input data. The input
data is communicated to the mini-columns via the connections between the input data bits
and a mini-column. Every mini-column is connected to approximately half of the input
bits (Fig. 1.2).

12

Figure 1.2: Every mini-column is connected to the ∼ half of the inputs. The set of connections is randomly
selected for every column and does not change during the execution of the algorithm, but instead, every
connection can be active or not active, based on it’s associated permanence value.

Every connection between a mini-column and an input bit has a characteristic permanence
value assigned to it. The connection is considered to be active, enabled, if the permanence
value is exceeding the predefined threshold level (Eq. (1.1)).

Wi j =

1 i f Pi j ≥ T h

0 otherwise
(1.1)

Every mini-column calculates it’s overlap count based on the applied input. The overlap
count is the total sum of the active input bits connected to it via the enabled connections
(Eq. (1.2)).

oi = bi ∑
j

Wi ji j (1.2)

After the overlap calculation phase the required amount of mini-columns with the highest
overlap count value will get activated. The required amount of active mini-columns is set
by the required output sparsity of the SP process.

Learning is the last phase of the SP process. Learning is based on the competitive Hebbian
learning: only the activated mini-columns, i.e. the ones with the highest overlap to the
input data, perform the learning phase. The learning process alters the feedforward intput
permanence values – the permanence values associated width active inputs, i.e. the inputs
contributing to the activation of the mini-column, are incremented while the others are
decremented (Eq. (1.3)).

Pi j =

Pi j +Pinc i f i j = 1

Pi j−Pdec otherwise
(1.3)

The total number of possible input patterns the HTM matrix can encode scales rapidly
with the size of the matrix: possible encodings for n = 2048 mini-column HTM with 2%

13

output sparsity (w = 40 active mini-columns) can be calculated as Eq. (1.4):

n!
w!(n−w)!

= 2.37×1084 (1.4)

The complete description and the mathematical formalization of the SP can be found in
[13, 14].

1.2.2 Temporal Pooler

While the SP’s task is to encode the input data and activate the required amount of mini-
columns, TP gives the context to an encoding and performs the learning of of the input
data sequences [15].

While a specific input is encoded using the same set of activated mini-columns, the cells
within it define the preceding sequence – the context (Fig. 1.3).

A→A B→A C→A

Figure 1.3: Temporal pooler gives an input pattern the context. While the same input is encoded using the
same set of mini-columns, context is defined by the cells.

Every cell within a mini-column is connected to a set of cells in the other mini-columns
in the HTM matrix. if a cell is connected to the enough amount of cells in an active state
it changes it’s state to predictive.

Switching the cells to the predictive state is the key for the anomaly detection. If an
activated mini-column contains a cell which is predicting it means that the input sequence
has been learned in the past.

Every connection between the two cells have similar permanence value assigned to it as
the feedforward connections have. And the learning process is also similar: activated cells
increment the permanence values connected to the contributing cells and decrement the
rest.

If the input is encoded using total w = 40 number of mini-columns with c = 10 cells, the
total amount of different contexts for an input can be calculated as Eq. (1.5).

cw = 1×1040 (1.5)

14

2 OBJECTIVES

Objective of this master thesis is to evaluate the feasibility of running the HTM algorithm
on a Field-Programmable Gate Array (FPGA) based System On Chip (SOC).

Although the algorithm is available [8] for the community for testing and further develop-
ment, the implementation is more suitable for the conventional computer system. Smaller
CPSs do not have enough resources available to meet the memory requirements, for ex-
ample.

There have been several attempts to either boost the performance of the HTM algorithm
[16, 17] or to provide the HTM building blocks for the FPGAs [18, 19, 20] but the
functional model suitable for smaller SOCs still seems missing.

This thesis focuses on implementation of the SP process. The goal was to implement
the mini-column capable of accepting the feedforward input and performing the overlap
calculation and column activation with the minimal usage of the resources. The other goal
set was to support the scalability, i.e. avoid cross-bar switches or similar.

15

3 PROPOSED METHODS

The first proposal by the author of this thesis is to use the Linear Feedback Shift Register
(LFSR) for the SP address space decoder. The benefit of generating the connection ad-
dresses upon the need can be estimated from the amount of memory required for storing
them into the memory. Lets suppose every mini-column is connected the approximately
half of the bits of the feedforward input vector of length m. The minimum amount of bits
required for storing every connection address then equals to log2 m and the total amount
of bits for storing all the required addresses for every mini-column can be calculated as
Eq. (3.1).

n = dlog2 me∗ m
2

(3.1)

The second proposal is to use the minimal serial communication with simple flow con-
trol capabilities for the mini-column communication. Chaining the mini-columns of the
HTM matrix does not provide any performance boost, but instead, reduces the cost of the
hardware. This trade-off is analyzed in terms of the SP execution speed and is shown not
to become the performance bottleneck.

These main ideas of this thesis have been presented and published in DDECS conference
Apr.2017 Dresden, Germany (Appendix A).

3.1 Thesis Layout

The following paragraphs provide the bottom-up description of the realization and HDL
simulations of the proposed methods. Hierarchically lower level building blocks like
serial interface and data deserializer unit data buffer are described first, followed by the
higher level components for SP processing and mini-column housekeeping related mini-

column controller. The overall HTM controller and Intellectual Property (IP) implement-
ation details conclude the following hardware description Chapter 4.

The theoretical performance of the SP process utilizing the proposed methods is defined
in Chapter 5, followed by the chapter presenting the evaluation results of the algorithm
executing in the real hardware.

16

4 HARDWARE DESCRIPTION

This chapter will discuss the implementation of the hardware capable of executing the
SP process. Simulation results of the HDL components are provided together with the
description of the implementation while the details about the syntheses are collected to
the Sections 4.6.2 and 4.6.3, describing the IP design.

The main target platform selected for testing the implementation on the real hardware was
Xilinx ZYNQ-7020 SOC [21]. The main criteria for the selection was to have the con-
ventional Central Processing Unit (CPU) resource closely coupled to the programmable
logic, allowing easier analysis of the hardware execution results and possible partitioning
of the algorithm between the software and the hardware.

The selected target platform provides:

• Dual-Core ARM Cortex-A9 processing system.

• 140 36Kbit dual port block RAMs. Each memory block can be split into two single
port RAMs.

• 53200 LUTs.

• 106400 Flip-Flops.

Assuming that the implementation of a mini-column does not use more than 18KBit of
the RAM the selected SOC could fit over 200 mini-columns, depending on the usage of
the logic cells.

In addition to the main target the HTM matrix was synthesized targeting the Altera’s
MAX10M50 FPGA [22]. The main reason for this was just to demonstrate the compatib-
ility of the HTM controller with the First In First Out (FIFO) IPs and host bus protocols
from the different vendors.

Having all the mini-columns chained to the the serial communication scheme with the
host bus interface attached leads to the overall system design as per Fig. 4.1.

4.1 Serial Interface

All the mini-columns in the HTM have to be connected to the set of input bits and all the
cells within the mini-columns have to be connected to the set of other cells, i.e. the re-

17

C

...
INTER-
FACE

ARM
CORES

PROCESSING
 SYSTEM

PROGRAMMABLE LOGIC

C

C

C

C

Figure 4.1: All the mini-columns are serially connected and interface to the CPU using the bus controller
suitable to the processing core(s) on the SoC. Bus interface controller can provide optional buffering of the
data and interrupt signals for service requests.

quired amount of interconnections is huge. Expanding the size of the HTM matrix makes
things even worse, adding one extra mini-column requires adding Lin/2 connections for
connecting the mini-column to the required amount of the inputs plus the set of connec-
tions for every cell for the SP operation, where the Lin stands for the length of the input
pattern.

Serial interface in between adjacent mini-columns can efficiently solve this problem. The
approach presented in this thesis uses the interface consisting of three wires, serial data
and flow control signals (Fig. 4.2). Flow control involves two signals: Request To Send
(RTS) and Clear To Send (CTS). In case a mini-column has any new data to send it
asserts it’s RTS signal to high and if there is buffer available for a new data it asserts it’s
CTS signal. This kind of minimal handshake avoids the risk of possible buffer over- or
underflows.

Using the serial interface and communication protocol instead of the hard-wired connec-
tions reduces the maximum update rate of the HTM matrix. In order to minimize this
side effect the delay introduced by every additional interface in the communication chain
has to be as short as possible – 1 clock cycle, i.e. every instance of the interface should
forward the received data bit on the next clock cycle.

Requiring each interface to forward the received data in the next clock cycle can yield to
the very long CTS signal path if the proper counter measures are not considered. This ef-
fect can easily be imagined considering the chain of the mini-columns all forwarding data
and de-assertion of the CTS at the end of the chain. As the result, the last mini-column
can not forward it’s data and therefore can not accept any new data either. But provided
that the long CTS chain has to be avoided then every mini-column should implement a
shadow buffer for an additional data storage. Having the shadow buffers available ef-
fectively limits the required CTS signal propagation to one mini-column per clock cycle.
However, efficient operation of the HTM requires more capabilities than simple data re-
ception and forwarding from the serial interface (Fig. 4.3). E.g. determining the winning
mini-columns during the SP phase requires arbitration of the mini-column’s locally cal-
culated overlap count with the value serially received from the interface. As again, the
arbitration process should not include any additional delay – if the mini-column’s overlap

18

Col Col ColRTS

CTS

DATA DATA

RTS

CTS

DATA

RTS

CTS

DATA

RTS

CTS

Figure 4.2: All the mini-columns are connected it’s neighbors using the simple serial interface. Implemen-
ted shadow buffers (gray) help to avoid the long CTS signal path.

count is higher than the value contained in the frame transmitted, it’s local overlap count
should be transmitted to the upstream port instead.

Yet another feature added to the serial interface is data replace mode. The name of this
mode is quite self explanatory, the interface instance just replaces the received data with
the data locally available to it via the TxBit signal line. This mode is used for reading the
state of the HTM mini-column or contents of it’s block RAM, for example.

Operating modes of the serial interface are explained in the Sections 4.1.1 to 4.1.3.

RxD
D

EN
Q

TxD

RxRTS
RxCTS

TxCTS
TxRTS

CONTROL

TxBitArbWINArbLOSTRxBit

D

EN
Q

Figure 4.3: Serial interface. TxD signal from the serial interface can be either RxD + TxBit, RxD or TxBit,
depending on the selected mode. Signals ArbLOST and ArbWIN are used for the arbitration process.

4.1.1 Forwarder Mode

The simplest mode for the interface is bit forwarding. Every interface instance buffers the
received data bit and forwards it at the next clock cycle, if there is space available in the
upstream interface. This is the case of the normal data forward flow.

Upstream interface can halt the transmission by asserting it’s CTS signal to low, resulting
the downstream interface to make use of it’s shadow buffer and clear it’s CTS signal at
the next clock cycle.

In addition, the serial interface instance clears it’s RxCTS signal if the local controlling
master does not read the data as soon it becomes available, effectively avoiding the over-
flow of the buffered data.

19

All these three scenarios have been simulated in order to verify the proper behavior of
the serial interface (Fig. 4.4). First of all, there is exactly one clock cycle delay in case of

clk
RxD

RxRTS
RxCTS

TxD
TxRTS
TxCTS

ACK
Available

normal forward TxCTS delayed RWBit delayed

Figure 4.4: Serial interface forward mode simulation. Three scenarios are simulated: normal forward
where upstream interface constantly has space for the new data and upper layer component is constantly
accepting it, TxCTS delayed where upstream interface clears its CTS signal informing there is no space
available and ACK delayed where the master controller component does not read the data causing the
transmission delay.

normal forward flow – CTS signal from the upstream port (TxCTS for the UUT) and ACK
from the master controller are constantly high, presented on the left side of the simulation
timing diagram.

Middle portion simulates the scenario where the upstream port has cleared it’s CTS to-
wards the UUT, causing the transmission halt. Signals Available and CTS towards the
downstream port are set high as soon as the data can be forwarded.

Right side of the diagram presents the results of the master controller unavailability simu-
lation. Signals CTS towards the downstream port and RTS towards the upstream port are
set high as soon as the master controller reads the data by asserting the ACK signal.

4.1.2 Replacer Mode

Replacer mode is similar to the forward mode in the implementation of flow control. The
only difference is that the data bit received from the serial line is simply discarded and the
local value received from the TxBit line is transmitted instead.

This mode is useful for reading the contents of the mini-column’s block RAM and for the
additional capture mode implemented by the data buffer component (Section 4.2.4).

The replacer mode was simulated by transmitting bits 0 and 1 to the interface RxD port
while setting the local TxBit to 1 and 0, respectively (Fig. 4.5). Interface instance suc-
cessfully replaced the data on the serial line with it’s local data, proving the replacer mode
is functioning properly.

20

clk
RxD

RxRTS
TxD

TxRTS
TxBit

0→ 1 1→ 0

Figure 4.5: Serial interface replacer mode simulation. Red rectangles mark the data sent to the interface
RxD port, 0 and 1. Received data is dropped and the local bit from the TxBit line is transferred instead,
marked by green rectangles.

4.1.3 Arbiter Mode

Arbitration mode is useful for performing the competitive learning, e.g. picking the set
of highest SP overlap counts. There should be no more than one clock cycle delay for a
data bit arbitration, similarly to the forwarder and replacer modes. The idea behind the
arbitration mode is that the high value is transmitted by the interface if either received bit
or the bit set by the master controller is high. Low value should be transmitted otherwise.

This can be achieved by transmitting the value TxD = TxBit+RxD to the upstream port.
As soon as there is a difference in between the local value and the received frame the mini-
column has to switch either to the arbitration lost or arbitration won mode and continue
forwarding the received frame or it’s own data (Eq. (4.1)).

TxD =


RxD+TxBit, if MODE = arbitration

RxD, if MODE = lost arbitration

TxBit, if MODE = won arbitration

(4.1)

Serial interface assists the master controller in proper mode selection by constantly out-
putting the signals ArbLOST and ArbWin (Fig. 4.3 and Eqs. (4.2) and (4.3)).

ArbLOST = RxD(RxD⊕TxBit) (4.2)

ArbWIN = TxBit(RxD⊕TxBit) (4.3)

Two scenarios where simulated to verify the proper behavior: interface winning and loos-
ing the arbitration process (Fig. 4.6).

In order to make the interface instance to loose the arbitration process bit pattern 101 was
transmitted to it’s RxD port and 100 to it’s TxBit signal line. Arbitration process carried
on up to the first difference. As high signal was transmitted to the RxD and low signal to
the TxBit, the interface asserted the ArbLost signal, correctly signaling that the arbitration

21

process was lost.

Transmitting bit patter 100 to the RxD port and 101 to the TxBit caused the interface to
win the arbitration process as the local value was higher than the value received from the
line. ArbWin signal was correctly set to high during the arbitration of the third bit.

The bit pattern transmitted by the interface to it’s TxD port was TxD = 101 = 101+100
in case of both tested scenarios.

clk
RxD

RxRTS
TxD

TxRTS
TxBit

ArbLost
ArbWin

Arbitration lost Arbitration won

Figure 4.6: Serial interface arbitration mode simulation. Two scenarios are simulated. Firstly, "101" is
transmitted on the RxD port while "100" is locally transmitted to the interface, causing it to loose the
arbitration. Secondly, "100" is transmitted to the RxD port and "101" to the TxBit, causing the interface to
win the arbitration. "101" is transmitted to the TxD port as the result of arbitration in both cases.

4.2 Data Buffer

Although the serial interface HW component provides fine control of the communication,
bit level data manipulation is not always needed. Writing or reading the state of the HTM
matrix or transmitting the calculated overlap counts require operating with data words,
for example.

Data buffer extends the functionality of the serial interface by operating with data words
instead of single bits. Data buffer can work in one of the following modes: forwarder-,
replacer-, arbiter- or capturer mode. Upper level components do not have to monitor the
availability of input data or possible communication hold requests from the upstream port
as the control and status lines of the underlaying serial interface are controlled by the data
buffer.

With of the data word of the buffer can be configured at design time. Current HTM
realization uses the data with of 8 bits. Bit with equal to power of two is only supported
by the current buffer implementation. This requirement simplifies the internal bit counter
implementation, e.g. 8 bit data can be counted using the three bit counter and there is no

22

need to reset the counter in between adjacent data frames, the counter simply overflows
back to zero.

Processing of multiple data words is supported by integrated frame counter. This approach
simplifies the upper level component design.

4.2.1 Forwarder Mode

Forwarder mode is intended for the simple data accumulation purposes. The mode is
named as forwarder in order to emphasize that the accumulated data is actually forwarded
during the accumulation process.

The controlling state machine of the forwarder mode process consists of two states: IDLE

and FWD (Fig. 4.7). The FWD state is entered as soon as the buffer is set to the forwarder

mode by assigning the corresponding control line. Terminate condition is matched as
soon as the last bit of the last frame required has been accumulated and forwarded.

IDLE FWD

forwader

terminate

Figure 4.7: Data buffer forwarder mode FSM. The FWD state constantly reads the data from the underlying
serial interface. As soon as the required amount of bytes have been received and forwarded the FSM returns
to the IDLE state.

Forwarder mode was simulated by sending two 8 bit data frames to the buffer, 0xAA and
0x55 (Fig. 4.8). Ready signal was asserted after the successful reception of every data
frame. The buffer asserted the dataStatus signal and returned to the IDLE state after all of
the required frames where successfully received.

clk
RxD

RxRTS
TxD

TxRTS
start

ready
dataStatus

state IDLE FWD IDLE

RxData AA 54 A9 52 A5 4A 95 2A 55

Figure 4.8: Data buffer forwarder mode simulation. The buffer acts like a data accumulator in the forwarder
mode. Received data bits are forwarded to the TxD port with one clock cycle delay during the accumulation.

23

4.2.2 Replacer Mode

Replacer mode, as suggested by it’s name, simply replaces the received data with the
contents of the local TxData buffer. Replacer mode state machine consists of two states,
IDLE and RPL (Fig. 4.9). The replacer mode is needed in order to read the state of the
HTM. HTM’s controller can read the contents of the mini-column’s block RAM by send-
ing dummy bytes to the serial interface. Every mini-column then replaces the appropriate
bytes in the message with the contents of it’s block RAM and the return message from the
communication chain contains the required values.

IDLE RPL

replacer

terminate

Figure 4.9: Data buffer replacer mode FSM. The RPL state drops and replaces the incoming data frames
with it’s TxData buffer contents. IDLE state is returned as soon as the required amount of frames has been
processed.

The replacer mode was simulated by sending two 8 bit data frames to the buffer: 0x81 and
0xFF. The contents of the frames transmitted to the buffer is not really important as the
data gets replaced. But for better observability of the ongoing replace process the frames
transmitted to to the buffer have to be different compared to the buffer local data. As can
be seen from the simulation results (Fig. 4.8) the buffer instance replaced the received
frames. Data frames transmitted to the TxD port equal to the contents of the buffer’s local
TxData register.

clk
RxD

RxRTS
TxD

TxRTS
start

ready
dataStatus

state IDLE RPL IDLE

TxData AA 55

Figure 4.10: Data buffer replacer mode simulation. Received data is simply replaced by the local data in
case of the replacer mode. Two bytes of data are sent to the buffer RxD port: 0x81 and 0xFF, which are
replaced by the local data 0xAA and 0x55, respectively.

4.2.3 Arbiter Mode

Arbiter mode is used for the competitive learning, e.g. selecting the highest overlap values
during the SP process. The goal for the arbitration process is to insert the local TxData
value into the transmitted data packet consisting of several data frames. Data can be

24

inserted only if the binary value of the currently transmitted frame is less the value present
in TxData holding register. Additional requirement are that the local data can be inserted
only once per data packet currently processed and the rest of the original transmitted
packet has to be delayed by one frame and transmitted after successfully inserting the
local value.

Arbiter FSM consists of five states: IDLE, ARB, LOST, JWON and WON (Fig. 4.11).

Active arbitration state ARB is entered as soon as the buffer is set to the arbitration mode
by asserting the corresponding control lines. This state sets the underlying serial buffer
to the arbitration mode and monitors the signals arbLost and arbWin. As soon as the bit
in the transmitted frame is 1 and the corresponding TxData bit is 0 the buffer looses the
arbitration and enters the LOST state. The rest on of the currently transmitting frame
is simply forwarded during this state and ARB state is re-entered as the last bit of the
current frame has been transmitted. Switching in between LOST and ARB states skips the
beginning frames which have higher value compared to the TxData register.

In case the TxData value is higher than the transmitting frame the arbiter FSM enters
the state JWON, which is the shorthand for arbitration Just WON. This mode sets the
underlying serial interface to the replacer mode and replaces the currently transmitting
frame with it’s TxData register contents. Important to notice here is that the original
frame is still accumulated into the buffer’s RxData register.

LOST ARB JWON

WONIDLE

arbiter

terminate

arbWinarbLost

terminate lastBit

terminate

lastBit

terminate

Figure 4.11: Data buffer arbiter mode FSM. Beginning frames with higher value than the buffer’s local
data are simply forwarded by switching between the ARB and LOST states. The state JWON is entered as
soon as the value of the local data is higher compared to the frame currently transmitting. The original data
packet is appended to the transmitted local data in the WON state, shifting the original data by one frame.

Arbitration WON state is entered as soon as the last bit of the TxData register has been
transmitted. The WON state, as well as JWON, sets the underlying serial interface to
the replacer mode. The important difference is that the previously accumulated data is
transmitted in this state instead of the local TxData, effectively delaying the original data
packets by one frame. The terminate condition is met as soon as the last bit of the last
frame has been processed.

25

Proper behavior of the buffer’s arbitration mode was simulated by transmitting the data
packet consisting of three frames: 0xAF, 0x81 and 0x55 (Fig. 4.12). Buffer’s local data,
the TxData register, was loaded with the value 0xAA.

The first data frame is forwarded unaltered by the buffer as the transmitted frame 0xAF
has higher value compared to the local data 0xAA. The state LOST is entered as soon as
the arbLost signal is asserted by the underlying serial interface, resulting in the forwarding
of the original data frame. The arbitration process is won during the transmission of the
second frame and the local data 0xAA is transmitted instead of the original frame 0x81.
The original second frame 0x81 is delayed and transmitted as the third frame.

The status of the performed arbitration process is communicated using the dataStatus
signal. It is set to high if the local data was successfully inserted into the transmitting data
packet.

clk
RxD

RxRTS
RxBit
TxBit
TxD

TxRTS
arbit

forward
replace

start
ready

dataStatus
state IDLE ARB ARBLOST ARB ARBJWON ARBWON IDLE

ArbWin
ArbLost
TxData AA

success

delayed

Figure 4.12: Data buffer arbitration mode simulation. Three bytes are transmitted to the data buffer: 0xAF,
0x81 and 0x55. The local data for the arbitration is loaded into TxData register: 0xAA. Data buffer wins the
arbitration while transmitting the third bit of the second byte. Successful arbitration is reported by asserting
the signal dataStatus to high after required amount of bytes have been processed. The original second byte
is stored and transmitted instead of the third byte.

4.2.4 Capture Mode

Capture mode operation complements the arbitration mode in order to complete the com-
petitive learning process, e.g. in case the mini-column successfully inserted it’s overlap
count into the data packet the value could have been overwritten by the following mini-
columns in the communication chain.

In order to determine if the transmitted overlap count was not overwritten the last bit of
the frame is reserved for the capture operation. The original overlap count is shifted to

26

the left by one position and the last bit is set to zero. Capture mode operation then tries
to capture a frame from the transmitted packet by setting it’s last bit to high, if not set by
previous a mini-column already.

Capture mode FSM consists of four states: IDLE, CAPT, LOST and CFWD (Fig. 4.13).

First, the received data frame is compared to the contents of the TxData register up to the
second last bit in the CAPT state. The state LOST is entered as soon as the data does not
match. The rest of the bits of the current frame are simply forwarded in the LOST state
and the state CAP is re-entered at the beginning of the next frame.

IDLE

CAPTLOST CFWD

captureterminate

lastBit &
arbWin

terminate

!lastBit &
arbDiff

lastBit

terminate

Figure 4.13: Data buffer capture mode FSM. Buffer compares the received frame to the TxData register in
the CAPT state and enters the state LOST in case the data does not match. The state CAPT is re-entered
if there are more frames to follow. CFWD state is entered as the result of the successful capture and the
remaining frames of the packet are forwarded unaltered.

In case the transmitted data frame matches the local TxData register the buffer tries to set
the last bit of the frame to high, if it is not set already. Underlaying serial interface is set
to arbitration mode for this operation. In case the arbWin signal gets asserted, the frame
was successfully captured and the FSM enters the state CPFD. The CPFD state is used to
forward the remaining frames of the data packet.

The result of the capture operation is communicated by the signal dataStatus, it is set high
in case of successful capture of a frame. Terminate condition is met as soon as the last bit
of the last frame has been processed.

Proper behavior of the capture mode was simulated by transmission of the data packet
consisting of three frames: 0xAA, 0x81 and 0x80 (Fig. 4.14). Local TxData register was
loaded with value 0x81.

Capturing of the first data frame failed as the third bit of the transmitted frame and the
local TxData register are different, as signaled by the underlying serial interface.

The second frame equals to the TxData register up to the second last bit and the frame
capture was attempted. Capturing of the second frame did not succeed as the last bit of

27

the transmitted frame was set already.

As the capture attempt of the second frame failed the FSM stays in the CAPT state and
starts comparing the next frame to the TxData register value. As the frame matched the
local data and the last bit of the transmitted frame 0x80 was not set, capturing of the third
frame succeeded.

clk
RxD

RxRTS
RxBit
TxBit
TxD

TxRTS
forward

arbit
start

ready
dataStatus

state IDLE CAPTURE CAPLOST CAPTURE IDLE

ArbWin
ArbDiff
TxData 81

equal equal

Figure 4.14: Data buffer capture mode simulation. Three bytes are transmitted to the buffer: 0xAA, 0x81
and 0x80. Local data for capture process is stored in the TxData register: 0x81. Capturing the first received
frame fails as the received frame and local data are different. Capturing of the second received frame 0x81
is not successful as the last bit is set already. Capturing of the third frame succeeds. Successful capture is
reported by asserting the signal dataStatus to high.

4.3 Spatial Pooler

Spatial pooler is the first stage of the HTM algorithm. It converts the input data into the
SDR with the fixed dimension and sparsity which is then used as the input for the TP.

Operation of the SP consists of the four major phases: receiving the input data, calculating
the overlap counts, determining the winning mini-columns and optional learning phase.
In the implementation presented in this thesis one additional feature was added to the
SP component: generation and transmission of the output SDR. This feature is needed in
order to compare the SP hardware component output to the one of SP software realization
or feed it to the TP software process.

The FSM of the spatial pooler consists of three distinguishable sub FSM-s: feedforward
input processing (FF IN), learning (LEARN) and the output SDR generation (OUT SDR)
(Fig. 4.15).

Determining the winning mini-columns is skipped from the SP component, as can be seen
from the SP FSM partitioning. This design decision was made because the SP compon-

28

ent uses the direct access to the serial interface instance (Section 4.1) and winning cells
detection can benefit more from the features provided by the data buffer component (Sec-
tion 4.2). Therefore the SP component does calculate the overlap count but outputs the
calculated value to the mini-column component which has the buffer hardware included.

OUT SDRLEARN FF IN

LR

LC LW FIN INW S2 W

S1IDLE
learn

!allDone

allDone

out

skipDone

allDone

FFIN

data

!allDone

allDone

Figure 4.15: Spatial pooler FSM consist of three sub FSM-s: feedforward input processing (FF IN), learn-
ing (LEARN) and output SDR generation (OUT SDR). LEARN FSM increments or decrements the con-
nection permanence values, OUT SDR generates and transfers the output SDR and FF IN receives the
feedforward input.

4.3.1 Feedforward Input

The feedforward input sub FSM (FF IN) is responsible of receiving the input data. All the
HTM mini-columns are connected to the approximately half of the input bits, therefore
the SP component either has to store the connection indexes to the mini-columns internal
block RAM or use some other method to keep track of the connections.

As the RAM is limited resource, the implementation presented in this thesis takes the
approach of not storing the connection indexes. Considering the facts that every mini-
column has to be connected to the approximately half of the random inputs and the SP
feedforward inputs do not change in time, the information can be generated using the
LFSR.

LFSR generates pseudo random bit patterns, depending on the feedback polynomial and
the initial seed value. The correlation between the generated patterns can be calculated
using different techniques [23] and is the same for every vector pair in case of the LFSR
uses a primitive feedback polynomial.

Using primitive polynomials guarantees that the LFSR register includes all the possible
values, i.e. generates the pseudo bit pattern of maximum length. The only restricted value
for the LFSR is all zeros, which is never generated, unless the LFSR register is initialized
with it.

LFSR with primitive polynomial X4 + X3 + 1 (Fig. 4.16) generates 2n − 1 = 15 bits

29

long pattern and the LFSR register travels all the possible values in the range [1 . . .15]
(Table 4.1). The least significant bit, b0, is used as the output of the LFSR. As the LFSR
register travels all the possible values the n bit long register can hold, except all zeros, the
output bit of n = 4 bit long LFSR is guaranteed to have bones = 2n/2 = 8 one bits and
bzeros = bones−1 = 7 zero bits.

b0b1b2b3 OUT

Figure 4.16: LFSR using primitive polynomial X4 +X3 +1.

Table 4.1: LFSR register values. The LSB b0 is used as the output of the LFSR.

Seq. b3 b2 b1 b0 Seq. b3 b2 b1 b0 Seq. b3 b2 b1 b0

1 0 0 0 1 6 1 0 1 0 11 1 0 1 1
2 1 1 0 0 7 0 1 0 1 12 1 0 0 1
3 0 1 1 0 8 1 1 1 0 13 1 0 0 0
4 0 0 1 1 9 0 1 1 1 14 0 1 0 0
5 1 1 0 1 10 1 1 1 1 15 0 0 1 0

The bit pattern generated by the LFSR with seed value 0001 equals to 100110101111000.
Changing the seed value does not change this pattern but rotates it. The initial seed for
every mini-column can be chosen by different criteria, favoring more connections in cer-
tain positions or maximizing the distribution of connections over the entire range of the
HTM mini-columns. Or as there are many alternative feedback polynomials available
for the same pattern length, especially for the longer bit patterns, different mini-columns
could even be initialized using different LFSR feedback.

Possible connection matrix of the 15 mini-column HTM to the 15 bit input vector is
presented in the Table 4.2. Cell value 1 indicates that there is possible connection between
the input bit (table column) and the HTM mini-column (table row). The seed values for
different HTM mini-columns are initialized in favor of maximizing the bit value trans-
itions in every table column, distributing the possible connections. Every SP instance
advances it’s LFSR as the new feedforward input bit is transferred to it. Depending on
the output of the LFSR the mini-column either reacts to it or forwards without notice.
If the input bit belongs to the mini-column, it is saved as the activity bit into the mini-
column’s block RAM, as the highest bit of the corresponding permanence value memory
field (Fig. 4.17).

The LFSR output vector L and input vector I of length m are defined as:

L = (l1, l2, l3, . . . , lm) (4.4)

30

Table 4.2: SP connections generated by LFSR-s with different seed values, 1 indicates the connection in
between mini-column Ci and input bit I j.

Col Seed I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

C1 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
C2 2 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
C3 3 1 1 0 1 0 1 1 1 1 0 0 0 1 0 0
C4 4 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
C5 8 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
C6 5 1 0 1 1 1 1 0 0 0 1 0 0 1 1 0
C7 12 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
C8 6 0 1 1 0 1 0 1 1 1 1 0 0 0 1 0
C9 9 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
C10 7 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
C11 15 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1
C12 10 0 1 0 1 1 1 1 0 0 0 1 0 0 1 1
C13 11 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1
C14 13 1 0 1 0 1 1 1 1 0 0 0 1 0 0 1
C15 14 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1

I = (i1, i2, i3, . . . , im) (4.5)

where, li, ii ∈ {0,1} ,∀i ∈ {1,2, . . . ,m} and the activity vector is defined as:

A = (a1,a2,a3, . . . ,an) (4.6)

The activity vector A⊂ I is defined for every i where LFSR output is one:

A(j) = (ii|li = 1) (4.7)

The length of the activity vector is half of the the length of the input vector n ≈ m/2, as
defined by the properties of the LFSR output bit pattern L.

i1 i2 i3 i4 . . . im

l1=1 l2=0 l3=0 l4=1 . . . lm=1

a1

a2

a3
...

an

p1

p2

p3
...

pn

LFSR

INPUT

BLOCK RAM

Figure 4.17: LFSR used as the input address decoder. If the output of the LFSR is 1, the corresponding
input bit ii is saved to the mini-columns block RAM as the highest bit of the permanence value p j.

The feedforward input processing FSM FF IN transients between the two states, FIN and
INW. First, the FSM waits for the new data in the state FIN and enters the sate INW as
soon as the data becomes available. The LFSR output is checked in the state INW and if
it’s 1, the data bit is saved to the block RAM as the activity bit and and the RAM address

31

gets incremented.

Calculating the mini-columns feedforward input overlap count can be combined with the
reception of the input data. The overlap counter is activated in the stage INW if two
highest bits of the current memory word are high, the activity bit and the highest bit of
the permanence value, i.e. the input bit has value 1 and the permanence value is over the
half of the full range of the register.

The SP feedforward input was simulated by transferring the bit vector 10001010 to it.
The LFSR was configured according to Fig. 4.16 and initial seed set to 1. The output
stream of the LFSR matches the Table 4.2 row 1, which is the correct result. Write enable
signal we is enabled and the RAM address gets incremented for every LFSR output high
cycle (Fig. 4.18). Overlap counter also works as expected, it gets incremented if the LFSR
output and the input bit RxBit are high marking – the input is active and the permanence
value is over the threshold.

clk
sp_state IDLE FIN INW FIN INW FIN INW FIN INW FIN INW FIN INW FIN INW FIN INW IDLE

spReady
RWBit

LFSRout
we

RxBit
data_i 80 180 80 0 100 180 80 0 100 0

address 0 1 2 3 4 0

overlap 0 1 2 0

Figure 4.18: Spatial pooler feedforward input. If the LFSR output is high, the corresponding input bit is
stored to the mini-column’s memory. Overlap counter gets incremented if two highest bit of data_i register
are set, the activity bit received from the interface and the highest bit of the corresponding permanence
value.

4.3.2 Learning

Learning process of the SP strengthens the mini-column connections which are connected
to the active input bits and weakens the others. Incrementing the permanence value of a
connection strengthens it while decrementing it has the opposite effect. Prerequisite for
the learning is that the mini-column has to belong to the set of winning mini-columns
with the highest overlap counts.

Learning process FSM contains three states: LR, LC and LW (Fig. 4.15), forming the read
(LR), modify (LC), write (LW) sequence. Learning does not include any communication
and is the local operation for a mini-column.

Incrementing or decrementing of a permanence value can be carried out by a up/down
counter hardware and possible over- or underflow has to be avoided. Over- or underflow

32

can be checked by configuring the counter to be 1 bit wider than the permanence value
field and using the highest bit as the inhibition for the write signal, i.e. if the highest bit
of the counter output is set, the write enable signal gets inhibited in the LW state.

Learning process was simulated using four different scenarios: normal increment, incre-
ment with the overflow, normal decrement and decrement with the underflow (Fig. 4.19).

clk
spReady
sp_state IDLE LR LC LW LR LC LW LR LC LW LR LC LW IDLE

ramRData 183 1FF 3 0 184

LCOUT 0 84 100 2 1FF

we
LCov

address 0 1 2 3 4 0

Figure 4.19: Spatial pooler learning. Permanence values get either incremented or decremented based on
the activity bit ai stored as the MSB of the memory field. Write enable we is inhibited in case the LCov
signals the over- or underflow. These situations are marked by the red rectangles. Green rectangles mark
the normal increment or decrement cycle.

SP was configured to have 4 feedforward inputs connected to it, resulting in four per-
manence values stored in to the block RAM. The RAM was initialized with data words
10000011, 11111111, 00000011 and 00000000 (Table 4.3). The highest bit of the memory
fields hold the activity bit ai and the lower 8 bits hold the permanence values pi.

As per the activity bit ai value the first two permanence values have to be incremented
and the last two have to be decremented during the learning process. Processing of the the
second and fourth field yield to over- and underflow respectively and remain unchanged,
proving the detection mechanism is functional.

Table 4.3: SP learning. The permanence values pi get either incremented or decremented, based on the
activity bits ai . If the operation yields to a overflow the value remains unchanged. Address 1 receives the
overflow and address 3 the underflow.

address ai pi pi
before after

0 1 10000011 10000100
1 1 11111111 11111111
2 0 00000011 00000010
3 0 00000000 00000000

4.3.3 Output SDR Generation

It has to be possible to acquire and store the SDR generated by the SP in order to analyze
it or to use it as the input for the SW based TP.

In order to read the output SDR from the HTM the data packet consisting of n =Coltotal

33

bits is transferred to the serial interface. The initial transmitted data is not important as
every mini-column inserts it’s state value ssp_i ∈ {0,1} into the bit position Colpos_i + 1
while forwarding the packet, where Colpos_i is the mini-column’s zero based address in
the HTM matrix. The data packet outputted from the serial interface contains the output
SDR of the SP process after passing all the mini-columns.

Output generation FSM, OUT SDR, consists of three states: S1, W and S2. In the first
state, S1, the starting n = Colpos_i bits are skipped. After skipping the required amount
of bits the state W is entered, where the mini-column replaces the original data bit in the
transferred message with it’s state value ssp_i and switches to the last state, S2. The last
state just skips the remaining n =Coltotal−Colpos_i−1 data bits.

Simulating the output SDR generation was performed by first setting the mini-column
to the active state and sending bit pattern filled with zeros to it’s serial interface. The
second half of the simulation set the mini-column to the inactive state and the bit pattern
consisting of all ones was transferred to it.

Simulated mini-column was configured with the position index Colpos_i = 1. Simulation
results proved that the column successfully replaced the bit Colpos_i + 1 with it’s state
value (Fig. 4.20).

clk
spReady
sp_state IDLE S1 W S2 IDLE S1 W S2 IDLE

TxD
TxRTS

RxD
RxRTS

ssp_1 = 1 ssp_1 = 0

Figure 4.20: Spatial pooler output SDR generation. The bit position Colpos_i = 1+1 = 2 of the transferred
pattern is replaced with the mini-columns state value ssp.

4.4 Mini-Column Controller

Mini-column controller is the master controlling component of the HTM column’s oper-
ations. It’s main task is to decode the commands received over the serial interface and
control the sub FSM-s. It is also responsible for multiplexing the shared resources in
between different HW components (Figure 4.21).

Mini-column controller is connected to the adjacent controllers using the serial interface,
forming the HTM matrix. The matrix can be scaled by adding or removing mini-column

34

instances to or from the communication chain and can only be done on design time. The
maximum amount of possible mini-columns depends on the actual FPGA used.

CTRL
TxD

TxRTS
TxCTS

RxD
RxRTS
RxCTS

STATUS

Serial Interface

CTRL

STATUS

Data Buffer

Serial
Interface

D/STATUS

D/CTRL

DATA/CONTROL

DATA

Block RAM

CTRL

STATUS

Spatial Pooler

Serial
Interface

STATUS

CTRL D/CTRL

DATA

Block
RAM

CTRL

STATUS

Column Controller

Spatial
Pooler

CTRL D/CTRL

DATA

Block
RAM

D/CTRL

D/STATUS

Data
Buffer

Figure 4.21: Mini-Column Controller’s responsibility is to control the sub HW components and multiplex
the shared resources. It is connected to the adjacent mini-columns using the serial interface, forming the
HTM matrix.

4.4.1 Command Decoder

In order to control the operations of the mini-column a command protocol on top of the
physical serial line is used. As the initial interest is to evaluate the feasibility of the
HTM running on FPGA platform and there are no harsh environmental requirements the
selected protocol structure is extremely simple, consisting of a command frame followed
by the required amount of data frames. Error detection and correction schemes can be
added if needed.

The bit with of the command and data bytes depends on the design time configuration
of the data buffer component (Section 4.2) and has to be selected based on the minimal
data type requirement for the mini-column proper operations. Selection has to be made
very carefully, setting the base data type unnecessary wide yields to waste of resources,
restricting it too much, on the other hand, might yield to the poor HTMs performance.

The data with is set to 8 bits in the current work, as considered to be adequate for all the
required variables.

Command frame of the communication protocol is divided into the command group se-

35

lector and the command selector. The command groups where introduced in order to
simplify the decoder design. The command group is formed of the three starting bits of
the command frame and selecting the proper group therefore needs a three bit decoder,
while the rest of the bits within the group use one-hot encoding. The set of defined com-
mands is presented in the Table 4.4.

Table 4.4: Mini-column commands. First three bits define the command group. The commands within the
group are one-hot encoded in order to simplify the command decoder hardware.

Group Command Description

000 00001 SP feedforward input
00010 SP overlap communication and winning cell selection
00100 SP output SDR communication
01000 SP perform learning
10000 –

001 00001 Write SP permanence values to the RAM
00010 Read SP permanence values from the RAM
00100 –
01000 –
10000 –

FSM of the mini-column’s controller consists of four states: START, CWT, CDEC and
ERR (Figure 4.22).

START state sets the data buffer to the forward mode, frame count to one and connects
the serial interface to it. This state is left at next clock cycle and state CWT is entered.

The CWT state is used for waiting the command to be transferred. Availability of the
command is signalled by the data buffer component using it’s ready signal. Next state,
CDEC, is entered as soon as a new command has been received.

The CDEC state decodes the command and transfers the control to a required sub FSM,
which is responsible of setting the multiplexers and initializing other necessary compon-
ents for it’s intended actions.

The ERR state was added for the debug purposes. The functionality of this state can be
defined if the error detection and correction algorithms are needed.

Simulation of the command decoder was performed in conjunction with the actual com-
mand execution.

4.4.2 Feedforward Input And Output SDR Generation

Reception of the feedforward input and generation of the output SDR are performed by
the SP sub component. The task for the mini-column’s controller is to just connect the

36

START CWT CDEC

ERR

SUB
FSM

handled

sfDone

bufRdy

fail

ok

Figure 4.22: Mini-Column’s Command Decoder uses the data buffer component for the command recep-
tion. START state sets up the data buffer for reception of 1 frame, followed by the CWT state. The CWT
state just waits for the reception completion signal from the data buffer and proceeds to the CDEC state for
command decoding and SUB FSM execution.

serial interface instance and the block RAM to the SP and request it to start the operation.
Therefore the controllers feedforward input and output SDR generation sub FSM consists
of only one single state: SPBSY (Fig. 4.23). This state just waits for the SP completion.

CMD
FSM SPBSY

spStart

spReady

Figure 4.23: Processing of the feedforward input and outputting the SP SDR are the tasks of spatial pooler
component, therefore the corresponding mini-Column’s FSM consists of only one single state, SPBSY –
waiting while the SP is busy.

The feedforward input processing was tested with four mini-column controllers, forming
the 4 element HTM matrix. The length of the input pattern was initialized to 15 bits.
All the mini-columns successfully accepted the feedforward input and returned to CWT,
command wait state (Fig. 4.24). The total delay between completing the feedforward
input processing for the first and last mini-columns was four clock cycles, equaling the
number of elements in the HTM matrix.

clk
spReady0
spReady1
spReady2
spReady3

state0 S CWT D SPBSY S CWT

state1 S CWT D SPBSY S CWT

state2 S CWT D SPBSY S CWT

state3 S CWT D SPBSY S CWT

4 clocks

Figure 4.24: Feedforward input timing for HTM matrix consisting of four mini-columns. There is exactly
one clock cycle delay for consecutive columns to complete the input processing, totaling the number of
elements in the HTM matrix.

Generation of the output SDR was tested using the same size HTM matrix as for the

37

feedforward input simulation. All the mini-column controllers wrote their state value into
the transmitting data frame and returned to the command wait state (Fig. 4.25).

clk
spReady0
spReady1
spReady2
spReady3

state0 S CWT D SPBSY S CWT

state1 S CWT D SPBSY S CWT

state2 S CWT D SPBSY S CWT

state3 S CWT D SPBSY S CWT

sp_state0 IDLE W S2 IDLE

sp_state1 IDLE S1 W S2 IDLE

sp_state2 IDLE S1 W S2 IDLE

sp_state3 IDLE S1 W IDLE

4 clocks

Figure 4.25: SP output SDR Generation. All the mini-column controllers successfully received and de-
coded the command. The SP FSMs wrote the state value into the frame bit position corresponding to their
index in the communication chain. The total delay between the first and the last mini-column to complete
the operation equals to the total number of mini-columns in the HTM matrix.

4.4.3 Mini-Column Activation

Activation of the mini-column is based on the Hebbian learning, only the columns with
the highest overlap count should be activated.

Mini-column’s activation FSM consists of two states, SPOLP and SPWIN (Fig. 4.26).

CMD
FSMSPOLP SPWIN

cmdOVTx

bufRdy

cmdOVWin

bufRdy

Figure 4.26: Mini-Column’s activation FSM consists of two states, SPOLP for determining the set of
highest overlap counts and SPWIN for activating the mini-columns. Both of these states make use of the
features provided by the data buffer component.

In order to activate the required amount of mini-columns with the highest overlap counts
the set of highest overlaps has to be determined first. This operation is performed in the
SPOLP state, which consists of transmitting the data packet consisting of n = Coltotal

frames initialized with zeros to the HTM serial interface. Every mini-column then tries to
replace the original frame with it’s overlap count by setting the data buffer to the arbit-

ration mode. All the mini-columns shift their overlap count value to the left by one bit
position and transmit zero as the last bit, which will be used as the capture bit in the next
phase.

The data packet exiting the HTM matrix serial interface consists of the required amount
of n highest overlap counts o appended with the initially zero capture bit c (Fig. 4.27).

38

o1 c o2 c o3 c o4 c

frame 1 frame 2 frame 3 frame 4

Figure 4.27: The data packet exiting the highest overlap counts selection consist of frames containing the
overlap values with the special purpose appended capture bit.

The same packet is re-transmitted to the HTM matrix in order to determine the contrib-
uting mini-columns and activate them. This operation is performed in the SPWIN state
which sets the data buffer to the capture mode. The data buffer interfaces use the last bit
of a frame for the capture operation.

The mini-column’s activation process uses the components which have been individually
simulated. Therefore the activation process simulation was performed during the evalu-
ation of the overall operations of the SP.

4.4.4 SP Permanence Values Read And Write

In order to initialize the HTM matrix it has to be possible to write the initial permanence
values to the mini-columns block RAM. In addition to the possibility of writing it has to
be possible to read the memory contents in order to store the operating state of the HTM
for the later use.

Reading and writing of the permanence values is performed by transmitting data packet
consisting of n = Coltotal ∗Colconn data frames to the serial interface. The data packet
is initialized with the permanence values for the write operation and zeros for the read
operation.

Both, reading and writing operation start with the mini-columns skipping the first n =

Colpos_i ∗Colconn data frames in the SPRP1 and SPWP1 states respectively. The frame
skipping state is followed by the actual reading or writing of the Colconn amount of frames
in the SPRP or SPRP state. Permanence value reading and writing is completed by skip-
ping the rest of the packet in the SPRP2 or SPWP2 state (Figs. 4.28 and 4.29).

4.5 HTM Controller

In order to control the behavior of the HTM and feed it with the input data the HTM
hardware component has to be interfaced to the processor peripheral bus.

The HTM controller requires three FIFOs to be connected to it externally, one for trans-
mitting and the other one for receiving the data to/from it. The third FIFO is used intern-
ally by the HTM controller in order to circulate the data packet if necessary (Figure 4.30).

39

CMD
FSM

SPWP1

SPWP

SPWP2

SPRP1

SPRP

SPRP2

cmdW
Pbu

fR
dy

bufRdy
bu

fR
dy

cm
dR

P bufRdy

bu
fR

dybufRdy

Figure 4.28: Mini-Column’s SP Permanence Value R/W FSM. States SPRP1 and SPWP1 are used for
skipping the beginning frames of the packet. Actual memory reading or writing is performed in the states
SPRP or PRWP. The rest of the packet is skipped in the state SPRP2 or SPWP2.

OV1 . . . OVS1 OVS1+1 . . . OVS1+n OVN−S2 . . . OVN

S1 =Colpos_i ∗Colconn n =Colconn S2 = N−S1−n

N =Coltotal ∗Colconn

Figure 4.29: Mini-Column overlap value R/W data packet consists of all the overlap values for all the mini-
columns concatenated into a single packet. Every mini-column reads or writes the values which belong to
it, marked as green, and skip the rest. Skipped frames are colored gray.

RxD
RxRTS
RxCTS

DATA

Deserializer

DATA
TxD

TxRTS
TxCTS

Serializer

FSM

HTM CONTROLLER

INOUT FIFO
CNTRLCNTRL

IN OUTFIFO
CNTRL CNTRL

IN OUTFIFO
CNTRL CNTRL

M
E

M
O

R
Y

M
A

P
P

E
D

S
L

A
V

E

H
T

M
M

A
T

R
IX

32

32 8

8

8

8

Figure 4.30: HTM Controller requires three external FIFOs, two for data transfer between the host pro-
cessor and one additional FIFO for circulating the necessary data packets in the HTM matrix. Data buses
for the host connection are drawn red while the internal circulating bus is green.

40

The external FIFOs provided to the HTM controller have to be of type First Word Fall
Through (FWFT). FWFT FIFO simplifies the design of the HTM controller as read
and write signals transfer to the read and write acknowledge signals instead, therefore no
explicit read phase is necessary.

The capacity of the internal FIFO, used for data circulation, has to be chosen high enough
not to generate the dead lock. The minimum capacity Fmin of the FIFO is set by the
maximum payload length Pmax needed to be circulated. The entire packet has to fit into the
serial buffers of the HTM mini-columns, each capable of storing 2 data bits, de-serializer
and the circulation FIFO itself (Eq. (4.8)).

Fmin ≥ Pmax−
⌊

2∗Coltotal

8

⌋
−1 (4.8)

The data packet sent to the HTM controller should start with four control bytes, a 32
bit header, containing the information about the following payload data (Fig. 4.31). The
control header includes alignment field ALIGN in order to allow the HTM matrix easy
interfacing to the 32 bit host bus systems. Alignment field can be used if the total amount
of bytes in the payload data is not aligned in the 4 byte boundaries – HTM controller
automatically skips the required amount of bytes and does not transfer those to the HTM
matrix serial bus. The same holds for the output packet generated by the HTM matrix,
additional bytes are used to meet the 32 bit boundaries, if necessary. Description of the
control header bits is presented in the Table 4.5.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RD FW ALIGN COUNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COUNT COMMAND

Figure 4.31: HTM controller packet header. It consists of the total count of the following payload data,
optional alignment field, control bits describing the needed actions and the actual command byte.

4.6 HTM IP

In order to test the HTM SP in the real hardware two synthesizers from two bigger FPGA
manufacturers have been used: Quartus from the Altera and Vivado from the Xilinx.

4.6.1 Register Map

Both of the IPs, Avalon IP for the Altera devices and Advanced eXtensible Interface 4
(AXI4) IP for the Xilinx SOC implement the same register map in order to enable the

41

Table 4.5: HTM Controller Packet Header.

Bit Description

31–30 Reserved. Software should write 0 to this field.

29 Read control. If this bit is set the response of the HTM matrix to the payload
data is transmitted to the host RX FIFO.

28 Forward control. If this bit is set the payload data is first transmitted to the
HTM matrix and the output packet is re-transmitted, effectively circulating the
payload data.

27–26 Alignment control. Maximum three alignment bytes can be set. HTM control-
ler automatically skips the alignment bytes from the received payload data and
appends the same amount of bytes to the response packet transmitted to the
host controller (if bit 29 is set).

25–8 Number of payload bytes.

7–0 Command byte. This byte is the actual HTM matrix command (Table 4.4).

usage of the same software drivers with minimal Board Support Package (BSP) related
changes.

Register map for controlling the HTM and for data transfer is documented in Tables 4.6
to 4.13. Both of the IPs implement the 32 bit wide bus interface and make use of the
alignment bytes for a transferred data packet.

Table 4.6: HTM IP Control Register 0x00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RST

Bit RW Description

31–1 R Reserved. Software should write 0 to this field.

0 RW Reset the entire HTM matrix. This bit does not reset the previously writ-
ten permanence values

42

Table 4.7: HTM IP Total Mini-Columns Register 0x01

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Total Columns

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Total Columns

Bit RW Description

31–0 R Number of mini-columns in the HTM matrix.

Table 4.8: HTM IP total Number of Feedforward Inputs Register 0x02

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Feedforward input length

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Feedforward input length

Bit RW Description

31–0 R Total number of bits in the Feedforward input.

Table 4.9: HTM IP Feedforward Input Connections Register 0x03

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SP FF Connections

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SP FF Connections

Bit RW Description

31–0 R Total number of feedforward connections per mini-column.

Table 4.10: HTM IP SP Output Active mini-Columns Count Register 0x04

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SP Output Count

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SP Output Count

Bit RW Description

31–0 R Total number of activated mini-columns in the SP process.

43

Table 4.11: HTM IP FIFO Register 0x10

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIFO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIFO

Bit RW Description

31–0 W Write to the TX FIFO.
R Read from the RX FIFO.

Table 4.12: HTM IP TX FIFO Status Register 0x11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FULL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

USED

Bit RW Description

31–15 R Reserved. Software should write 0 to this field.

16 R TX FIFO full flag.

15–0 R TX FIFO used count. Number of 32 bit words in the TX FIFO.

Table 4.13: HTM IP RX FIFO Status Register 0x12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EMPT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AVAILABLE

Bit RW Description

31–15 R Reserved. Software should write 0 to this field.

16 R RX FIFO empty flag.

15–0 R RX FIFO available count. Number of 32 bit words available in the RX
FIFO.

44

4.6.2 Avalon Bus HTM IP

Avalon bus HTM IP was synthesized targeting the Altera’s MAX10M50 FPGA. The
target device provides:

• 50K logic elements

• 1638 Kbit of on chip memory, configurable to 9 bit width memory blocks suitable
for the chosen SP permanence value fields.

Synthesized HTM matrix consisted of 128 mini-columns, each accepting 128 bit feedfor-
ward inputs and connecting to 64 input bits.

The total number of logic elements occupied by the selected matrix was 42768 logic
elements. Distribution of the logic usage per HTM SP elements is provided in Table 4.14.

Table 4.14: Logic usage per HTM Avalon IP mini-column

HTM Building Block Logic Elements Usage

Column Controller 93

SP Controller 121

LFSR 9

Bit Collector 96

Serial Interface 12
Total 331

45

4.6.3 AXI4 Bus HTM IP

AXI4 IP was synthesized targeting the Xilinx ZYNQ-7020 SOC.

The synthesized HTM consisted of 128 mini-columns, each accepting 128 bit feedfor-
ward inputs and connecting to 64 input bits.

The total number of logic occupied by the matrix was: 32710 LUTs and 22324 Flip-Flops.
The logic usage per HTM SP elements is provided in Table 4.15.

Table 4.15: Logic usage per HTM AXI4 IP mini-column

HTM Building Block LUTs Flip-Flops

Column Controller 21 30

SP Controller 85 64

LFSR 3 8

Bit Collector 134 67

Serial Interface 9 4
Total 252 173

46

5 PERFORMANCE ESTIMATION

The performance of the SP process can be estimated using the formulas derived from it’s
intended behavior.

5.1 Feedforward Input

Communicating the input SDR to the HTM takes 2 clock cycles per input bit (Sec-
tion 4.3.1). Therefore it takes 2Coltotal clock cycles for the first bit to travel all the mini-
columns. Additional 2m clock cycles are required for the last bit of the input pattern to
exit the last mini-column, where m stands for the length of the input pattern. Total clock
cycles for the input processing can be calculated using Eq. (5.1).

CLKin = 2(Coltotal +m) (5.1)

5.2 Mini-columns Activation

The next step after applying the input is the overlap calculation and mini-columns activ-
ation (Section 4.4.3). The total cycle count for this step depends on the required output
sparsity which sets the amount of overlap frames to be transmitted and consists of the
three phases:

1. Coltotal cycles are required for the first bit of the highest overlap count to exit the
HTM.

2. It takes LovCwin cycles for the last bit of all the overlap frames to re-enter the HTM,
where Lov stands for the length of a single overlap frame and Cwin is the total number
of required overlaps, i.e. the required density of the output SDR.

3. Additional Coltotal cycles are required for the last bit to exit the HTM.

The total cycle count for the mini-columns activation can be calculated using Eq. (5.2):

CLKov = 2Coltotal +LovCwin (5.2)

5.3 Learning

The SP learning phase consists of the n read-modify-write cycles (Section 4.3.2), where n

stands for the total amount of mini-column’s feedforward connections. Therefore the total

47

amount of required clock cycles for the learning process equals the number of permanence
values multiplied by three (Eq. (5.3)).

CLKlearn = 3n (5.3)

5.4 Output SDR Generation

Generation of the output SDR of the SP depends of the size of the HTM matrix. It does
not require any wait cycles, all the mini-columns modify the bit position corresponding
to their location while forwarding the message (Section 4.3.3). Therefore the total output
generation cycles equal to Coltotal cycles for the first bit to exit the HTM and additional
Coltotal cycles for the last bit (Eq. (5.4)).

CLKout = 2Coltotal (5.4)

5.5 Total SP Processing

The total cycles needed for the SP process equals to the sum of the processing steps
(Eqs. (5.1) to (5.4)). The execution time t can be calculated by dividing the total cycles
by the selected clock frequency f of the hardware (Eq. (5.5)).

t =
CLKin +CLKov +CLKlearn +CLKout

f
(5.5)

48

6 EVALUATION

Evaluation of the SP hardware realization was performed by applying the same set of the
input data to the hardware and software implementations. The input data was applied
for 10000 times in order to monitor the learning capabilities. The correctness of the
functionality and the performance of the SP where both verified.

6.1 Supporting Software Description

In order to verify the functionality of the SP process it had to be supplied with the input
data and the output SDRs had to be compared against the known good results. This
verification process required some support software development.

Software development was divided into two main steps, development of the SP software
process and development of the hardware driver.

6.1.1 Spatial Pooler SW Implementation

The pure software SP process was implemented using the C++ programming language.
In addition to the implementation of the SP itself, input data encoder had to be developed.

The PC software was developed to have the same configuration options as the implement-
ation running in the hardware and all the classes where developed as templates, which can
be instantiated using the variable data type. The data type has to match the selected data
with of the hardware implementation.

6.1.2 Example Usage

This section provides an example use-case of the SP software.

In order to run the software the SP has to be initialized first. Initialization involves defining
the number of mini-columns, length of the input, output sparsity and other parameters
(Listing 6.1).

/ / SP p a r a m e t e r s
/∗ ∗< t o t a l number o f mini−columns i n HTM ∗ /
u n s i g n e d columns= 128 ;
/∗ ∗< o v e r l a p c o u n t (s p a r s i t y) ∗ /
u n s i g n e d o v e r l a p = 4 ;
/∗ ∗< l e n g t h o f t h e i n p u t SDR ∗ /

49

u n s i g n e d i n p u t L e n = 128 ;
/∗ ∗< number o f b i t s c o n n e c t e d (each c e l l c o n n e c t s t o ’ c o n n e c t C o u n t ’

number o f i n p u t s) ∗ /
u n s i g n e d c o n n e c t C o u n t = 6 4 ;
/∗ ∗< t h r e s h o l d v a l u e f o r t h e permanences ∗ /
u n s i g n e d TH= 128 ;
/∗ ∗< t h r e s h o l d d e l t a f o r i n i t i a l r a n d o m i z a t i o n p r o c e d u r e ∗ /
u n s i g n e d THDelta= 5 ;
/∗ ∗< s p e c i f y i f t h e mini−columns pe r fo rm t h e l e a r n i n g o p e r a t i o n ∗ /
boo l l e a r n i n g = t r u e ;
/∗ ∗< s p e c i f y i f t h e b o o s t o p e r a t i o n i s e n a b l e d ∗ /
boo l b o o s t i n g = f a l s e ;

/ / i n s t a n t i a t e t h e SP
HTM: : POOLER : : S p a t i a l P o o l e r < u i n t 8 _ t > sp (columns , inpu tLen , inpu tLen ,

o v e r l a p , t r u e , TH) ;
/ / and randomize t h e permanence v a l u e s
sp . r andomize (connec tCoun t , TH−THDelta , TH+THDelta) ;

Listing 6.1: SP Initialization

The next step after successfully setting up the SP is to prepare some input data to apply
to it. Data encoder is used for that purpose. For easy access the input data is inserted into
the C++ vector (Listing 6.2).

/ / e n c o d e r p a r a m e t e r s
/∗ ∗< minimum v a l u e f o r t h e SDR e n c o d e r ∗ /
u n s i g n e d encMin= 0 ;
/∗ ∗< maximum v a l u e f o r t h r SDR e n c o d e r ∗ /
u n s i g n e d encMax= 100 ;
/∗ ∗< number o f b i t s i n t h e SDR e n c o d e r (b i n s i z e) ∗ /
u n s i g n e d encBin = 4 ;
/∗ ∗< l e n g t h o f t h e i n p u t SDR ∗ /
u n s i g n e d i n p u t L e n = 128 ;

/ / i n s t a n t i a t e t h e e n c o d e r
HTM: : ENCODER : : S c a l a r E n c o d e r < u i n t 8 _ t > e n c o d e r (encMin , encMax , inpu tLen ,

encBin) ;
/ / encode t h e i n p u t d a t a
v e c t o r <HTM: : MATRIX : : b i t M a t r i x > SDR;
f o r (i n t d a t a = 0 ; d a t a < 100 ; d a t a += 10)

SDR . push_back (e n c o d e r . encode (d a t a)) ;

Listing 6.2: Input Data Encoder Initialization

Testing of the SP is performed by applying the input data to it. In order to better check
the learning capabilities of the SP the input data can be applied in the loop (Listing 6.3).

/ / a p p l y t h e i n p u t d a t a
f o r (u n s i g n e d i = 0 ; i <10000; i ++)

f o r (a u t o c o n s t& s :SDR)
sp . i n p u t (s , l e a r n i n g , b o o s t i n g) ;

/ / and p r i n t t h e s t a t e o f t h e mini−columns
c o u t << " Mini−column c o n n e c t i o n s : " << e n d l << sp . p r i n t C o n n e c t e d () ;

Listing 6.3: SP Testing

6.1.3 Spatial Pooler Driver

The SP driver software is intended for controlling and testing the SP hardware implement-
ation.

50

The basic operations of the driver are the same as for the software version, excepts that the
HTM configuration has to be done during the HDL synthesis. However, the configuration
parameters can be read and verified using the control registers (Section 4.6.1).

As there is no configuration involved in the runtime, the usage of the SP hardware imple-
mentation is limited to just applying the input data to it. Therefore the example use-case
consisting of a single loop is not presented here.

The only housekeeping task the driver has to do is to monitor the level of the TX FIFO in
order not to overflow it.

6.2 Functional Evaluation

The input data for the evaluation was encoded using the scalar encoder with the minimum
and maximum values 0 and 100, respectively (Listing 6.2). The bin size for the encoder
output was set to 4 and the total length of the encoding to 128, i.e. every encoded output
has 4 out of the 128 bits set.

The input data set used for the evaluation consisted of values 0,10, . . . ,90 (Fig. 6.1).
The data set was applied for 10000 times, giving the SP enough inputs to perform the
learning and train the feedforward connections. The final SP connections where identical
for the software and hardware processes, proving the HTM SP hardware model functions
according to the design requirements.

The graphical representation of the evaluation output is presented in the Fig. 6.2. The
presented matrix visualizes the state of the mini-columns feedforward connections. If
the permanence value of a connections is over the threshold value, i.e. the connection
has been established, the corresponding position is marked as red rectangle in the output
figure. Green rectangles indicate the inactive connections.

Every row presents the results for a single mini-column. The mini-columns which where
not contributing to the generation of the output SDRs, i.e. the ones which constantly lost
the overlap count comparison where skipped from the figure.

Every input presented to the HTM has 4 mini-columns matching it’s SDR encoding,
i.e. every input has 4 mini-columns which have trained their feedforward connections to
match it. The amount of connected mini-columns matches the initialization of the SP –
the SP was initialized to activate 4 mini-columns for every input pattern (Listing 6.1).

51

Figure 6.1: Output of the encoder has 4 out of the total 128 bits set, as per encoder initialization. Minimum
and maximum values for the encoder where set to 0 and 100, respectively. Encodings of the inputs 0,
10,. . . ,90 are shown as the the matrix rows where the red boxes indicate the ON bits.

Figure 6.2: The state of the SP feedforward connections after applying the set of inputs (Fig. 6.2) for
10000 times. Every row of the matrix shows the connections for a mini-column that has been participating
to the learning process, i.e. the mini-columns which where not activated due to the results of the overlap
count calculations are skipped from the figure. Every possible input value has matching 4 mini-columns
connected to it.

6.3 Performance Evaluation

The performance of the SP was evaluated using the hardware timer providing the operat-
ing system tick. The granularity of the system tick was set to 1ms.

Performance evaluation consisted of registering the initial system tick count, applying
the set of input patters for 10000 times and acquiring the system timer value after the
execution of all the inputs. The difference of these two values was divided by the total
amount of the input SDRs applied in order to get the execution time per unit.

The same process was conducted for the SW based algorithm in order to get some data
for the comparison.

As can be seen from the processing times, 128 mini-column HTM is capable to out-
perform the conventional PC with quite a bit of a margin (Table 6.1). Processing times
on the main HW target, ZYNC-7020 SOC and for the smaller MAX10M50 FPGA where
the same as the driving clock was the same in both cased: 100MHz. The clock frequency
can be reduced for the low power designs to meet the actual required cycle times.

Table 6.1: 128 mini-column HTM SP processing time for a 128 bit input SDR

SP i7 PC ZYNQ MAX10

t(ms) 0.11 0.02 0.02

The theoretical SP processing time calculated using the Eq. (5.5) for the 128 mini-column

52

HTM with 128 bit feedforward input length equals to t = 0.012ms, which is shorter than
the results acquired from the experiment. This phenomena can be explained by the per-
formance of the processor. The clock of the processor was also set to 100MHz and it was
not enough to feed the data FIFO fast enough.

The processor performance penalty was also proven by the fact that the FIFO level was
zero after applying all the input SDRs. Therefore it would be beneficial to use the Direct
Memory Access (DMA) controller for the data transfers in order to achieve the optimum
performance both in performance and power wise.

53

7 CONCLUSIONS

Based on the execution results of the HTM SP on the SOC and the theoretical perform-
ance estimations it can be concluded that the leading ideas of this theses proved to be
feasible.

Implementation of the LFSR utilizes small amount of the hardware resources compared
to the physical memory it helps to conserve. The total amount of the memory and logic
used by the implementation is definitely one of the key factors in narrowing down the
possible target platforms. Less resources required allow smaller devices to be used and
less power consumption.

The serial communication scheme proposed and described in this theses proved to be a
feasible approach too. There are several reasons for this. First of all, the address decoder
LFSRs need to be advanced for every additional input bit, therefore there would be no
benefit in transferring data using the faster parallel buses. Another consideration is the
access of the mini-column’s block RAM – inferring single port memories requires the ac-
cess to be divided in the time domain, supporting the serial nature of the implementation.

And most importantly, the ultimate performance was not the primary target of this work.
The key topic addressed by this thesis is more related to the balance in between the per-
formance and the usage of the resources, i.e. the implementation has to show up improved
execution time over the pure software solution using general purpose off-the-shelf and
power efficient SOC hardware.

As the conclusion, this thesis provides another approach for the implementation of the
HTM SP algorithm targeting the SOC devices with the FPGA resources available. Al-
though the entire HTM algorithm has not been fully implemented the proposals and im-
plementation details provided in this thesis can form a good platform for the following
researches in the future.

7.1 Future Works

The future works for the the implementation of the entire HTM functionality:

• Evaluate the possibility to use the LFSR with configurable feedback and length for
the TP connection segments addressing. TP can possibly add new segments in order

54

to learn different sequences, i.e. the connection addresses have to have some room
for runtime adjustments.

• The current implementation of the SP does not support the inhibition radius smaller
than the entire HTM matrix. Implementation of the local inhibition might benefit
from the Network On Chip (NOC) architectures with light-weight routers.

• Implement the boosting functionality for the mini-columns. The selected boosting
algorithm should correlate to the implementation of Numenta’s algorithm but it
might benefit from some simplifications for constraining the usage of the FPGA
logic.

In addition to the functional additions the proposed architecture could benefit from some
additional optimization. Every saving in the resources scales up quite fast – the HTM
matrix consists of large number of mini-columns:

• Although the best effort was used in generation of the HDL code, the synthesizer
output has to be closely analyzed.

• It might be possible to share and schedule more resources in time domain.

• Current implementation of the mini-columns serial interface does not support gen-
eration of the output data without the input. Some FSM states and related logic can
be reduced if the mini-column could independently start or continue the commu-
nication.

55

Bibliography

[1] D. Graupe, Deep Learning Neural Networks. Design and Case Studies. World
Scientific Publishing Co. Pte. Ltd., 2016.

[2] A. Dijksterhuis and H. Aarts, “Goals, Attention, and (Un)Consciousness ,” Annual

Review of Psychology, vol. 61, pp. 467–490, 2010.

[3] Numenta, “Hierarchical Temporal Memory including HTM Cor-
tical Learning Algorithms. White paper VERSION 0.2.1,”
http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf, Septem-
ber 2011.

[4] J. Hawkins and S. Blakeslee, On Intelligence. Times Books, 2004.

[5] D. George, “How the Brain Might Work: A Hierarchical and Temporal Model
for Learning and Recognition,” Ph.D. dissertation, Stanford, CA, USA, 2008,
aAI3313576.

[6] A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detection Algorithms -
the Numenta Anomaly Benchmark,” in 14th International Conference on Machine

Learning and Applications (IEEE ICMLA), 2015.

[7] Numenta, “Applications of Hierarchical Temporal Memory (HTM),” 2014. [Online].
Available: http://numenta.com/papers-videos-and-more/resources/applications-of-
hierarchical-temporal-memory/

[8] ——, “Numenta Platform for Intelligent Computing,” 2016. [Online]. Available:
http://numenta.org/

[9] J. Hawkins and S. Ahmad, “Why Neurons Have Thousands of Synapses, a Theory
of Sequence Memory in Neocortex,” Frontiers in Neural Circuits, vol. 10, no. 23,
2015.

[10] S. Ahmad and J. Hafkins, “How do neurons operate on sparse distributed
representations? A mathematical theory of sparsity, neurons and active dendrites,”
2016. [Online]. Available: arXiv:1601.00720 [q-bio.NC]

[11] S. Purdy, “Encoding Data for HTM Systems,” 2016. [Online]. Available:
arXiv:1602.05925 [cs.NE]

[12] S. Ahmad and J. Hawkins, “Properties of Sparse Distributed Representations and
their Application to Hierarchical Temporal Memory,” 2015. [Online]. Available:
arXiv:1503.07469 [q-bio.NC]

56

[13] Y. Cui, S. Ahmad, and J. Hawkins, “The HTM Spatial Pooler: a neocortical
algorithm for online sparse distributed coding,” bioRxiv, 2016. [Online]. Available:
http://biorxiv.org/content/early/2016/11/02/085035

[14] J. Mnatzaganian, E. Fokoué, and D. Kudithipudi, “A Mathematical Formalization
of Hierarchical Temporal Memory’s Spatial Pooler,” 2016. [Online]. Available:
arXiv:1601.06116v3 [stat.ML]

[15] Numenta, “Overview of the Temporal Pooler,” 2015. [Online]. Available:
https://github.com/numenta/htmresearch/wiki/Overview-of-the-Temporal-Pooler

[16] X. ZHOU and Y. LUO, “Implementation of Hierarchical Temporal Memory on a
Many-core Architecture,” Master’s thesis, Halmstad University, School of Informa-
tion Science, Computer and Electrical Engineering (IDE), 2013.

[17] L. Streat, D. Kudithipudi, and K. Gomez, “Non-volatile Hierarchical Tem-
poral Memory: Hardware for Spatial Pooling,” 2016. [Online]. Available:
http://arxiv.org/abs/1611.02792

[18] M. Deshpande, “FPGA Implementation and Acceleration of Build-
ing blocks for Biologically Inspired Computational Models,” Master’s
thesis, Portland State University, 2011, paper 160. [Online]. Available:
http://pdxscholar.library.pdx.edu/open_access_etds/160

[19] A. M. Zyarah, “Design and Analysis of a Reconfigurable Hierarchical Temporal
Memory Architecture,” thesis, Rochester Institute of Technology, 6 2015. [Online].
Available: http://scholarworks.rit.edu/theses/8703

[20] P. Vyas and M. Zaveri, “Verilog implementation of a node of hier-
archical temporal memory,” Asian Journal of Computer Science & In-

formation Technology, no. 3.7, pp. 103–108, 2013. [Online]. Available:
http://www.innovativejournal.in/index.php/ajcsit/article/viewFile/370/355

[21] Xilinx, “All Programmable SoC with Hardware and Software Programmability.”
[Online]. Available: https://www.xilinx.com/products/silicon-devices/soc/zynq-
7000.html

[22] Altera, “MAX Series FPGAs.” [Online]. Available:
https://www.altera.com/products/fpga/max-series.html

[23] B. Zhang and S. N. Srihari, “Properties of binary vector dissimilarity measures,” in
Proc. JCIS Int’l Conf. Computer Vision, Pattern Recognition, and Image Processing,
vol. 1, 2003.

57

Appendices

58

A DDECS 2017

Student paper "Hierarchical Temporal Memory implementation on FPGA using LFSR
based spatial pooler address space generator" published and presented in DDECS2017
conference, Apr. 2017 Dresden, Germany.

59

Hierarchical Temporal Memory implementation on FPGA using LFSR
based spatial pooler address space generator

Madis Kerner1 and Kalle Tammemäe2

Abstract— Hierarchical temporal memory (HTM) is the
model of the neocortex functionality, developed by Numenta,
Inc. The level of implementation does cover only the subset of
actual neocortex layers functionality, but, however, is sufficient
to be useful in different domain areas e.g. for a novelty or
anomaly detection. Numenta provides their implementation of
the HTM for commercial or research purposes as a software
solution. The purpose of this work is to investigate the feasibility
of implementing the HTM algorithm partly or entirely on
FPGA, providing the suitable building block for the resource
limited cyber physical systems. The uniqueness of the provided
solution is based on resource efficient Linear Feedback Shift
Registers (LFSR) as connection address generators, as well as
using a simple serial interface for inter-column communication.

I. INTRODUCTION

There have been different Artificial Neural Networks
(ANN) developed over time [1]. The HTM cortical learning
algorithm, developed by Numenta, Inc. [2] is one of the
newest among them. HTM, as opposed to other types of
ANNs, tries to mimic the functionality of the mammalian
neocortex layered structure and operation as closely as possi-
ble. Every operation or execution step of the HTM algorithm
is paired, partially or in whole, with its mammalians brain
counterpart. Its ability to classify the input patterns and make
predictions based on the input pattern sequences has been
successfully used in different applications [3] and has been
proven to be successful in detecting anomalies in real-world
time-series data [4].

HTM is comprised of up to thousands of interconnected
neural columns, with tens of cells each. All the columns
are connected to a subset of input bits and all the cells
are connected to a subset of another cells. The operation
of the HTM is divided into two main tasks, a spatial pooler
(SP) and a temporal pooler (TP). The SP, operating with
columns, input data and connections between them, classifies
and learns the input patterns. Columns, which are connected
to more active input bits, switch to the active state and
TP process follows. The temporal pooler operates on cells
and their interconnections. TP’s task is to recognize and
remember the sequences of the input data. If a cell with
high amount of active connections to the set of active cells
belongs to the active column, it’s activation was predicted,
i.e. the sequence has been learned in the past.

Establishing and strengthening the connections between
input data and HTM columns during spatial pooling or

1Master student at Dept. of Computer Systems, Tallinn University of
Technology, Estonia

2Associate Professor at Dept. of Computer Systems, Tallinn University
of Technology, Estonia

between different HTM cells during the TP process is based
on competitive Hebbian learning. The connections between
often firing entities get stronger while the rest will be sup-
pressed. Every input connection in the HTM implementation
has a characteristic permanence value assigned to it. In
case of the value being over the specified threshold, the
connection is in active, enabled state – active connections
in between input bit vector and HTM columns allow active
input bits to contribute to the column activation during the
SP phase. The total amount of active input bits connected
to each of the columns is defined as an overlap count. The
columns having a higher overlap count become active and
can suppress the activity of their neighbors. The maximum
distance between a active column and columns affected by
its activity is defined as an inhibition radius.

The data format HTM operates on is Sparse Distributed
Representation (SDR) [5]. Sparsity means that only few bits
of the entire data set are active concurrently and distributed
means that the semantic meaning of the data is distributed
across the bits, allowing sub-sampling of the data and pro-
viding fault tolerance. Few missing or additional bits will not
change the SDR’s ability to correctly represent the encoded
input value.

HTM functionality is described thoroughly in [2], [6].

II. BACKGROUND

Numenta’s implementation of the HTM algorithm is freely
available for investigation and further development [7]. The
algorithm itself is not computationally very intensive; the
majority of the computations are based on simple integer
type count-and-compare operations in contrast to classical
neural networks, where learning requires evaluation of non-
linear equations. But the column-based architecture of the
neocortex calls for the parallel execution. Evaluating hun-
dreds of connections requires executing many software loops,
which can severely degrade the overall throughput of the
algorithm on small resource limited devices. One possible
solution would be to make use of multi-core architectures,
which has been shown to be good solution for increased
throughput [8]. But constructing hundred or more cells HTM
would quickly exploit the available cores. Another approach
would be to implement a custom hardware component with
single cell functionality and use it as the building block
for the HTM matrix construction [9], [10], [11]. A solution
based on multi-core architectures can be useful when the
power consumption of the system is not limited, but smaller
cyber physical devices often run on batteries and do not

host several CPUs. Therefore the task oriented FPGA based
solution could be beneficial.

III. FPGA AS A PLATFORM FOR HTM IMPLEMENTATION

Due to the parallel and concurrent nature of the HTM
execution algorithm the FPGA based solution can yield to
increased throughput. However, there are few considerations.
First of all, the huge amount of possible connections. This
calls for the huge crossbar switch but having all the possible
connections hardwired severely limits the scalability and
does not support the expected flexibility of a neural network.
In order to overcome this limitation, serial communication
schemes can be used, i.e. neighboring columns connect via
the serial line interface and the message passes from one
column to another. Another consideration is the memory
footprint of the column implementation.

A. Target platform

Some of the sequential tasks related to the HTM execution,
like initialization, saving the state for later analyzes, loading
the state or performing another kind of maintenance are
more suitable for the conventional CPU resource. In addition,
having a CPU resource available allows partitioning the
computations between HW and SW. Therefore a suitable
HW platform for the HTM realization can be a system on
chip (SoC), with FPGA resources closely coupled to the
CPU-based processing system. The SoC chosen as the target
platform for this work is a Xilinx ZYNQ-7020. The chosen
SoC provides:

• Dual-Core ARM Cortex-A9 processing system.
• 140 36Kbit dual port block RAMs. Each memory block

can be split into two single port RAMs.
• 85K logic cells.

A high level block diagram of the HTM algorithm imple-
mented on a ZYNQ based SoC is shown in Fig. 1.

Fig. 1: HTM implementation based on Xilinx ZYNQ SoC.
All the columns are connected in series. The processing
system can provide computational support and can be used
to analyze the state of the HTM.

The total number of available memory blocks in the SoC
is a limited resource. Therefore all data types have to be min-
imal, but still capable of reflecting the needed functionality.
E.g. the underlying data type for the permanence values of a
connections has to be carefully chosen. The entire possible
memory field has to be utilized, available memory blocks in
HW can only be configured using the allowed set defined
in the product’s data sheet. Legal configurations for Xilinx
ZYNQ include 2K of 9-bit words, for example, leaving one
extra bit while using 8-bit permanence values. This extra
bit gets used for saving the input activity during the SP
execution (Fig. 2). Configuring the ZYNQ’s 140 36Kbit dual

port memory blocks as two single port blocks yields to 280
18Kbit memory units. Using a 9-bit memory word allows
allocation of one 2K*9bit memory block to each column
and build the HTM matrix consisting of >200 columns.

IV. SPATIAL POOLER IMPLEMENTATION

Spatial pooling is the first stage of the HTM operation.
It consists of four main sub tasks: receiving the input
data, calculating the overlap count for each of the columns,
detecting the set of winning columns with the highest overlap
and optional learning task. Every column is connected to
approximately half of the input data bits on a semi-random
basis. E.g. input data of 128 bits would require storing of 64
connection addresses in the memory of every column. But as
the memory is a limited HW resource, it has to be conserved
when possible and feasible. Therefore efficient method for re-
generating the information about existing connections would
be preferable. One suitable approach is to use a LFSR
for this. LFSR can be efficiently implemented in hardware
and it is capable of generating semi-random bit patterns
for indicating connections between columns and upcoming
input bits. Using the LFSR as a connection address decoder
eliminates the need to store the connection data into the
columns memory. In case of 64 possible connections every
connection address has to be coded using 6 bits, 384 bits in
total per column. When using LFSR, 9.6KB of memory can
be freed up for HTM consisting of 200 columns.

A. LFSR as a connection generator

LFSRs can generate pseudo random bit patterns of dif-
ferent length, depending on the feedback polynomial and
the length of the actual LFSR register [12]. As column
connections have to be randomized, column LFSRs have
to be initialized using a different seed value. Using a seed
value based on the cell index effectively randomizes the
connections. But it is important to notice that zero is the
only value that can’t be used as the initial seed, because
LFSR would stay at constant zero state otherwise. Another
important aspect while choosing the suitable LFSR length
and polynomial is that the selected feedback polynomial
has to be primitive. LFSR-s using the primitive polynomial
generate the maximum length pseudo random sequence.
Using primitive polynomial P (x) = x7+x6+1 generates 127
bit pseudo-random bit-stream, i.e. 127 unique internal LFSR
states, which is the maximum number the 7-bit memory field
can hold. Therefore every bit is guaranteed to be high for
half of the possible states, effectively generating the pseudo-
random bit stream with half of the bits set to high. This
behavior can efficiently be used for randomizing half of the
possible input bit connections to a column.

B. Sending the input data

Input data is sent to the SP as the bit vector. Every column
advances it’s LFSR while receiving the data, determining if
the cell is connected to the bit just received or not. If the
output of the LFSR is high, the cell is connected to the
corresponding bit and vice versa if the LFSR output is zero.

The bit is saved as the most significant bit (MSB) into the
column’s corresponding SP permanence memory field and
the memory address gets incremented in case the connection
exists (Fig. 2).

Total amount of clock cycles for input data transfer
consists of Lin cycles for transferring all input bits to the
first column plus C cycles, the clock count for the last input
bit to proceed up to the last column. Furthermore, processing
every input bit takes two clock cycles per column (Eq. (1)).

CLKin = (Lin + C) ∗ 2 (1)

Fig. 2: Using LFSR as the connection address decoder. LFSR
is advanced synchronously with receiving bits from the serial
interface. Input bit arrival and LFSR advance direction are
indicated by an arrow. In case the LFSR output is one,
the corresponding input is stored to the column’s memory
as the highest bit of the permanence value. Legal memory
configuration of Xilinx ZYNQ involves 9-bit memory word,
leaving one bit for saving the input activity while having
8-bit permanence values.

C. Overlap counting

During the HTM’s spatial pooling process every cell has
to calculate its overlap count. Overlap counting is a simple
comparison – if the permanence value is above the specified
threshold and the corresponding input bit is active, the
overlap count gets incremented. Threshold comparison can
be done effectively by setting the value to exactly half of
the maximum unsigned number the memory field can hold.
If the permanence value is stored as an eight bit number, the
maximum unsigned value it can accommodate is hex 0xFF
and half range is 0x7F. Anything above the half range would
set the MSB to high. Therefore the threshold comparison can
be carried out by simply checking the MSB – connection
is enabled if the MSB is set. Overlap counting can be
combined with the receiving of the input bit pattern; while
saving the input activity bit combined with it’s corresponding
permanence (Fig. 2), the overlap counter increments if the
two highest bits are both 1 (the activity bit itself and the
MSB of the permanence value).

D. Determining winning columns

After transferring the input bit vector to the columns
and performing the overlap calculation, the pre-specified
amount of columns with the highest overlap count have to be
activated. Total amount corresponds to the required sparsity
of the output SDR of the SP process. A 200 column HTM
with a SP sparsity set to 2% should activate 4 columns only.

Determining if the columns overlap count is higher com-
pared to ones of the columns within its inhibition radius
can be achieved by sequentially forwarding the required
amount of overlap count frames over the serial channel.
Every column receiving the frames transmits the received bits
OR-ed with the corresponding bit of the calculated overlap
count up to the first difference, where a column either looses
or wins the arbitration process. In case a column lost the
arbitration the rest of the frame is forwarded unaltered and
the same arbitration schema is repeated for the next frame
(if any is left). If a column wins the arbitration, meaning its
overlap count is higher than the frame currently transmitting,
the column continues the frame with its own overlap value.
The received frame gets stored and transmitted next, if any
frames left, i.e. the column enters to the store-and-forward
transfer mode.

Winning the arbitration process and transmitting its over-
lap count is not enough in order to decide whether the
column belongs to the top winning set or not. There can be
enough columns with higher overlap count on the communi-
cation path. Therefore one extra zero bit is inserted to the line
together with overlap value, which will be used as a capture
bit. The top overlap counts exiting the the last column will
be transferred again. During this phase all the columns try
to capture a frame matching their overlap count by setting
the last bit, if not set by a preceding column already.

The total amount of needed clock cycles consists of three
parts. It takes C cycles for the first bit of first overlap count
frame to exit the last HTM column, Lov ∗ Cwin cycles for
the last bit of the last overlap frame to re-enter the first HTM
column and additional C clock cycles for this last bit to exit
the last column (Eq. (2)). C is the the number of columns,
Cwin the required amount of active columns and Lov stands
is the length of the overlap frame together with the capture
bit.

CLKov = C + Lov ∗ Cwin + C (2)

E. SP learning

After successfully determining the active columns, the set
can perform an optional learning operation. The learning
column increments the permanence values of the active
input bit connections, while suppressing the others. As the
input activity bit is stored together with the corresponding
permanence (Fig. 2), the learning process consists of sequen-
tially reading the fields from the memory, incrementing or
decrementing the value depending on the MSB and writing
the value back while incrementing the memory address.
Possible over- or underflow has to be detected and corrected.
Altogether it takes three clock cycles for processing each
permanence value and therefore the total clock cycles needed
equals to the input connections count Cconn multiplied by 3
(Eq. (3)).

CLKlearn = Cconn ∗ 3 (3)

V. SERIAL COMMUNICATION

Serial communication in between adjacent columns has a
negative impact to the maximum network update rate, but

greatly reduces the connections count in the HW (Fig. 3).
Every interface instance is capable of receiving and buffering
one bit of information on every clock cycle. The transmitted
bit (TX) can be either the received bit (RX) for simple
forwarding, the column local TX + RX for arbitration or
the column local TX for data replace mode. The received
data is stored into the shadow buffer and the CTS signal
towards the downstream port is cleared in case the upstream
interface turns to be busy.

Col Col ColRTS

CTS

DATA DATA

RTS

CTS

DATA

RTS

CTS

DATA

RTS

CTS

Fig. 3: Connections between adjacent columns. Every col-
umn receives the serial data from the downstream port and
forwards it to the upstream port. Every cell can signal to its
data source to wait in order to avoid possible buffer overflows
and implements a shadow buffer for temporary data storage
in case the upstream interface turns to be busy.

VI. EXPERIMENTAL RESULTS

The current level of the HTM algorithm implementation is
limited to a SW implementation of the numeric encoder for
encoding the input SDR-s, a SW implementation of the spa-
tial pooler and VHDL implementation of the spatial pooler.
The HDL description of the SP has not been synthesized to
the target ZYNQ platform yet, but is being tested and verified
in the simulator. Therefore the comparison can be carried
out for the SP process, comparing the SW execution time
to the simulated clock cycles of the HDL version. The total
amount of clock cycles for the SP process can be calculated
by adding up the cycle counts from Eqs. (1) to (3).

Reading the output SDR from the HTM matrix consumes
additional CLKout = 2 ∗ C clock cycles. C cycles are
required for the first bit to proceed from the first to the last
column and additional C clock cycles for the last bit to exit
the last column. The total time consumed by the SP process
and reading the output SDR can be calculated by adding up
the clock cycles from those steps and dividing the result by
the clock frequency (Eq. (4)).

t =
CLKsp + CLKout

f
(4)

Using Eq. (4) we can calculate the total SP processing
time for the HTM matrix consisting of 200 columns, each
connected to 67 of possible 127 input bits for the FPGA
clocking frequency f = 100MHz: t ≈ 0.017ms. Same result
was acquired using the ModelSIM HDL simulator. In order
to compare this result against the pure software SP realization
the same size HTM was used for time measurements on dif-
ferent platforms, Intel i7 CPU running at 2.7GHz and ARM
processing unit of ZYNQ running at 650MHz (Table I).
Total amount of physical memory used by one column is
M = N ∗ 9, where M stands for number of memory bits
used, N number of input connections for a column and 9 is
the width of memory word. With an input vector length of

TABLE I: SP execution time.

SP i7 ARM on ZYNQ FPGA

t(ms) 0.266 1.875 0.017

127 bits and having 67 bits connected to every cell consumes
67 9-bit memory words out of 2K assigned for each of the
columns, leaving the rest for the upcoming TP realization.

VII. CONCLUSION AND FUTURE WORK

Based on the SP simulation results it is possible to expect
up to 100-fold acceleration of an HTM being implemented on
a FPGA compared to the pure SW implementation running
on ZYNQ ARM processing unit, although the implementa-
tion of the TP process has not yet been started. Using the
LFSR as SP address decoder has turned out to be an efficient
approach in order to conserve the amount of physical mem-
ory used by the SP process, leaving more FPGA resources
for the TP related data-structures. In addition, the latency
of the serial connection in between columns proved not to
become a performance bottleneck.

In the future, ongoing work will include the implementa-
tion of the entire functionality of the HTM on the FPGA:
SP HDL synthesis, TP implementation as a software process,
TP HDL simulation and synthesis, and testing with real-time
streaming data.

REFERENCES

[1] D. Graupe, Deep Learning Neural Networks. Design and Case Studies.
World Scientific Publishing Co. Pte. Ltd., 2016.

[2] Numenta, “Hierarchical Temporal Memory including HTM
Cortical Learning Algorithms. White paper VERSION 0.2.1,”
http://numenta.org/resources/HTM CorticalLearningAlgorithms.pdf,
September 2011.

[3] ——, “Applications of Hierarchical Temporal Memory (HTM),”
2014. [Online]. Available: http://numenta.com/papers-videos-and-
more/resources/applications-of-hierarchical-temporal-memory/

[4] A. Lavin and S. Ahmad, “Evaluating Real-time Anomaly Detec-
tion Algorithms - the Numenta Anomaly Benchmark, year=2015,
doi=10.1109/ICMLA.2015.141,,” in 14th International Conference on
Machine Learning and Applications (IEEE ICMLA).

[5] S. Ahmad and J. Hafkins, “How do neurons operate on sparse
distributed representations? A mathematical theory of sparsity, neurons
and active dendrites,” 2016. [Online]. Available: arXiv:1601.00720
[q-bio.NC]

[6] J. Hawkins and S. Ahmad, “Why neurons have thousands of synapses,
a theory of sequence memory in neocortex,” Frontiers in Neural
Circuits, vol. 10, no. 23, 2015.

[7] Numenta, “Numenta platform for intelligent computing,” 2016.
[Online]. Available: http://numenta.org/

[8] X. ZHOU and Y. LUO, “Implementation of hierarchical temporal
memory on a many-core architecture,” Master’s thesis, Halmstad
University, School of Information Science, Computer and Electrical
Engineering (IDE), 2013.

[9] M. Deshpande, “FPGA Implementation and Acceleration of Building
blocks for Biologically Inspired Computational Models,” Master’s
thesis, Portland State University.

[10] A. M. Zyarah, “Design and analysis of a reconfigurable hierarchical
temporal memory architecture,” thesis, Rochester Institute of Technol-
ogy.

[11] P. Vyas and M. Zaveri, “Verilog implementation of a node of hier-
archical temporal memory,” Asian Journal of Computer Science &
Information Technology, no. 3.7, pp. 103–108, 2013.

[12] Wikipedia, “Linear-feedback shift register,” 2016. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Linear feedback shift reg-
ister&oldid=754433904

