
TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

IAG70LT
Jan Toodre 153157 IASM

LEARNING ENVIRONMENT FOR PROGRAMMING

IN C
Master Thesis

Supervisor: Vladimir Viies PhD
Co-Supervisor: Lembit Jürimägi MSc

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Arvutitehnika instituut

IAG70LT
Jan Toodre 153157 IASM

PROGRAMMEERIMISKEELE C ÕPPEKESKKOND
Magistritöö

Juhendaja: Vladimir Viies PhD
Kaasjuhendaja: Lembit Jürimägi MSc

Tallinn 2017

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has
been published or submitted for publication. All works and major viewpoints of the other
authors, data from other sources of literature and elsewhere used for writing this paper
have been referenced.

Author: Jan Toodre

May 31, 2017

3

Abstract

The goal of this thesis is to provide solutions on how to create a learning environment
which can be used to ease the process of teaching the C programming language.

The thesis will provide technologies and tools best suited for such an application. The key
components of this environment are virtualized environment for students to practice their
programming skills, automated grading and means of getting almost immediate results.
To achieve such goals, multiple technologies are explained in greater detail. After that,
the process of developing such a system and how people can continue contributing to it
is described. As a result of this thesis and environment development, the productivity of
professors will be increased vastly by allowing them to shift their focus from grading to
teaching.

The thesis is in English and contains 56 pages of text, 4 chapters, 13 figures, 6 tables.

4

Annotatsioon

Lõputöö eesmärk on pakkuda välja lahendusi probleemidele, mis esinevad programmeer-
imise õpetamisel. Peamisteks probleemideks on erinevad arenduskeskkonnad iga tu-
dengi arvutis ja aeg, mis kulub õppejõududel tööde kontrollimiseks. Esimene probleem
avaldub siis, kui tudengid soovivad teha töid oma arvutites, kuid igal tudengil on kasu-
tada erinev operatsioonisüsteem, mis toob kaasa ühildusprobleemid, kohustades õppe-
jõude keskenduma eripärasustele tudengite töödes. Võttes kasutusele keskkonna, kus
kõik saavad kasutada ühtseid tööriistu, on võimalik välistada süsteemispetsiifiliste prob-
leemide teket ning tagada õppejõududele parem võimalus õpetamisele keskenduda.

Teise põhiprobleemi, hindamise ajamahukuse, lahendamiseks on vaja luua süsteem, mille
abil on võimalik tudengeid hinnata ühtsete kriteeriumide alusel. Sellise ühtse süsteemi
leidmine ja rakendamine on oluline, kuna see annab võimaluse rutiinsed tegevused au-
tomatiseerida, hoides nii kokku õppejõudude aega muude tegevuste jaoks.

Lisaks käsitleb lõputöö tehnoloogiaid, mida oleks võimalik kasutada antud süsteemi aren-
damiseks. Kasutades töös välja toodud tööriistu, pakub autor välja protsessi süsteemi
arendamiseks, alustades projekti ülesehitusest, panustajatest ja soovituslikest töövõtetest
ning lõpetades stiili juhendiga.

Lähtudes lõputöö autori kogemustest, on võimalik leida, et sellise süsteemi loomine on
vajalik selleks, et olulisel määral parandada õppejõu töö efektiivsust. Olemasolevad la-
hendused ei vasta täpselt nõuetele ning ei ole kohandatavad, seega tuleb süsteem ise välja
arendada.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 56 leheküljel, 4 peatükki, 13
joonist, 6 tabelit.

5

Glossary of Terms and Abbreviations

API Application Programming Interface - Interface with clearly de-
fined methods for communication between software components

CI Continuous Integration
CD Continuous Delivery
CDN Content Delivery Network
CLI Command Line Interface
CSS Cascading Style Sheets
DOM Document Object Model
ES ECMAScript - JavaScript standard
GCC GNU C Compiler
Git VCS - Tracking changes in files
HTML Hypertext Markup Language
Hypervisor also known as virtual machine monitor
IDE Integrated Development Environment
JSON JavaScript Object Notation
LDAP Lightweight Directory Access Protocol
MOOC Massive Open Online Course
npm node package manager
OS Operating System
POC Proof of Concept
RESTful Representational state transfer
Schema Data structure description
SEO Search Engine Optimization
Slack Popular Instant Messaging application
SQL Structured Query Language
SSH Secure Shell - Cryptographic network protocol for operating with

network services
Stack Exchange Questions & Answers community
TA Teachers Assistant
TUT Tallinn University of Technology
VCS Version Control Software
webhook method of altering the behaviour of web application with custom

callbacks

6

Contents

Introduction 11

1 Learning Programming 12
1.1 Background and motivation . 12
1.2 Classroom Environment . 13

2 Learning Environment 15
2.1 Requirements . 15
2.2 Existing Systems . 15

2.2.1 Virtual-C . 16
2.2.2 CS50 . 17
2.2.3 ISCX . 18
2.2.4 Moodle . 20
2.2.5 Comparison . 21

2.3 Virtualization . 22
2.4 Application for this project . 23
2.5 Tools for this project . 23

2.5.1 Virtual Appliance . 24
2.5.2 Testing environment . 29

3 Core System 30
3.1 Application . 33

3.1.1 Experience . 34
3.2 Automated Grading . 35

3.2.1 Requirements and Constraints 35
3.2.2 Possibilities . 37
3.2.3 Adding new tasks . 38

3.3 Server Side Solution . 40
3.3.1 Technologies . 40

3.4 Client Side Solution . 42

4 System Development 43
4.1 Project . 43
4.2 Tools . 44

4.2.1 Version Control System . 44
4.2.2 Development tools . 45
4.2.3 Style Guide . 47

7

4.3 Workflow . 48
4.3.1 Design pattern . 49
4.3.2 Contributing . 49
4.3.3 Continuous Integration and Continuous Delivery 50

Conclusion 54

References 55

Appendix 55

8

List of Figures

1 VIDE - Visualizing the flow trace of a recursive function [1] 16
2 VIDE - Example of a quiz with integrated functional tests [1] 17
3 CS50 - appliance50 [2] . 18
4 ISCX - My Field . 19
5 Moodle - Courses, TUT . 20
6 System Architecture . 30
7 A Web Application [3] . 31
8 Students workflow . 32
9 Professors actions . 33
10 POC - Grading software written in bash 38
11 Adding new tasks . 39
12 POC - task preview . 39
13 Git commit history in GitKraken . 46
14 ESLint - Example .eslintrc configuration file 47
15 ESLint - Visual Studio Code Example output 48
16 Runner registration . 52
17 Example CI/CD configuration file . 52
18 Example CI/CD pipeline output . 53

9

List of Tables

1 Comparison of classroom and students environments 14
2 Comparison of Learning Environments 21
3 Comparison of Linux distributions . 26
4 Comparison of GCC and Clang compilers 26
5 Comparison of Text Editors . 27
6 Comparison of VCS . 28

10

Introduction

Learning computer programming is a thing everyone should do [4]. Not only does doing
it help one tackle all kinds of problems, but by learning to program one learns to separate
problems into smaller pieces, making them easier to grasp; thus, making the quest to find a
solution a faster and easier process. In addition to that, should one be exposed to multiple
fellow programmers’ codes to the same problem, one will see that there are multiple ways
to approach a certain task.

In addition to the reason of finding creative solutions to problems, there are many other
reasons for programming. For example, the ability to automate tedious tasks or finding a
way to do them in a more efficient way. Since people need some variance in their activ-
ities, they tend to be more prone to errors when solving very repetitive tasks. However,
today we have computers available which are perfect for performing such tasks. For ex-
ample analysing log files with specific fields of data - creating a simple Python script
could save a lot of copy-paste effort and process very massive input files within seconds.
In addition, computers do not require salary, sleeping time and food - resources that most
people cannot do without.

The author of this thesis is working as a teacher’s assistant at the time of writing, where a
few problems that require immediate solving have arisen. Firstly, grading tasks is repet-
itive and time consuming for professors, but can easily be automated. Secondly, there is
a lack of a uniform set of tools; thus, each new tool used brings a new set of problems to
be dealt with. The main goal of this thesis is to solve those two problems by creating an
automated testing environment and learning environment, in which the used tools are the
same.

The thesis will offer an overview of the possible tools, frameworks and concepts used for
the development of the learning environment. The goal of the output of this thesis is to
provide guidelines and suggestions on how to create such an infrastructure to automate
grading and provide software development environment for students.

11

1. Learning Programming

Learning Programming in Tallinn University of Technology (TUT) will give students an
overview of algorithms and programming in C. Even though creating algorithms and cre-
ative problem solving are the main topics in IAG programming courses, teaching algo-
rithms is out of the scope of this thesis and as a result will not be discussed any further. In
the process of learning C, students are exposed to multiple core programming concepts.
First experience will be the famous Hello World! program, after which variables, condi-
tions, loops, functions, and so forth are introduced. Each of those concepts need to be
practised, which results in creating multiple programs with simple and predictable out-
puts. However, grading these tasks can be quite demanding for professors- not because of
the student competencies, but because of time. It is essential to have professors dedicate
their time to teaching, not repetitive tasks which will eventually drain them. Therefore,
the creation of learning environment must be undertaken.

1.1. Background and motivation

Being a teacher’s assistant in programming courses IAG0581 and IAG0582 has exposed
the author to the world of being a teacher, including the woes that come with the pro-
fession. The generic workflow of teaching programming in TUT can be summarised as
follows:

1. Create materials for the lab;

2. Create examples for the lab;

3. Create tasks for the lab and set the deadline and means of submitting work;

4. After task’s due date, grade submissions;

5. Insert results into Google Sheets for the students to see.

This will cycle throughout the whole semester. Some of these tasks can be done once and
later on reused and, if necessary, modified. However, what cannot be reused in order to
be more efficient or save time is grading the tasks and publishing the results. This has to
be done for every student and every task, which is time-consuming and repetitive. These

12

steps can and should be automated as much as possible. As an illustrative example, we
can assume that an experienced professor takes 5 minutes to check a student’s task - this
includes finding the student’s e-mail address with the source code, downloading, open-
ing, investigating, compiling, running, testing, grading the task and sometimes checking
for plagiarism. Calculating the total time spent on merely grading could be done with
equation 1, where i is the number of students, t is time and n is the number of tests.

ttotal =
i∑

i=1

tgrading ∗ ntests (1)

Assuming that the professor has 100 students each semester and hands out tasks once
every two weeks - this will result in approximately 66.6 hours of time spent on grading
per semester. The author finds that spending this much time on grading can quickly
become draining and tedious for the professor, especially if the same time could instead
be directed towards creating new tasks, materials and focusing on teaching. This in turn
would result in a happier professor.

1.2. Classroom Environment

TUT ICT building has several computer classes, which are equipped with SUSE Linux
Enterprise Edition. The good thing about having Enterprise Edition of Linux is the long
term support and long life cycles. However, there is also a downside to it - license fees
and outdated third party software packages. The former prevents the environment to be
set up by students - it is unreasonable to require the students to buy expensive software
for a programming course. The latter, however, will prevent students from using the
latest software. As an example, IDE Code::Blocks latest available version supported in
that environment is multiple major releases behind from the latest Code::Blocks release.
These are just some of the reasons why setting up a uniform environment for students and
professors is preferable.

As it was mentioned before, students tend to use their own computers instead of class-
room ones if possible. This will result in various problems, starting with compatibility
issues. The bare minimum software required for C programming is available in class-
room computers. A comparison of tools used in various students’ computers and school’s
computers is given in Table 1.

13

Table 1. Comparison of classroom and students environments

Environment School Students
Operating System SUSE Linux Enterprise

Edition, Windows 10
Linux (variable), Mac OS
X (variable), Windows
(variable)

IDE Code::Blocks, Geany,
SciTE

Code::Blocks, Dev-C++,
Geany, Visual Studio
Code, Visual Studio,
Xcode

Compilers GCC Apple LLVM Compiler,
Clang, GCC, LLVM GCC,
Visual-C++

Debugging tools gdb, strace, Valgrind ddd, gdb, instruments,
strace, Valgrind, Visual
Studio Debugger

Having too many occurrences of different software in students’ computers is a problem
- each tool and system has its own oddities. However, both of these environments have
issues - on one end of the spectrum there is a vast variety of different software and on the
other end there is possibly outdated software. To solve those problems, the author of this
thesis urges that an unified environment should be created.

14

2. Learning Environment

The main goal is to develop a learning environment which has all the necessary tools for
development and an automated grading system - the former meant to be distributed and
used by students and latter for grading their work without having the professors investigate
every student’s work separately. In this section, the ways of achieving such results are
explained in more detail.

2.1. Requirements

The main requirements for such an environment are:

• Uniform programming environment;

• Possibility to add new tasks;

• Automated grading;

• Instant results.

It is important to have the previously mentioned qualities in this environment. However,
they do not necessarily have to be within one system. This leaves the option to achieve
the goals by using parts of systems which are already available.

2.2. Existing Systems

After some research, it appears that there is abundance of learning environments. These
environments vary from general purpose e-learning environments such as Moodle and
Blackboard to MOOC platforms such as edX, Udemy and Coursera. There are, of course
more programming oriented environments such as Codecademy and HackerRank. While
the latter offers a good hands on learning experience it lacks the possibility of adding new
tasks and a grading system which could be integrated with TUT system. For the reason
of having vast variety of learning environments author decides to compare the solutions
most similar to proposed system.

15

Although a lot of solutions are available, there are no perfect matches which offer an
environment with all the qualities mentioned earlier.W hen picking an existing solution,
at least one requirement must be met. As an extra requirement it must be possible to
adjust the rest of the system to the needs of this environment.

2.2.1. Virtual-C

Virtual-C is an IDE which helps teaching programming in C [1]. The system was devel-
oped with a few goals in mind - reduce the failure rates in UniBW München and enhance
students capabilities in C programming.

Mentioned IDE has bundled multiple useful tools within itself in order to achieve the
goals set. Such tools include having integrated functional code testing, quiz and tasks
within IDE (See Figure 1) and visual aids in form of memory layouts (See Figure 2).
Having these functionalities greatly increases the speed of learning and understanding of
programming concepts.

Figure 1. VIDE - Visualizing the flow trace of a recursive function [1]

16

Figure 2. VIDE - Example of a quiz with integrated functional tests [1]

This IDE has solved its main goals by dramatically increasing students capabilities and
decreasing dropping out rates. The strongest points of this system are the visual aids and
its live coding and testing ecosystem. However since the project is with a closed source
code making it impossible to integrate with our system.

2.2.2. CS50

Harvard University offers a course called Introduction to Computer Science - CS50. As
a part of this course it aims to teach students how to think algorithmically and solve
problems efficiently. Throughout the course following topics are covered: algorithms,
data structures, encapsulation, resource management, security,m software engineering,
and web development. Languages include C, Python, SQL and JavaScript plus CSS and
HTML [5].

Historically students enrolled in CS50 had to be familiar with UNIX CLI basics. This was
due to the course structure which was that students had to SSH to Harvard server cluster

17

and then solve tasks there [6]. To get rid of that unnecessary constraint and offer the same
uniform development environment for students and staff a virtual appliance was created.

The main resources available in CS50 Virtual Appliance (appliance50) for the students to
use are check50, gedit, clang, Dropbox and cs50 header file. Screenshot of appliance50

is in Figure 3.

Figure 3. CS50 - appliance50 [2]

The biggest pro with this solution is the development environment which is same for
the staff members and students. However the task pool is limited and because the tasks
seem to be defined in appliance each new task requires a new release of virtual appliance
making this approach not viable.

2.2.3. ISCX

Teachers going through the topics at a certain pace is slightly aged way of teaching. Using
the capabilities of today’s technologies students should learn whenever, wherever at their
own pace [7]. With this approach Vello Kukk has developed the system ISCX to allow
this exact methodology.

ISCX is a learning environment in TUT, mainly integrating courses from Department of

18

Computer Systems. While this course has had at its peak over 10 courses, at the time of
writing thesis there are six courses available of which four have been passed by the author.

The system uses competence system which is distributed between multiple skills and
topics. Similar competences can be found in My Field in a nearby area (See Figure 4).
Whenever students are learning a new topic they are clicking on a box on My Field, get
and solve a task and if solved correctly, get points for it. The better students do the more
’blue’ their field will look. By using complex algorithms the answers given in certain
competence will affect adjacent topics as well thus making the studied topics stick by
creating connections.

Figure 4. ISCX - My Field

One of the courses in the system which was passed by author is Microprocessor Systems.
This course differs from other courses mainly because it expects solutions in a text field
which will be manually checked by professors. This however, is a major drawback for the
course consuming a lot of time from staff.

19

2.2.4. Moodle

Moodle is one of the most popular e-learning environment with more than 100,000,000
users [8]. The main motivation for the creation of this environment was to offer ways
for distant learning [9], thus opening a global platform for different courses. Estonia’s
HITSA has set up Moodle environment for Estonian education system which is also used
by TUT (See Figure 5).

Figure 5. Moodle - Courses, TUT

Moodle is aimed to provide a general purpose e-learning environment. This means that
it will offer options which are suitable for most courses given in educational institutions.
That explains why mostly in the basic software configuration professors can share materi-
als, do simple quizzes with simple text input and multiple choice questions. This however
is limiting to the purpose of environment proposed in thesis.

The strongest selling point of Moodle is that it is open source and widely adopted. This
ensures a good support for generic problems and troubleshooting. However when cus-

20

tomization is at hand, only plugins are available for Moodle. Mainly for programming
Python and Java are well supported however lexing (scanning) and parsing plugin is avail-
able for C and C++ [10].

2.2.5. Comparison

The traits of each system are brought out in the following table:

Table 2. Comparison of Learning Environments

Environment Virtual-C[11] CS50[12] ISCX Moodle[13]
Source code Closed Source Closed Source TTU internal Open Source
Programming
environment

IDE Virtual Appli-
ance with IDE

- -

Test creation Yes Predefined Yes Yes
Student results
summary

Maintainers
server

Course site Internal Internal

Automated
grading for
code

Yes Yes No No

Easy integra-
tion to existing
system

No No No No

Due to the fact that most of the existing solutions found are with closed source or not ex-
actly fitting, it is reasonable to build a custom solution. The perk of building a completely
new system is the possibility for full customization and flexibility. By Virtual-C descrip-
tion, it might seem just as a perfect fit for this thesis; however, it is just an IDE with closed
source code. Even if it would cover some of the basic needs which this environment tries
to solve, it is impossible to adjust the software according to our needs. Without having
the ability to integrate our students’ data with this system, it will not ease the grading and
teaching process. Moodle, however, is open source and customizable, but the system itself
is too complex to manually add modules and expect it to work flawlessly without putting
tremendous amount of effort into the development process. Harvard’s CS50 course has a
working solution which is applicable in this environment, but the inner workings of the

21

system are hidden from the general public. However, the concept of Virtual Appliance
is used in this thesis and will be explained in further detail in section 2.5.1. The ISCX
environment has a drawback with automated grading for the code, e.g. Microprocessor
Systems course only accepts text and the code has to be manually evaluated by the pro-
fessor. Since the system is developed in TUT, the collaboration is easier; however, the
means of contribution are unexplored.

The final verdict is to build our own custom environment. The process and tools used for
that will be covered in the next sections.

2.3. Virtualization

In simple terms, virtualization is hiding the physical characteristics of computing re-
sources from the way in which other systems, applications or end users interact with
these resources [14]. This allows end users to have available hardware to emulate special
environments without the need to acquire the special hardware resources for it. Nowa-
days, computer hardware improves virtualization efficiency by having specific features
such as VT-x and VT-d from intel and AMD-V from AMD.

As the technology advances, more solutions for virtualization emerge. There are multiple
platforms for Virtualization software. The main types of virtualization are:

1. Hardware - also referred to as hypervisors;

2. OS-level;

3. Desktop;

4. Network;

5. Application.

In this thesis we focus on the hardware hypervisors and OS-level virtualization.

22

2.4. Application for this project

As stated earlier, one of the problems in programming classes is that students have differ-
ent working environments. This leads to misunderstandings, unexpected results in grades
and general discontent. It is essential to have a unified development environment for stu-
dents to learn in and lecturers to teach in. In order to achieve the goals of this thesis, we
need to provide a unified development environment with predefined tools and automated
grading. There is most likely no better way to achieve it than using virtualization. The
reason for using virtualized environment instead of having the actual environment setup
as a requirement for students is because it is unreasonable to have people significantly
modify their working environment for such a temporary time period. Virtualizing the
environment allows the end users to set it up and later on clean up hassle-free.

If this infrastructure with provided virtual environments and automated grading is set up
by the university, it guarantees the compatibility of developed software and less miscom-
munication between students and professors, thus eliminating the argument of "It worked

in my machine!".

2.5. Tools for this project

Prior to any actual environment setup, first the available options should be considered
and the correct solution to fit the project’s needs should be picked. It is useful to set
the requirements in order to choose the right tools. For both of the environments it is
required that software is free to use and can be freely installed by anyone. This rules out
the operating systems of Macintosh and Windows - there is no way of legally acquiring
copies of their software for free usage, thus leaving us with Linux. In addition to free
use, the operating system should be widely used and supported. The operating system
must have a support for essential development tools required for this course, thus ruling
out some exotic distributions of Linux which are not designed for generic usage. As an
extra, it is good to have a smaller footprint in terms of hardware resources. In short, the
requirements of choosing the environments for this project are:

1. Cost - free;

2. License - free to use;

23

3. Support for basic development tools;

4. Support;

5. Community size - market share;

6. Hardware footprint.

For the testing and development environment it is very important to have the same soft-
ware running on both ends - so that the code written can easily be compiled and run in the
other environment. For programming in C, the essentials for developing software are the
tools discussed in the next section.

2.5.1. Virtual Appliance

Virtual appliance is a preconfigured environment which can be set up easily in any major
consumer level OS. In this project, the goal is to provide such environment in the form of
a file which will be distributed to students and school computers, which can then be set
up by using hypervisors. For hypervisors one of the best free and open source solutions
is VirtualBox. The essential software bundle which has to be provided by the student is
as follows:

• Linux Distribution;

• General purpose C Compiler;

• IDE for C coding;

• Fallback to IDE - text editor for coding in C;

• Utility to compile complex programs;

• Utility to check for memory leaks;

• Source code versioning software.

For some of those categories there are only a few options to choose from. This is due to the
fact that either there is no market for this product or it is really expensive to produce and

24

sell such software. Those categories are utilities for compiling complex software, utilities
for memory leak detection and C compilers. In the following paragraphs, the author
brings out the selected software for previously mentioned categories and the reasoning
for why they were picked.

Linux Distribution The most important choice is the operating system on which all
the other applications will run. Due to the restrictions given in Section 2.5, the operat-
ing system will be one of Linux distributions. The key aspects of deciding which Linux
distribution to pick are hardware requirements, support, community and support for the
essential tools mentioned in this section. When people are new to Linux and are not sure
which distribution to choose, it is a wise idea to either look at the most popular distri-
butions or search by criteria from distrowatch [15]. The author finds that this approach
is acceptable for use in this environment due to the fact that students who are unfamiliar
with Linux will possibly use a similar approach to find a suitable distribution.

Picking three of the most popular distributions of the past year result with Mint, Debian
and Ubuntu. The author finds it reasonable to make the decision based on the most pop-
ular distributions because if a distribution is popular, it means that the community of it is
growing and the support for it is also better both from the community and official distribu-
tors. It should be mentioned that SUSE Linux Enterprise Edition has a free edition called
openSUSE, however, it is not added to the comparison because Debian based systems
have larger communities.

Even though the End of Life for Mint and Ubuntu is later, the installation media is more
than twice the size of Debian (table 3). This renders Debian the winner, as it does take
the least disk space. In addition to that, all the other OSes are based on Debian, thus it is
reasonable to assume that the software packages which work on Mint and Ubuntu most
likely will also work in Debian.

25

Table 3. Comparison of Linux distributions

Distribution Mint Debian Ubuntu
Version 18.1 Serena 8.0 Jessie 16.04
End of Life 2021-04 2020-05 2021-04
Based on Debian, Ubuntu LTS - Debian
Default desktop
managers

Cinnamon,
GNOME, KDE,
MATE, Xfce

Cinnamon,
GNOME, KDE,
MATE, Xfce,
LXDE, etc.

Unity

32-bit ISO size Xfce: 1.6 GB Xfce: 647 MB desktop: 1.5 GB

C Compilers In courses Programming I and Programming II it is important to cover
the main aspects such as staff’s familiarity with the software, support for different C
standards, support for C++, possibility of doing cross compiling and supporting different
targets. Selection process does not take into account the fact that Clang 4 is superior to
GCC 7 in terms of performance [16]. In this case, the selected compiler is GCC mainly
because of staff’s familiarity with it, as in other compared aspects they are quite similar
(Table 4).

Table 4. Comparison of GCC and Clang compilers

Compiler GCC 7.1 Clang 4.0
required C standard sup-
port

C89, C90, C99, C11 C89, C90, C99, C11

Usage in IAG courses Widely used Mentioned
Target support x86_64, arm, avr, msp430,

etc.
x86_64, arm, avr, msp430,
etc.

Supported languages C, C++, Go C, C++
Supported OS Linux, Mac OS X, Win-

dows
Linux, Mac OS X, Win-
dows

Integrated Development Environment Integrated Development Environment is soft-
ware which makes coding easier and more comfortable for the developer. This is achieved

26

by having a variety of tools bundled together with language specific syntax highlights in-
creasing readability. Usually C IDEs have buttons and keyboard shortcuts for compiling
and running the software, which in default setup makes the compilation easier - students
might find it dreadful to compile and run programs from command line at first.

For this task, although there are a lot of IDEs available in the market, the professors mostly
use Geany. The main reason for this could be that it is a simplistic piece of software which
has the basic features necessary for building C programs and has less problems than its
alternative Code::Blocks.

Text editor with Command Line Interface As there are three most popular command
line text editors out there, all three shall be added to comparison - vim, Emacs and nano
[17]. Due to the fact that two of them are complex and highly configurable text editors,
one might even replace their fully functional IDE for one of these editors (Table 5). Due
to this reason, the author believes that both vim and nano should be available in the virtual
appliance - for those who want something simplistic and those who want to fully configure
their own IDE.

Table 5. Comparison of Text Editors

Text editor vim Emacs Nano
Learning curve steep steep flat
Configurable yes yes no
GUI yes yes no
Plugins / extensions yes yes no
Authors familiarity familiar - familiar

Utilities make and valgrind Make is an utility for helping with the compilation of
complex C programs. Instead of having to type in long build commands, the stages of
compilation can be grouped. This makes compiling such software easier and more main-
tainable. Having a makefile for the project, one only has to write ’make’ for the project
to build.

Valgrind is an utility for discovering memory leaks. This piece of software will mainly be

27

used in conjunction with programs that utilize dynamic memory allocation. As an extra,
it also supports memory error detection, thread error detection and multiple profilers [18].

Source code versioning software Version Control Software is very important to learn
as every developer will eventually have to get involved with it. There is a reason why this
sort of software is widely used - it is proven to be unreasonable to send different software
revisions via e-mails and then trying to keep a track of different versions of the software.

When comparing two most widely used VCS Git and Subversion (also known as SVN)
(Table 6)[19] , Git seems to emerge as the winner. Git has a distributed repository model,
meaning that coding can be done without having an internet connection and modifications
can be made without the fear of undoing somebody’s work. As for choosing the VCS,
since the author has prior experience with Git, it is the preferred choice. In addition to
the forementioned properties, Git has a web interface GitLab which will be used in this
project in conjunction with Testing environment (See 2.5.2).

Table 6. Comparison of VCS

CVS git subversion
Development status active active
Repository model Distributed Client-Server
Revision IDs SHA1 Hashes Numbers
Web interface Bitbucket,GitLab, GitHub Trac, ViewVC, WebSVN
GUI GitKraken, gitk, etc. Nautilus, TortoiseSVN,

etc.
Authors familiarity familiar -

Chosen software In conclusion, the software chosen for the development environment
is brought out in the previous chapters. The chosen software for Virtual appliance is as
follows:

1. Debian 8.0 Jessie - Operating System;

2. GCC - C compiler;

28

3. Geany - IDE for C coding;

4. vim - Fallback IDE, text editor for coding;

5. make - Utility to compile complex programs;

6. Valgrind - Utility to check for memory leaks;

7. Git - Source code versioning software.

Exporting Virtual Appliance After picking out the software bundle, it is necessary to
download the OS installation media and run the installer in Virtual Machine. This can be
done by using VirtualBox. Once the operating system is installed, the manager of Virtual
Machine should install the bundle of software and then export it as an appliance. This can
also be done with VirtualBox - export it as an ova file. This ova file can then be distributed
to students.

Once the students receive the file, they have to install virtualization software such as
Virtualbox or VMware Workstation. Essentially, this file can be imported and set up with
a few simple steps - by specifying the resources that shall be allocated to this appliance.
After that, the system is ready for use.

2.5.2. Testing environment

Testing environment utilizes the OS level virtualization. For this occasion, there is a tool
called Docker. Docker is a software containerization platform [20] which allows users
to set up environments for their applications that are independent of the host operating
system. This is the preferred method over having Virtual Machine for it because it has
less overhead in terms of default system utilities, third party software and drivers. For the
testing environment, it is necessary to install the same tools required for Virtual Appliance
with a few exceptions, as testing the development is not important. That means no IDEs
are required for testing.

Testing environment is for Automated grading of the system, which means it will be
explained in greater detail in section 3.2.

29

3. Core System

One of the key parts of this system is the application. It will be explained in greater detail
throughout this section - the architecture, its key components and technologies to be used.

Learning Environment consists of three main parts - one being the application and user
interface for students and professors, second an automated grading system and third a
virtual appliance. The last one is the smallest part of this system in terms of complexity
and setup.

The core system is visualized in Figure 6. Node application (Figure 7) is a web application
running on Linux server, which is the center of Learning Environment. Application is
responsible for spawning docker containers, receiving requests from automatic grader,
GitLab and end users.

Figure 6. System Architecture

30

Figure 7. A Web Application [3]

The Students workflow is as follows (See Figure 8) - this assumes that the initial setup is
done - UNI-ID, git config, repository setup in gitlab:

1. Access web page;

2. Look for a task that is not yet completed;

3. Create directories according to the structure;

4. Write the code according to the task description;

5. Test solution and make git add, commit, push;

6. GitLab receives pushed code, sends a POST request to node app (webhook);

7. Application processes request;

8. Application starts Automatic grader and provides student data;

9. Automatic Grader (AG from now on) will pull source from GitLab;

10. AG requests for Grading instructions from app;

11. AG looks for completed tasks (specific directories);

12. AG executes tests for tasks that have been completed;

13. AG sends all the results to application;

14. App updates results and leaderboard;

31

15. App sends direct url to detailed report to email / slack;

16. Student can now view updated results table.

Figure 8. Students workflow

From the professors view, it is possible to do multiple things, such as:

• Manually modify and enter results;

• Update testing environment;

• Add new tasks (see 3.2.1, 3.2.2 and 3.2.3);

32

• Verify Plagiarized submissions;

• See an overview of the whole system.

Figure 9. Professors actions

Since students are sometimes given tasks which are more creative or cannot entirely be
graded by AG, the system must have an option for the professor to manually enter the
results. For the students it means that on the results page they are informed that AG gave
x points and the rest must be given by the professor - this will prevent misunderstandings
when the results change.

3.1. Application

This application will be created with Node.js - JavaScript runtime built on Chrome’s V8
JavaScript engine. Node on its own has the essential web server features, but there is also
the world’s biggest package management system called npm. This package management
system has a vast variety of packages available to be installed from CLI. One of the major
pros of npm is that it takes care of all the dependencies for the developer. All one has
to do is specify the necessary packages, their versions and how those packages should
be updated. At the same time, this dependency handling is its pitfall - it creates a lot of
overhead where some packages might redundantly get added to the project. Versioning in

33

packages follows the guidelines of semantic versioning [21] , which in its essence means
that the versions are with the pattern of MAJOR.MINOR.PATCH, where:

• MAJOR versions are with incompatible API changes;

• MINOR versions are with backwards compatible functionality updates;

• PATCH versions with backwards compatible bug fixes.

For this application, most of the code is written in JavaScript. Should there be a necessity
for functionality which is not given by default, the developers can modify V8 engine and
add extra functionality by writing it in C++ and exporting it as a JavaScript function,
which can then be called.

3.1.1. Experience

In addition to the time usage benefits that come from using this application, professors
will be able to use this system to modify grades more easily and get instant results with-
out swapping environments. Current practice for TA’s is to create intermediate results
table for lab, attendance and homework, then merge the final results table with their inter-
mediary one. This is time-consuming and inefficient.

This system, however, is not only aimed to improve the professors’ lives, but it should
also give a good experience for students. By centralizing information and resources like
results, notifications, tasks, general information about course, it is possible to make ev-
erybody’s life easier. As an extra feature, the system intends to gamify the point system
- a leader board and a hall of fame shall be created for this purpose. This should give the
students some incentive to study more and better in order to get to the top of the leader
board. This will not only make them competitive towards each other, but it will also make
students strive for better results. It should be noted that on the hall of fame only student
code and number of gathered points is shown, in order not to break the Personal Data
Protection Act, which, if broken, can be fined with up to 32,000 euros [22].

34

3.2. Automated Grading

Automated grading is the second key part of this thesis - it is the system which will
improve the professors’ life quality by giving them more time. The main concept of this
system is to keep it updated continuously and have its task pool grow, allowing students
to choose between tasks which they wish to complete. However, for such a system to be
maintainable and working, there have to be some requirements and constraints set.

As a by-product of this system, multiple tools will be developed to ease the work of
professors who wish to create more tasks in this environment. Utilities developed for this
subsystem contain searching for the tasks that have been finished, saving intermediary
results and later posting them, finding correct build commands, self testing and many
more.

3.2.1. Requirements and Constraints

For this system to be maintainable, a strict structure and logic must be applied. Since
this subsystem can be isolated, it shall have its own repository and maintainers separate
from the main application. This allows the continuous integration to work both for the
application and automated grader.

The main constraint to this system is having the testing software run on Linux - same OS
as in Virtual Appliance. This sets some limitations, yet gives much freedom, which will
be discussed in the next section.

Second constraint is the directory structure. To ease the naming convention and navigating
trough the directory tree, the author suggests the depth 3, levels starting from the root of
the project directory- for example, /category/topic/task. To give an illustrative example
of this directory structure for a task which requires a student to make a Hello world!

program:

• category - io (input/output);

• topic - printf;

• task - hello.

35

This constraint applies to both the template for the automated grading system and the
students’ repository. Otherwise, finding the correct task to grade would be significantly
harder and would require some configuration files which might be more challenging to
use, depending on the students’ setup. However, it should be fairly easy to create a direc-
tory in Git repository with the following command: mkdir -p io/printf/hello.

Regarding naming convention and directory structure, there are two more constraints.
One of the constraints requires students to name their source file (which contains the
main function) with the same name as the parent directory it is in. This constraint eases
the usage of default build utility. Using the example given above, the source file name
would be hello.c.

The second constraint requires maintainers and professors who wish to add a new task
to the system create a directory called test. This directory contains self tests for the task.
Self test for the task is a model program written by the professor which will result in
maximum score if the task instructions are followed correctly. Similarly to the previous
requirement, test directory must have a file with a name of test.c.

Another requirement for automated grading is the grading software - this also has to be
written either by the maintainer or the professor. This piece of software has to verify that
the model solution provided in the test directory (e.g. io/printf/hello/test) does actually
pass all tests. This is a security mechanism to prevent complaints from students when
they have correct and working solutions and get less points than advertised.

The last requirement, which has to be met before any task can be considered active in
the whole environment, is that all the self tests have to pass per task. When a new task
is added, the automated grader docker container shall be rebuilt to support checking new
tasks.

In short, the following requirements must met by (Student - S and Maintainer - M):

• directory structure with following notation: category/topic/task - SM;

• testing software inside previously mentioned directory - M;

• task with self test directory test - M;

• solution with the parent directory name - SM;

36

• testing software which runs on Linux - M.

3.2.2. Possibilities

When taking into account all the previously mentioned requirements and constraints, one
will wonder what can be done in such a system with so many constraints. As mentioned
before, having grading software run on Linux is both a constraint and a possibility.

This option gives the maintainer the opportunity to create testing software by using any
combination of command line tools which have already been created for Linux, such as
grep, sed, cut, awk, etc. Furthermore, not only does it give the freedom to use other bina-
ries, it also allows the testing software to be written in any language which is supported
in Linux. A few scripting and programming languages in which the tests could be written
in are ruby, python, php, bash, C++, etc.

Having these opportunities in this environment means that it could be used not only
for teaching and grading C, but also other languages that can be used in Linux. This
means that as a result of this thesis not only professors and TAs in courses IAG0581 and
IAG0582, but also other courses which might teach Java, C++, Python or some other
language, can reap the benefits of this Learning Environment.

The author created two tasks which were tested with bash and php scripts in conjunction
with grading script and default build script, where the default building script will either
look for a task specific build command, makefile or just the .c file with the parent directory
name. However, the grading script will make use of the system environment variables;
thus, when this script gets called from the grading software, it will only take the result in
points as a parameter.

As a proof of concept, a task was created, which should be the first Hello world program.
The requirements are for the program to compile and print hello with a trailing newline
(Figure 12). It should be noted that the default build utility will always give a point for the
task if there are no errors. Hello world program is checked with a script check.sh (Figure
10).

37

Figure 10. POC - Grading software written in bash

3.2.3. Adding new tasks

The process of adding new tasks to the environment has a simple concept which can be
summarised with a few following steps to be followed to create a new task. It is required
to pull the auto grader repository before one can proceed with the creation of a new task.

1. create a task with clear instructions using web interface - this adds entry to database;

2. create a model solution based on task instructions;

3. create an automatic grader based on task instructions;

4. verify that model solution gets maximum points;

5. push the code to repository.

38

Figure 11. Adding new tasks

After these steps are done, the CI (See 4.3.3) and application will take care of the rest.
The model solution will then be verified by using the developed grading script. Should
the results be as expected, the grading docker container will be rebuilt and put into ac-
tion. This allows the maintainer to add new features without having to learn and manage
docker. Should everything succeed, the professor will see the added task in the admin
panel (Figure 12).

Figure 12. POC - task preview

39

3.3. Server Side Solution

This is the part of the application which does the most work in the environment. Ev-
erything will be going trough this Node application (Figure 6). Proof of Concept Node
application listing can be seen in Appendix A. All the requests from Automated Grader,
client, GitLab will be processed here. It is very important to make the Server Side So-
lution very performant in order to serve all the students, which in year 2017 was 286
students from Programming I and 198 students from Programming II course. It would be
reasonable to assume that the active users would be somewhere between the people who
declare Programming II and the number of students that successfully finish Programming
I. Should this project be a success and approved by other professors as well, it would
serve even more students.

Server side solution is the part of the application that will not be seen by the end user. In
this section, the author of this thesis will provide an overview of the technologies used in
developing POC application for this course.

3.3.1. Technologies

As the reader already knows, the main application is a Node.js application running on
V8 JavaScript engine. However, having the vanilla set up of Node.js is not sufficient to
simply create a fully fledged system. In order to avoid reinventing the wheel and possibly
creating less secure and error prone sub modules, it is wise to use the components made
available in the npm.

When running a Node application, the current state of the code will be run. For as long
as the process runs, the source code updates will not affect the way that the application
behaves. In order to always have the latest version of the code run on the server, nodemon
is installed. Nodemon runs the application and monitors for any changes in source files.
However, template files and HTML, CSS files will not trigger the application restart.

Web server For creating the web server a fast, unopinionated, minimalist web frame-
work is used - express.js [23]. This framework allows the web server to easily be set up
without binding one to some specific tools.

40

Database As with many systems, this system also requires a way to store and request
data. Since the application is written in JavaScript, it is reasonable to use MongoDB for
this purpose. MongoDB is different from usual relational databases, as it is a document
store. Documents in this case are JSON objects, which could be thought of as rows in
relational databases. Similarly to tables, they are called collections in the document store.
Further comparison of document store and relational database is out of the scope of this
thesis. MongoDB can easily be interfaced and accessed by using JavaScript. If relational
databases require one to learn SQL syntax, in this case the knowledge of pure JavaScript
is required for making queries. To make development and standard database query usage
easier, a wrapper library for MongoDB is used - mongoose. Mongoose makes creating
new collections easier - it is used to describe the schema of the collection and later on
storing and requesting data.

Code Application code is written in ECMAScript 6 JavaScript standard. Using the latest
ES standard allows the usage of new features and some functionality which is essentially
syntactic sugar. The drawback to using the latest standard is that not all web browsers
support it. However, it is still possible to utilize the latest features offered by the standard
and have it work for everybody. This can be achieved by using a tool called babel. Babel
is a JavaScript compiler which will compile the new ES standards into a widely supported
ES5 standard. For the usage of a specific preset, it is reasonable to create a .babelrc file,
which describes which ES standard and preset are best to use for the project.

Templating Templating is essentially creating a blueprint and sub-modules for the pages.
When used, it will at first build the page based on the template and insert the requested
data during the build, depending on the data which is desired to be shown. For templat-
ing, engine express-vue was used - Server Side Rendering for Vue. Vue is a small, fast,
reactive framework which can be used for templating. In the POC solution, the rendering
was on the server side - before the page is sent to the client, the entire page is built on the
server. This method is useful when doing SEO, but it reduces the amount of clients it can
serve at the same time, meaning there is an increase in time between user requesting the
web page and receiving it. For this environment, the same solution is not viable, hence
only the template should be sent to the client, resulting in the page rendering on the end
user’s machine.

41

3.4. Client Side Solution

In order to create the user interface, HTML is used in conjunction with the most popular
framework for responsive web - Bootstrap. This framework allows the developers to
concentrate on building the site, instead of creating CSS code for the site to look decent.
When using this framework, it is necessary to only write HTML and add required classes
to DOM elements in order for it to look presentable. To add extra functionality, the use of
JavaScript libraries and frameworks is required.

Because this environment has data which changes over time, it is required to communicate
with the server. Therefore, queries should be made to request the most up to date data.
For this purpose, there is a widely used library which makes requests to RESTful API
easier - jQuery. This framework does not only allow us to make requests more easily, but
it is also required by Bootstrap framework in order to manipulate DOM.

As explained in the previous subsection, the templating system should be on client side.
This is good for numerous reasons. For one, it will save server resources as there is no
need to render the page for every client. A second pro for this solution is the possibility
to cache commonly used files in the client’s computer, meaning that there is no need to
send them over the network if the file version is the same as the file available locally.

To further exhaust the possibilities of caching and optimizing the resources used by the
server that hosts our application, it is useful to investigate the opportunities which are
offered by CDN. CDN is Content Distribution Network, which, as the acronym indicates,
distributes content. Most importantly, this network is separated from the application and
will therefore reduce the work load of the environment hosting server. CDNs can be used
for most of the frameworks and libraries that are included with the HTML script and style
tags. In this particular case, jQuery, Bootstrap and Vue would be distributed to the end
users by CDNs.

42

4. System Development

The main overview of the Learning Environment was given in the previous sections. How-
ever, just giving an overview of how it should be done does not necessarily make the de-
velopment process easy and quick. In order for this project to excel, it is necessary to set
some rules to what and how to develop.

4.1. Project

This project will be an open source project. This allows those people who are not nec-
essarily connected to the university to contribute as well. One of the reasons for this is
having external pairs of eyes to verify the code, thus making the system less buggy in the
long term. By gathering people with different sets of expertise, the system will become
more secure, the code will be of better quality and the system can be supported by various
people.

The whole environment will consist of multiple repositories to ensure CI/CD (See 4.3.3).
The separation of repositories is due to the isolation - different subsystems are deployed
differently. At the time of writing this thesis, the necessity for one registry and three
repositories is evident:

• Docker containers registry;

• Application repository;

• Dockerfiles for AG repository;

• Task repository.

Docker registry Docker registry is essentially the same as Git repository with one dif-
ference - it holds different container versions and layers. This registry is necessary, be-
cause using cloud solutions for a project without a budget is unreasonable and expensive
for private repositories. Most cloud registries that offer free private repositories only offer
one.

43

Repositories All of the repositories will be in GitLab Community Edition, which is
hosted on ATI server. The task repository will contain the task model solutions and grad-
ing software. For the grading software, some Linux tools which are not installed by
default should be added to the Docker image. Only the source code and scripts should be
stored in this repository.

4.2. Tools

For the project work to flow, correct tools should be chosen. As an ancient proverb goes:
if you are handed a hammer, everything will start looking like a nail - this is one of the
reasons why the whole project is open source and some tools to ease the development are
taken into use.

4.2.1. Version Control System

As already mentioned in the previous sections, the VCS used for this project and environ-
ment is Git with a web interface called GitLab.

GitLab GitLab is a web interface for managing Git repositories. Because in developers’
everyday life there are multiple tools that are used, GitLab has also integrated them into
their platform. It does not only add extra features to barebone Git repository, but also
makes its usage easier- for example, managing groups, members and permissions.

In addition to core VCS features, GitLab offers CI/CD options, issue tracking system and
scrum board. These extra features allow users to use one unified system for development
without the need to create extra accounts and switch between different environments, thus
cutting down productive time. Whenever a new issue is created, the assignee will get a
notification in the opening page of GitLab. To further increase productivity, it is possible
to integrate Slack with webhooks, so that for each desired action a notification will be
sent in Slack to the users.

44

Slack Slack itself is not a VCS. However, it can be integrated with GitLab. Slack is
an instant messaging multiplatform application. It is widely adopted in silicon valley by
many startups. Because of its many integrations, it allows to improve everyday work-
flow. For example, if a team uses Dropbox for documenting the system, it can easily be
integrated in slack without having to open the dropbox application to share files.

Slack allows to create private and public channels with a specific purpose. In this project,
it is reasonable to create channels based on the subsystem. Slack would also be used as
the main means of communication instead of e-mails.

4.2.2. Development tools

For a smooth development process, picking compatible tools is a must. For this purpose,
it is suggested that everyone who wants to contribute to the project will have the same
software bundle installed.

Usually, VCS Git is used. However, by default Git only offers a command line interface
and a subpar graphical application. For some people this is very dreadful, and they would
rather not get familiar with it. For this purpose, GitKraken from axosoft is used. It offers a
visually pleasing Git experience with basic features - log, graph, committing, branching,
merging, rebasing, etc. Visualisation of commit history can be seen from Figure 13.

45

Figure 13. Git commit history in GitKraken

Because this project uses newer technologies, knowledge of Docker is preferred. It is
reasonable to expect a developer to know how to create new images, run containers and
modify Dockerfiles and docker-compose.yml files.

Managing application processes can be cumbersome. To ease the process, it is suggested
to use pm2 - Process Manager 2, which is a watcher for node applications. It is possible to
launch a single process, but also a cluster of processes, which allows almost no downtime
when upgrading. To make the developers’ life easier, it also offers a clean CLI.

46

4.2.3. Style Guide

For any project to be maintainable, the structure and workflows should be described. For
the codebase to be uniform, a style guide will be enforced. Instead of having someone
read the code line by line to check if it conforms to standards, a tool is used - ESLint. This
allows the codebase to be readable by anyone and offers style tips to everyone, regardless
of their coding habits.

ESLint is a piece of linter software, which will analyse the code style and throw warnings
or errors in IDE according to the style definition. Style is defined in a file .eslintrc which
has rules[24] on how to write code. For any new users of this tool, a widely used style
guide is made by AirBNB [25]. A few example rules can be seen in the Figure 14. An
example of incorrectly styled code next to correctly styled code with an ESLint output
can be seen in Figure 15. This tool can be used with various IDEs, for example Visual
Studio Code and Atom.

Figure 14. ESLint - Example .eslintrc configuration file

47

Figure 15. ESLint - Visual Studio Code Example output

4.3. Workflow

This section defines some rules for the development and work process.

VCS Git Flow will be used. This approach allows easy tracking of git commit history.
As a general rule of thumb, there are two main branches - an immutable branch master

and develop. Most of the development process will be happening on the develop branch.
Whenever a new version of software is released, one of the commits from develop will be
merged into master branch.

Each new functionality, hotfix that is added to the environment shall get a new feature
branch. After it is fully developed, a merge request is issued, upon which one of the
project maintainers or lead developers will do code review for the committed portion of
the code. Once the code is approved, it will be merged back to develop branch.

48

4.3.1. Design pattern

Using different design patterns in software projects is very common. In this project,
the development pattern will be to develop microservices and API first. This allows the
developers to be sure that the application logic works and only then can they proceed with
the user interface. Furthermore, if this is the approach used then the front-end solution can
be chosen later down the development process - for example, which front-end framework
to use - react or vue.

Microservices Microservice architecture is a design pattern used in programming to
simplify understanding and developing of a system. This allows communication with and
between services by API. Using this method has the benefits of having smaller compo-
nents, ease of use for CD and also eliminating the long-term commitment to a certain
technology stack [26]. The mentioned approach allows the application to scale wide,
meaning more instances can be set up as a cluster, which in turn results in servicing more
clients.

API API is Application Programming Interface and in the context of this thesis referred
to as RESTful API. RESTful API allows the microservices to communicate with one
another mainly to execute some action, store or request some data.

4.3.2. Contributing

As for every open source project, there are means of contributing. For this project, at
the end of each semester the contribution possibilities to this environment are announced.
Those who wish to contribute should make a request. After making a request to contribute,
one will be given access to the according repository (see 4.1). Then the person shall be
assigned a task and a new branch should be created (See 4.3). After that, the process goes
as described in section 4.3. One way to motivate people to contribute is to offer incentives.
Whenever a task is assigned and later on completed, the tags which are in the task will be
added to the person’s profile, in a sense making it a competence cloud based on keywords
similar to Stack Exchange.

As the environment is enormous, there are multiple areas to contribute to. To name a few

49

areas which require more attention:

• Virtual Appliance;

• Main application;

• Tasks and checking software;

• Task creation utilities;

• Documentation;

• Dockerization;

• Bug fixes;

• Integrations with Slack;

• Continuous Integration.

4.3.3. Continuous Integration and Continuous Delivery

Continuous Integration is the means of merging developer’s working copies into mainline
several times a day. Continuous Delivery is the process of having software released in
short cycles. These two approaches used in software development allow the users to
have the most up to date services available to them. In conjunction with the work flow
whenever feature and hotfix branches are merged back to develop a CI/CD, a pipeline will
be started with automatic tests. Should they pass, the system which was updated shall be
deployed and made available to the end users. The same process applies for merging
develop branch to master with an addition of creating a new software version - tag in
terms of Git (See [21] for versioning conventions).

CI/CD tools are integrated in GitLab CE, therefore making the usage of such an approach
easier. To set this pipeline up, there are few things that have to be done:

• Setting up runners;

• Assigning runners to projects;

• Writing configuration file;

50

• Configuring CI/CD pipeline.

Runner Runners are pieces of software in GitLab which will execute the instructions
described in gitlab-ci.yml file (See 4.3.3). These runners can be hosted in the local ma-
chine as well as remote machines. They are mostly used for environment setup, automated
testing, deployment and clean up.

GitLab supports multiple types of runners [27]:

• Shell - Builds will be run in hosted OS;

• Docker - Builds will be run in Docker container;

• Docker-SSH - Builds will be run in a Docker container by opening an SSH connec-
tion;

• VirtualBox - Builds will be executed in Virtual Machine;

• Parallels - Builds will be executed in Virtual Machine;

• SSH - Builds will be run in remote server by opening an SSH connection;

• Kubernetes - Executor uses Kubernetes Cluster for software builds.

From the above list, most commonly used executors are Docker and Shell, both of which
are used in this project. Shell executor is mainly used for deployment and Docker mainly
for new tests and running them.

Setting up a runner is usually done in the server which hosts GitLab CE by running Gitlab

CI Multi Runner. This program will ask for information about the runner, e.g. what
will be its name, tags, the type of the runner and type dependant information. Default
configuration of a runner can be seen in Figure 16.

51

Figure 16. Runner registration

Configuration file Configuration for CI/CD will be in gitlab-ci.yml file. In the file,
maintainers should describe the processes- which of them should be run and how they
should be run. When writing configuration files and using sensitive data, such as cre-
dentials for login, it is wise to use GitLabs Secret Variables. They allow the usage of
variables, which will be replaced when the build is run, so that the contributors cannot see
any sensitive data from the builds. Such variables and predefined variables start with $

and are usually in upper case. An example of this configuration file can be seen in Figure
17.

Figure 17. Example CI/CD configuration file

52

After having the configuration file and runners set up, one can reap the benefits of CI/CD
in their project. By default, each time a contributor pushes new code to master or develop,
branch pipelines shall be run. Taking the example configuration file (See 17), the pipeline
output can be seen in Figure 18.

Figure 18. Example CI/CD pipeline output

53

Conclusion

In this thesis, a learning environment for programming in C was proposed. Having com-
pared multiple solutions which are already available, it was decided that a custom solu-
tion should be built to solve the problems postulated. For the programming environment,
a similar solution to CS50 Appliance is used. The main purpose of the appliance is to
offer uniform environment with essential tools for programming in C. The same tools
must also be available in the automated grading system. In addition to the previously
mentioned tools, some utilities are provided for the professors to create grading software.

This work offers suggestions for the tools and frameworks to be used when building this
environment. There are also generic guidelines available with given tools on how to
develop the system and how to contribute to it. In order to achieve the best environment
possible, the project will be open source, thus allowing enthusiasts to contribute to this
project. Contributing guidelines include workflow and style guides which can be used
with existing tools.

As a result of developing this environment, students will have a vast variety of tasks at
their hand. This is achieved by the help of contributors and the concept of automatic
grading. Since the tools used for automatic grading software are limited to Linux only, it
means that if some other programming languages can be checked by using Linux tools,
they are automatically usable within this system. In other words, the developed system is
scalable and its usage is very desirable when teaching programming.

54

References

[1] A. B. Dieter Pawelczak, “Virtual-c a programming environment for teaching c,” April 2014.

[2] A.ezzat, “Getint() can not read more than 10 digits and proplems with
zero!” September 2015. [Online]. Available: https://cs50.stackexchange.com/questions/12324/
getint-can-not-read-more-than-10-digits-and-proplems-with-zero

[3] R. Drummond, “A node.js application on the amazon cloud. part 1: Installing node on an
ec2 instance,” April 2013. [Online]. Available: http://www.robert-drummond.com/2013/04/25/
a-node-js-application-on-the-amazon-cloud-part-1-installing-node-on-an-ec2-instance/

[4] D. McFarland, “The real reason why everyone should learn to code,” http://blog.teamtreehouse.com/
havent-started-programming-yet, November 2014.

[5] “Cs50 syllabus,” August 2016. [Online]. Available: http://docs.cs50.net/2016/fall/syllabus/cs50.html

[6] T. MacWilliam, “How did the idea of cs50 appliance originate?” April 2015. [On-
line]. Available: https://www.quora.com/How-did-the-idea-of-CS50-appliance-originate/answer/
Tommy-MacWilliam?srid=uO406

[7] V. Kukk, “Vello kukk: õppimine 21. sajandil,” June 2012. [Online]. Available: http:
//arvamus.postimees.ee/878860/vello-kukk-oppimine-21-sajandil

[8] Moodle, “Moodle stats,” May 2017. [Online]. Available: https://moodle.net/stats/

[9] “Moodle history,” July 2015. [Online]. Available: https://docs.moodle.org/33/en/History

[10] O. Sychev, “Blocks: Formal languages block,” December 2016. [Online]. Available: https:
//moodle.org/plugins/block_formal_langs

[11] “Virtual-c ide,” January 2017. [Online]. Available: https://sites.google.com/site/virtualcide/home

[12] “Cs50 appliance 19,” January 2017. [Online]. Available: https://manual.cs50.net/appliance/19/

[13] “Moodle repository,” January 2017. [Online]. Available: https://github.com/moodle/moodle

[14] “Virtualization in education,” IBM Global Education, Tech. Rep., October 2007.

[15] distrowatch, “Search distributions,” 2017. [Online]. Available: https://distrowatch.com/search.php

[16] M. Larabel, “Gcc 7.0 vs. llvm clang 4.0 performance with both compiler,” https://www.phoronix.com/
scan.php?page=article&item=gcc7-clang4-jan&num=1, January 2017.

[17] M. Tanjim, “Best text editors for linux command line,” July 2016. [Online]. Available:
https://itsfoss.com/command-line-text-editors-linux/

[18] V. Developers, “Valgrind,” March 2016. [Online]. Available: http://valgrind.org/

[19] “Comparison of version control software,” April 2017. [Online]. Available: https://en.wikipedia.org/
wiki/Comparison_of_version_control_software

[20] “What is docker,” November 2016. [Online]. Available: https://www.docker.com/what-docker

[21] T. Preston-Werner, “Semantic versioning 2.0.0,” December 2016. [Online]. Available: http:
//semver.org/

[22] Riigikogu, “Personal data protection act,” December 2007. [Online]. Available: https:
//www.riigiteataja.ee/en/eli/ee/529012015008/consolide/current

[23] “Express - fast, unopinionated, minimalist web framework for node.js,” March 2016. [Online].
Available: https://expressjs.com/

[24] JS Foundation, “Eslint - rules,” April 2017. [Online]. Available: http://eslint.org/docs/rules/

[25] Airbnb, “Airbnb javascript style guide,” March 2017. [Online]. Available: https://github.com/airbnb/
javascript

[26] C. Richardson, “Pattern: Microservice architecture,” 2017. [Online]. Available: http://microservices.
io/patterns/microservices.html

[27] GitLab, “Executors,” April 2017. [Online]. Available: https://docs.gitlab.com/runner/executors/
#selecting-the-executor

55

A. POC - Node Application app.js

The main JavaScript file which is necessary to run the Node app is shown in Listing 1. This application
imports the necessary modules in order to run the application. These modules include router, template
engine, database interface, configuration and API endpoints. When this application is run, it will start a
web server on port 3000 which can be accessed either by localhost or local IP. Once the web server is
run, on the line 45 the program checks whether it was run for testing purposes or it was deployed. When
testing, it is important to close the process in order to make the GitLab CI pipeline succeed, otherwise the
application would run for the time period set, and then close with the test, marked as failed.

1 // Using util to log info with timestamps
2 import util from ’util’;
3 import express from ’express’;
4 import expressVue from ’express-vue’;
5 import mongoose from ’mongoose’;
6 // Require user modules
7 import config from ’./config’;
8 // Require controllers
9 import seedAPI from ’./controllers/seedAPI’;

10 import taskAPI from ’./controllers/taskAPI’;
11 import feedbackAPI from ’./controllers/feedbackAPI’;
12 import containerAPI from ’./controllers/containerAPI’;
13 import mainRouter from ’./controllers/mainRouter’;
14
15 const app = express();
16
17 const port = process.env.PORT || 3000;
18
19 app.use(’/’, express.static(__dirname + ’/assets’));
20
21 app.set(’views’, __dirname + ’/views’);
22
23 app.set(’vue’, {
24 componentsDir: __dirname + ’/views/components’,
25 defaultLayout: ’layout’
26 });
27 app.engine(’vue’, expressVue);
28 app.set(’view engine’, ’vue’);
29
30
31 // Establish connection to database (currently no authentication)
32 mongoose.Promise = global.Promise;
33 mongoose.connect(config.getDbConnectionString());
34
35 // Routes
36 app.use(’/’, mainRouter);
37 app.use(’/api/task’, taskAPI);
38 app.use(’/api/seed’, seedAPI);
39 app.use(’/api/feedback’, feedbackAPI);
40 app.use(’/api/container’, containerAPI);
41
42 app.listen(port);
43
44 util.log(‘Server started on port ${ port }‘);
45 if (process.env.LOCALDEPLOY === ’true’) {
46 setTimeout(() => {
47 console.log(’Run successfully.’);
48 process.exit(0);
49 }, 5000);
50 }

Listing 1. Node application main JavaScript file

56

