
Tallinn 2017

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Department of Computer Systems

Gülçin Yıldırım 156398IASM

NEAR-ZERO DOWNTIME AUTOMATED

UPGRADES OF POSTGRESQL CLUSTERS IN

CLOUD

Master’s thesis

Supervisor: Tarmo Robal

 PhD

Tallinn 2017

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Arvutisüsteemide instituut

Gülçin Yıldırım 156398IASM

KIIRE POSTGRESQLI KLASTRITE

AUTOMATISEERITUD UUENDAMINE

PILVANDMETÖÖTLUSE PLATVORMIL

Magistritöö

Juhendaja: Tarmo Robal

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Gülçin Yıldırım

08.05.2017

4

Abstract

One of the biggest challenges regarding database upgrades is how to reduce the required

downtime of a system when the upgrade is happening. It is not always possible to have a

maintenance window for upgrade operations due to the unwanted effects of system

outages such as financial costs, revenue loss, damaging the business reputation, the risk

of not meeting Service Level Agreements (SLAs). The impact of the downtime may vary

considerably across industries, also depend on the business size. In modern systems, zero-

downtime upgrades is a big need and in fact, can be achieved through the advancements

in IT automation, configuration management, and orchestration methodologies.

Additionally, the emergence of Cloud Computing technologies enables applying software

solutions at a scale, in cost and time-efficient ways.

The aim of this thesis is to provide an automated software platform to achieve near-zero

downtime upgrades of PostgreSQL clusters in cloud environments. The proposed method

uses logical replication as means of upgrading to the new PostgreSQL version. The

platform utilizes open-source logical replication tool, Pglogical, to replicate the changes

to the new server. The application switch between the old and the new server is handled

gracefully by using a PostgreSQL-protocol aware connection proxy, PgBouncer.

The experimental results show that this method could be viable approach for achieving

minimal system interruption with less than 10 seconds of downtime.

This thesis is written in English and is 60 pages long, including 7 chapters, 14 figures and

3 tables.

5

Annotatsioon

Kiire PostgreSQLi klastrite automatiseeritud uuendamine

pilvandmetöötluse platvormil

Üks suurimaid probleeme seoses andmebaasi versiooniuuendusega on see, kuidas

vähendada süsteemi nõutavat maasolekuaega versiooniuuendamise ajal. Alati ei ole

võimalik uuenduste jaoks garanteerida aega hoolduseks teatud soovimatute efektide tõttu,

näiteks rahaliste kulude, tulude kaotamise, ärimaine kahjustamise, teenusetaseme

kokkulepete (SLA-de) riskist tuleneva soovimatu mõju tõttu. Kaasaegsetes süsteemides

on vajalik tagada versiooniuuendused minimaalse maasolekuajaga, mida on võimalik

saavutada IT protsesside automatiseerimise, konfiguratsioonihalduse ja orkestratsiooni

metoodikate abil. Lisaks võimaldab pilvandmetöötluse tehnoloogiate arendus tarkvara

lahenduste rakendamist skaleerida ning ajaliselt ja maksuvuselt optimeeritumaks muuta.

Antud väitekirja eesmärk on luua automatiseeritud tarkvaraplatvorm, et saavutada

PostgreSQL-i klastrite liginullmaasolekuaeg pilvekeskkonnas. Selleks uuriti

PostgreSQL-i ja muude seostuvate andmebaaside versioonilahendusi. Olemasolevad

sisseehitatud andmebaasi uuendamise meetodid PostgreSQL-i jaoks ei olnud antud

eesmärgi jaoks sobivad. Seetõttu uuris antud lõputöö autor loogilist replikatsiooni

PostgreSQL-i baasil. Kasutades avatud lähtekoodiga Pglogical laiendust pakutud

uuendusmeetodi baasina, rakendas autor automatiseeritud PostgreSQL-i klastrite

uuendamise tööriista Pglupgrade, mida kasutatakse muudatuste kopeerimiseks uude

serverisse. Vana ja uue serveri vahelist rakendusrežiimi hallatakse läbi PgBouncer proksi.

Uuendusprotsessi organiseerimiseks kasutati Ansible IT automatiseerimise vahendit.

Pglupgrade tööriistaga välja töötatud uuendusmeetodi hindamiseks viidi läbi kaks

juhtumiuuringut. Esimene juhtumisuuring oli keskendunud väikesele klastritele, mis

loodi kõrge käideldavuse tõttu. Pglupgrade oli ainus meetod, mis ei seganud rakendust.

Rakendus käsitlses 3-sekundilist maasolekuaega kui viivitust. Teine juhtumiuuring viidi

läbi suurema klastriga, et hajutada päringuid süsteemi koormuse tasakaalustamiseks.

Pglupgrade lähenemine ületas olemasolevaid meetodeid ka teises eksperimendis,

saavutades üleüldise miinimumi 5-sekundilise primaarse maasolekuajaga, seejuures

põhjustamata katkestusi töötavas rakenduses, nagu oli ka esimese juhtumisuuringu korral.

Antud väitekiri näitas, kuidas saab andmebaasi klastreid uuendada minimaalse

maasolekuajaga. Autor on näidanud, et loogilise replikatsiooni ja proksiühenduse abil on

võimalik muuta rakendused ja nende kasutajad teadmatuks, et andmebaasi versiooni

uuendatakse kõigest marginaalse jõudluse vähenemisega. Pglupgrade töövahend on

demonstreerinud selles töös kirjeldatud ideede praktilist rakendamist ja osutunud meetodi

kasutatavusele, saavutades minimaalse süsteemi katkestuse vähem kui 10 sekundilise

maasolekuajaga.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 60 leheküljel, 7 peatükki, 14

joonist, 3 tabelit.

6

List of abbreviations and terms

ACID Atomicity, Consistency, Isolation and Durability

ADDM Automatic Database Diagnostic Monitor

AMI Amazon Machine Images

API Application Programming Interface

AWR Automatic Workload Repository

AWS Amazon Web Service

BASE Basically Available, Soft state and Eventual consistency

BSON Binary JSON

CAP Consistency, Availability, Partition-tolerance

COMFORT Comfortable Performance Tuning

CPU Central Processing Unit

CSV Comma-separated values

DB Database

DBMS Database Management System

DBUA Database Upgrade Assistant

DDL Data Definition Language

DMV Dynamic Management Views

DNS Domain Name System

DSL Domain Specific Languages

EBS Elastic Block Store

EC2 Elastic Compute Cloud

EPP Embedded Puppet

ERB Embedded Ruby

EU European Union

FDW Foreign Data Wrapper

FOSDEM Free and Open Source Developers' European Meeting

GUI Graphical User Interface

HA High Availability

IaaS Infrastructure as a Service

IBM International Business Machines

ICT Information and Communications Technology

IP Internet Protocol

7

IT Information Technology

JSON JavaScript Object Notation

MODA Automated Test Generation for Database Applications via Mock Objects

MSSQL Microsoft SQL Server

MVCC Multiversion Concurrency Control

NASA National Aeronautical Space Agency

NIST National Institute of Standards and Technology

NoSQL Not only SQL

OLTP Online Transaction Processing

OUI Oracle Universal Installer

PaaS Platform as a Service

PC Personal Computer

PRISM Automating Database Schema Evolution in Information System Upgrades

RAM Random Access Memory

RCU Repository Creation Utility

S3 Simple Storage Service

SaaS Software as a Service

SAT Boolean Satisfiability Problem

SLA Service Level Agreement

SQL Structured Query Language

SQLCM SQL Continuous Monitoring

SQS Simple Queue Service

SSH Secure Shell

TCP Transmission Control Protocol

TOPDB Top Database Index

TPC-B Transaction Processing Performance Council Benchmark B

TPS Transactions Per Second

VPC Virtual Private Cloud

WAL Write Ahead Log

XML Extensible Markup Language

YAML Yet Another Markup Language

8

Table of Contents

1 Introduction ... 12

2 Software Automation of ICT ... 16

3 Technological Background .. 21

3.1 Free and Open Source Software ... 21

3.2 PostgreSQL and Other Related Database Management Systems 23

3.2.1 Overview of PostgreSQL ... 29

3.2.2 Upgrades in Database Management Systems .. 30

3.2.3 Replication in Database Management Systems ... 34

3.3 Connection Management using PgBouncer ... 36

3.4 Cloud Computing ... 36

3.4.1 Service Models .. 39

3.4.2 Deployment Models .. 40

3.4.3 Amazon Web Services ... 42

3.5 Configuration Management and Automation with Ansible 44

4 Automated Upgrades in PostgreSQL .. 49

4.1 Architecture and Implementation of the Automated Upgrade Platform 49

4.2 Ansible Roles .. 55

4.2.1 AWS Role .. 55

4.2.2 PostgreSQL Role ... 56

4.2.3 Pglogical Role .. 56

4.2.4 PgBouncer Role ... 57

4.3 Implementation Limitations ... 57

4.4 Applicability to Other Systems and Environments .. 58

5 Case Studies for Automated PostgreSQL Upgrades ... 59

5.1 Impact Analysis of PostgreSQL Upgrades ... 59

5.2 Setting up the Environment and Choosing Software Version 60

5.3 Defining Metrics ... 60

5.4 Cluster Size Considerations .. 61

5.5 Evaluation Setup ... 61

5.6 Evaluation Procedure .. 62

5.7 First Case: Database with 3 standby servers used for high availability 62

5.8 Second Case: Database with 10 standby servers used for spreading the reads 65

9

5.9 Interpreting the Results ... 68

6 Summary .. 71

References .. 72

Appendix 1 - Pglupgrade Playbook .. 75

Appendix 2 - Postgres Roles .. 77

Appendix 3 - Pglogical Roles ... 81

Appendix 4 - PgBouncer Role .. 83

Appendix 5 - Provision Playbook ... 84

Appendix 6 - AWS/Provision Role .. 86

10

List of Figures

Figure 1. Popularity of top 6 databases based on frequency of Google searches. 24

Figure 2. Popularity of Open Source Databases based on Debian package installations.24

Figure 3. Distribution of Open Source Databases in Business [29]. 25

Figure 4. Physical Streaming Replication. ... 35

Figure 5. Cloud Service Models. .. 39

Figure 6. Configurable Host Inventory File (host.ini). ... 51

Figure 7. Running an Ansible Playbook. .. 51

Figure 8. Configuration File (config.yml). ... 52

Figure 9. Workflow of the upgrade process. .. 53

Figure 10. Four steps pglupgrade goes through during upgrade (first case). 64

Figure 11. Four steps pglupgrade goes through during upgrade (second case). 67

Figure 12. Transaction rate and latency graph during standby cloning process. 68

Figure 13. Graph of database size growth during logical replication initialization. 69

Figure 14. Transaction rate and latency graph during the upgrade process. 70

11

List of Tables

Table 1. Configuration Management Tools Comparison. .. 47

Table 2. Comparison of the Upgrade Methods (First Case). .. 63

Table 3. Comparison of the Upgrade Methods (Second Case). 66

12

1 Introduction

A database can be defined as an organized collection of data. A computer software

application which is responsible for the safe and efficient storage as well as the easy

retrieval of the data in a database is called a Database Management System (or simply a

database system or a DBMS [1]).

Many software applications use database systems to store and process information. For

instance, banks use databases to store account information and balances of their

customers, social networks use databases to store user profiles, contacts and messages.

Even desktop applications that do not need to process much data like web browsers (i.e

Firefox or Chrome), use databases to store session information and browsing history.

Nowadays, companies consider customer data is one of the most important assets for their

businesses [2] and as a result, database systems are highly important in IT ecosystem.

Modern companies aim at global markets and they maintain their services in many

countries all around the world. This flexibility comes with a cost; high availability in

multiple regions is a must for companies to continue their business successfully. That is

why this thesis illustrates the usage of cloud platforms instead of bare-metal servers.

Cloud platforms allow to scale in multiple regions, resize the instances, terminate or add

more instances, and scale in a dynamic manner instead of static scalability nature of

traditional servers.

Given the importance of database systems for the businesses, reliability, stability, and

security of the databases are also equally important. Outdated databases are vulnerable to

attacks and keeping the databases in their current versions would help to reduce the

security risks. An obsolete version of a database has many disadvantages such as lack of

technical support, incompatibility with hardware and software, missing enhanced

features, bug fixes, performance improvements and security patches. Therefore, regular

database upgrades should be a policy of system designers to benefit from all the new

features and avoid the risks of running the systems on outdated databases.

Even though there are clear advantages for database upgrades, it still means downtime for

many people and companies struggle to set maintenance windows for major version

upgrades. Moreover, thanks to fast growth of data volumes in recent years, few companies

can manage to complete the upgrade within the possible maintenance window. On top of

this, there are many businesses that would not allow a maintenance for database upgrades

at all (i.e. payment systems, online banking and money transfer companies, nuclear plants,

space technologies, telecoms). Both business owners and the users prefer not to

experience downtime, this leads to efforts to avoid downtime as much as possible. The

impact of taking down a system that has thousands or maybe more than millions of users

for a long time means losing revenue, reputation and sometimes even customers. In

modern systems, zero downtime upgrades is a big need and in fact, can be achieved.

13

There are four main possible approaches to database upgrades:

● The first approach would be for databases to keep their storage format same or at

least compatible across versions. However, this is hard to guarantee long term as

new features might require changes in how data is stored or add more metadata

information to work properly. Also, performance is often improved by optimizing

the data structures.

● The second approach is to make a logical copy (dump) of the old server and

loading it into the new server. This is the most traditional approach which requires

the old server to not receive any updates during the process and results in

prolonged downtimes of hours or even days on large databases.

● The third option is to convert data from old format to new one. This can either be

done on the fly while the new system is running, but incurs performance penalty

which is hard to predict as it depends on data access patterns, or it can be done

offline while the servers are down, again incurring prolonged downtimes

(although often shorter than the second method).

● The fourth method is to use logical dump for saving and restoring the database

while capturing the changes happening in meantime and logically replicating them

to the new database once the initial restore has finished. This method requires

orchestration of several components but also decreases the amount of time the

database cannot respond to queries.

The example of the approaches listed above can be seen in popular relational database

management system PostgreSQL. For example, PostgreSQL minor releases, which do not

contain new features but only fixes, do not change the existing data format and fits the

first approach. For the second approach, PostgreSQL provides tools called pg_dump and

pg_restore which do the logical backup and restore. There is also a contrib module1 called

pg_upgrade2 which does offline (the servers are not running) conversion of the old data

directory to the new one. For the fourth approach, there are third party trigger-based

solutions such as Slony3 for upgrading but it also has some caveats which are covered in

the comparison of all existing methods in Chapter 3.2.2.

Each major release of PostgreSQL comes with a wide set of features, therefore skipping

version upgrades might create a bigger gap in terms of existing feature set of the

applications and the one it will get after the upgrade. When decision makers of the

companies calculate the risks of the upgrade and its impact on the business, they might

even be forced to continue running a version of PostgreSQL that is no longer officially

supported and has known data corruption or security problems. Result of a recent survey

[3] published in 2015 and more than 200 enterprises are surveyed, shows that more than

60% of enterprises have deferred applying security patches to their databases because of

concerns over downtime. Avoiding major release upgrades usually affects the developers

1 https://www.postgresql.org/docs/current/static/contrib.html
2 https://www.postgresql.org/docs/current/static/pgupgrade.html
3 http://www.slony.info/

14

who are missing the new features and the performance improvements. This, in turn,

affects the man hours which are needed for continued development of the application,

because the developers cannot use the new features of the database. The additional

resources, both in terms of hardware and developer time, spent on performance

improvements could often be saved by simply upgrading to the new major version of the

database software. PostgreSQL has a wide feature set which comes with every major

release and companies can benefit greatly from doing regular upgrades.

Another consideration to take into account while upgrading the database is that there is

very seldom only single server. Both for reasons of availability (having another server to

switch application to when the current one fails) and read scalability (providing extra

hardware resources to improve the performance of database reads), the physical streaming

replication4 is often used to create cluster of one primary and several replica servers.

Traditional methods of upgrade can only upgrade the primary server while the replica

servers have to be rebuilt afterward. This leads to additional problems with both cluster

availability and capacity, hence effectively increasing the perceived downtime of the

database from the point of both applications and users.

An additional challenge for any kind of system change is testing. It is important to test

the new database system version before the switchover is completed. Logical replication

allows replicating while the system is up-and-running and testing effort can be handled

in the meantime. Software automation allows running tests to ensure the validity of the

process while being sure that the steps in production will be same as the ones during

testing, due to the removal of the human factor. The automation combined with the use

of replication also allows rolling the system back to the previous state in case of

unexpected problems.

The aim of this thesis is to describe and implement a solution which focuses on solving

the problems discussed above. Main goals of the described solution are to minimize the

required downtime, ensure business continuity, and improve predictability of the

PostgreSQL major version upgrade process in the cloud. The solution is built on three

main ideas. These are, automating the upgrade process, using logical replication to copy

data from old server to the new one while the old one is still actively serving requests,

and finally using connection proxy to make the switch to new server transparent to the

applications.

To develop the platform, Ansible is chosen as configuration management and automation

tool for the purpose of the orchestration of the upgrade process. Ansible has modules to

support many cloud vendors which make the study applicable to the other cloud platforms

with minor changes in the application code. This removes the vendor-locking issue related

with cloud providers. The proposed solution is designed to use replication to a new

instance as means of upgrading. The chosen method for doing the replication is to use the

4 https://www.postgresql.org/docs/9.6/static/protocol-replication.html

15

power of logical decoding which is available in PostgreSQL versions 9.4 and later.

Logical decoding is preferred over trigger-based solutions, considering logical decoding

has a lower impact on the system. However, logical decoding only provides API to

consume raw changes from the database, in order to replicate the changes to the new

server, a tool which implements the actual replication is still needed. A third party open

source tool called Pglogical [4] is used for this purpose. To ease the transition of

application between old and new server, a PostgreSQL-protocol aware connection proxy,

called PgBouncer [5] is used. The author utilizes this tool to make this transition

transparent to any application using the database server.

The outline for this thesis is as follows. In Chapter 2, the current state of the automated

systems is researched by their relevance to the thesis. Evolution of the automated software

solutions are evaluated and the areas that need to be improved are discussed. The

background of the technologies that has been used in the thesis presented in Chapter 3,

more specifically Relational Database Management Systems in the example of

PostgreSQL, Cloud Computing as a concept, the software-based management of Cloud

infrastructures and configuration management for software deployment onto such

infrastructures. Chapter 4 4 Automated Upgrades in PostgreSQLcovers the conceptual

design of the Automated Cluster Upgrades Platform from a high-level perspective, i.e.

the interactions between different components of the system and the user’s interaction

with the system. Moreover, the actual implementation of the Automated Cluster Upgrades

Platform is detailed in the same chapter. Chapter 5 analyzes the impact of PostgreSQL

upgrades. Chapter 6 presents two case studies to evaluate the performance of the platform

as well as the effort needed to deploy and execute distributed applications with it. Finally,

Chapter 7 summarizes the thesis.

16

2 Software Automation of ICT

This section surveys related state-of-the-art work in the field of automated software and

system design.

The dictionary5 defines automation as “the techniques and equipment used to achieve

automatic operation or control.” The author believes that the main motivation behind

automating a process or a system to operate automatically is reducing the risks associated

with the human factor and increasing the reproducibility of the outcome. Besides,

automated processes will often be faster than the same task performed manually that will

result in better efficiency and lower operating costs.

While deciding what to automate in a system, the obvious rule is to consider automating

processes that are expected to be repeated frequently throughout the system life cycle.

The value of automating a process is higher if it will be repeated more often. Another

thing to remember is that automating a system (or a subsystem) should not be just keeping

the old, inefficient processes, but re-engineer and change them fundamentally. For

example, in 1995, when Wal-Mart decided to optimize the cost caused by unnecessary

distribution steps, they chose to redesign the entire supply chain, instead of just improving

their existing distribution mechanism. They built (along with software companies) an

enterprise-wide system that directly connects all retail locations, distribution warehouses,

and major suppliers. The elimination of unnecessary distribution steps allowed them to

provide value to customers by reducing costs [6]. Hereby, the goal of automation should

be a dramatic change and not just incremental improvement.

After the identification of which processes to automate and which ones to modify or

eliminate, a research is required how to automate those processes. When the objectives

are listed, the existing processes are mapped, measured, analyzed, and benchmarked,

these efforts are combined to develop a new business process [7]. In this stage, automation

plan should also cover tests and rollout plans. However, before executing the automation

plan, the estimated automation effort versus the risk of performing manual procedures

should be evaluated. Like any other (mainly business) decision, cost-benefit analysis of

the automation should be performed.

If the project is close to ending of its timeline, there is possibly very little benefit to

automating a process. On the other hand, if planned properly, an early planning of a will-

be-frequent process can save a lot of time and help to reduce the cost of the project.

Obtaining the greatest benefit from automation, companies should close the gaps between

different teams of people who come from different backgrounds and have a different area

of expertise. Capabilities of IT could be used to create and support cross-functional teams

instead of individuals working in isolated departments [7].

5 http://www.thefreedictionary.com/automation

17

Information technologies continue to evolve and the digital world requires eliminating

manual processes to evolve even faster, time to market and reliability of the operations

are crucial for businesses. Manual tasks are known to be error-prone, hence reducing

manual operations allow shifting human force to more advanced tasks rather than simple,

repetitive, monotonous and time-consuming operations. IT systems consist of many

subsystems working together in a harmony, an output of a subsystem can be the input of

another subsystem (or subsystems), optimizing one subsystem can dramatically affect

related subsystems and the whole system altogether. Automation of the processes, tasks,

and systems eliminates tedious work, increase the confidence in human resources,

unexpected results and possible failures can be minimized.

Understanding reasons behind of the automation might help to understand how automated

systems are helpful, where they apply in software technologies, and why they are

preferred. To begin with, repeatability of the automated processes carries a great value in

information technologies. For instance, a set of manual operations executed by different

teams have the risk of uncertainty involved in the manual processes, but an automated

script could guarantee that the same instructions will be executed in the same order each

time the same script is run independently of who runs the script. Furthermore, using the

same example, scripts are more reliable because they reduce the chances of human error.

Moreover, automated tasks are often faster than the same tasks performed manually,

results with greater efficiency in automation. NASA used Ansible for automating their

migration to cloud-based environment from a traditional hardware-based data center6. As

a result of automation, NASA has increased their overall efficiency. For example,

updating nasa.gov went from over 1 hour to under 5 minutes, patching updates went from

a multi-day process to 45 minutes, and application stack set up from 1-2 hours to under

10 minutes per stack. Testing and versioning are the other common reasons why

automated systems are preferable in IT. Once processes are automated, testing of scripted

processes undergoes throughout the development cycle. Unlike manual testing, scripts

are proven set of repeatable processes which make them more mature as the project

progresses. Also, automated systems can be placed under version control system, hence

making them more trackable as any other piece of code in the system, this eliminates the

risks come with manual versioning of individuals and reduces human errors.

Nowadays, Information Technologies are converting into more automated systems and

processes such as self-managing, self-monitoring, self-healing, self-optimizing, self-

protecting and self-tuning systems. Academic literature research shows that database

administration and management field is no different than other fields of software related

automation practices. A good example for automation in database administration world

is an attempt to automate performance tuning process of databases. The COMFORT

(Comfortable Performance Tuning) project [8] studied a prototype architecture to provide

an approach to create a self-tuning database system that can dynamically adapt the system

6 https://www.ansible.com/hubfs/pdf/Ansible-Case-Study-NASA.pdf?t=1481315114902

18

parameters to the evolving workload. In real-life software applications, system load is

usually not static and has peak hours as well as quiet times through a day. Therefore,

modern systems require flexible solutions for handling these fluctuations in load by

reacting towards it by creating responsive subsystems such as self-tuning databases as

prototyped in COMFORT paper [8], or auto-scaling mechanisms as provided in AWS

Auto Scaling7 feature.

Database Management Systems have been providing automated solutions to ease the

database administration and management processes within their automation capabilities.

Three commercial products are to exemplify: First, Oracle Self-Managing Database [9]

framework offers tools such as Automatic Workload Repository (AWR) which gathers

system data so that Automatic Database Diagnostic Monitor (ADDM) could analyze the

collected data and make recommendations for the best interest of the system. Automatic

Shared Memory Management feature automates the management of shared memory used

by an Oracle instance, according to the demands of the workload that is collected by AWR

and examined by ADDM.

Second, IBM DB2 Autonomic Technology [10] offers Configuration Advisor, a utility

that recommends the best values for the configuration parameters to achieve the goal of

a self-configuring system. Similar to Oracle Self-Managing Database [9], Configuration

Advisor bases its recommendations on the workload but unlike Oracle Self-Managing

Database, IBM’s DB2 Autonomic Technology [10] does not have a feature as Automatic

Workload Repository and expects the answers about workload characteristics from DBA.

On the mission of automating the database design, IBM DB2 Autonomic Technology

offers Design Advisor that which includes utilities such as Index Advisor that

recommends the best indexes to minimize query execution time. As Oracle’s ADDM [9],

IBM provides Health Monitor to detect anomalies in critical components of the database

manager. IBM’s automated framework also contains self-healing features such as Fault

Monitor facility to detect faults and recover from failures.

Third, Microsoft SQL Server Self-Tuning Database System [11] provides Index Tuning

Wizard tool similar to IBM’s Index Advisor [10]. Monitoring the system state is

important to enhance self-tuning features and both Oracle and IBM offers monitoring

infrastructures in their automated DBMS solutions. For the same reason Self-Tuning

Database offers Dynamic Management Views (DMVs) and Continuous Monitoring

(SQLCM) framework [12].

In the field of database management and administration, there are a lot of processes that

would allow automated procedures to be applied including database installation,

configuration and upgrades, backup and recovery, database tuning, monitoring, and

migrations. For example, database migrations require a serious evaluation phase between

the source and the destination databases. The migration process itself often requires

7 http://docs.aws.amazon.com/autoscaling/latest/userguide/AutoScalingGroup.html

19

modifications in backend application that is connected to the database. Even though

database systems like relational databases that apply international standards for database

definitions and language processing, they develop some different functions, extensions or

data types that are not following the standards. To eliminate manual work required for the

evaluation of the possible incompatibilities, code and feature set conflicts, database

migration evaluation tools are implemented like the Migration Evaluation and

Enablement Tool for DB2 or MEET DB2 [13]. In addition, different vendors released a

variety of migration tools including Migration Toolkit by [14], Oracle Migration

WorkBench [15], and Microsoft SQL Server Migration Assistant [16].

For almost all problems that are faced with manual operations, there are projects that

research and implement automated solutions. Some automation projects focused on

automating testing procedures is exemplified by [17]. The paper [17] presents a SAT-

based approach to automating systematic testing of database management systems, by

automatically generating syntactically and semantically valid SQL queries. The approach

described in [17], aims to reduce the cost of software development by automating

database management testing, which is typically labor intensive and requires complex

inputs. Automation of software testing, especially database application testing, studied in

other projects in literature, such as MODA project [18]. In the paper [18], researchers

presented an automated approach for generating quality tests for database applications.

Instead of using the actual database that the application interacts with, they created a mock

database from the schema of the actual database and used this mock database to use in

test generation.

Dealing with vast amounts of data, modern systems require to be flexible and scalable to

handle the workload properly, without affecting the users with long response times as a

result of a slowed down application. For this reason, an automated data partitioning

strategy that minimizes the cost of expensive data transfers have been researched [19].

The study [19] presents a partitioning advisor that recommends the best partitioning

design for an expected workload by advising which tables should be replicated and which

ones should be sharded according to specific columns.

Database applications are being updated frequently with the new releases of the

application code. Some companies like the social media giant Facebook claim8 deploying

patches daily, in some cases more than once a day9. Since the development cycles are

getting shorter with the adoption agile methodologies, the logical structure of the

underlying database schema is exposed to changes regularly. PRISM project [20]

proposes an automated system to (1) predict and evaluate the effects of the schema

changes, (2) rewrite queries and applications to operate on the new schema, (3) migrate

the database, and (4) invert the migration if necessary.

8 https://code.facebook.com/posts/495105943907807/ship-early-and-ship-twice-as-often/
9 https://code.facebook.com/posts/373240506112742/release-engineering-and-push-karma-chuck-rossi/

20

Configuration management and automation tools such as Ansible, Puppet, Chef or

SaltStack allows users to automate their IT systems, hence there are many projects and

applications that automate an IT process and also publicly available to other user’s access.

For example, Ansible Galaxy10, is the virtual hub where public Ansible roles

(prepackaged units of automated tasks) that are written by other Ansible users are stored

and shared. Any user can create their own roles, share their roles with other community

members, or download the existing roles and reuse them. At the time of thesis being

written [April 2017], “PostgreSQL” keyword search on Ansible Galaxy returned 252

roles, “Database” keyword search returned 208 roles, “Cloud” keyword search returned

116 roles, and “Upgrade” keyword search returned 50 roles. As it is seen from the query

results, manual processes have been automated by many users with different approaches

and tool sets.

The author herself developed a tool11 to automate PostgreSQL replication in cloud for the

PostgreSQL Conference Europe in 201512. The application (or playbook in Ansible

terminology) is written by using Ansible and utilizes PostgreSQL and AWS modules.

Modules are the building blocks for building Ansible playbooks. In a simple analogy, an

Ansible playbook can be thought as recipes while modules are cooking utensils. The

playbook automates the whole process from provisioning Amazon VPC and EC2

instances to installing latest PostgreSQL packages on the instances, and finally

configuring physical streaming replication with 1 master and 2 standby servers. The

playbook also allows adding standby servers to the cluster or removing standby servers

from the cluster.

In conclusion, automated software approaches are getting common with the rise of

DevOps culture. The movement aims to create a culture where software developers and

system administrators collaborate to automate software delivery and system infrastructure

to create a rapid, and reliable IT environment. The recent advancements in cloud

computing, and the need to manage high volumes of data, force engineers to design more

flexible, scalable and reliable systems. Automated software methodologies are emerged

to optimize time and human resources while reducing risks related to manual operations.

Even though configuration management and IT automation tools are helping developers

to build automated solutions for their systems, there are many IT procedures need to be

redesign and automate. To the best knowledge of the author, major database version

upgrades still require downtime and manual work that is highly dependent on database

administrators or system owners. Section 3.2.2 evaluates database upgrade mechanism of

different type of databases and emphasizes the need for built-in (native) and automated

solutions for upgrades. Therefore, this thesis proposes an automated approach for

PostgreSQL clusters in cloud and aims to contribute to the academic and industrial

literature of automated database upgrades.

10 https://galaxy.ansible.com/
11 Source code of the application https://github.com/gulcin/pgconfeu2015
12 https://www.postgresql.eu/events/schedule/pgconfeu2015/

21

3 Technological Background

This section discusses the software methods and technologies that are used for creating a

platform which allows automating database upgrades in cloud. Open source technologies

are preferred as building blocks of the platform, the importance of which is also discussed

below.

3.1 Free and Open Source Software

Before understanding where free and open source software stands in today’s world, let us

describe what it stands for and what makes a software solution free. First of all, it is “free”

as in freedom, not as in “free of charge”. In particular, four freedoms define Free

Software13:

1. The freedom to run the program, for any purpose.

2. The freedom to study how the program works, and adapt it to your needs

3. The freedom to redistribute copies so you can help other users

4. The freedom to improve the program, and release your improvements to the

public, so that the whole community benefits.

From the first rule, it is clear that any kind of restriction for the usage of a program makes

a software solution non-free. Limited days of free trials, expiring licenses, not being able

to run program in specific countries, cities, or limiting the area of usage to limited amount

of people, or limited usage for some use-cases like academia-only, or non-commercial.

The second rule emphasizes the importance of accessibility of the “human-readable”

source code of the program by all means, so that anyone can modify and use it for their

own needs and shape it based on the requirement of their systems. The third rule focuses

on redistribution policy, if a program does not allow for distributing it to other users, it is

also considered as non-free. This rule does not stop software being redistributed with a

cost, but only stops being not-redistributed. The fourth and final rule protects the users

who can benefit from an improvement of the software, even they cannot program

themselves they can still use the program. The programmer or maintainer of the program

can charge for this or can release the changes without a charge.

From the explanations of the rules above, one can summarize the philosophy behind free

software movement as a trigger for the positive change for the community and people

who will use the software for solving their problems. Nowadays, even some countries

like in the example of Estonia14, the USA15, France16 and India17 are adopting open source

13 https://fsfe.org/about/basics/freesoftware.en.html
14 https://joinup.ec.europa.eu/community/osor/case/open-source-software-estonia-long-term-policy
15 https://opensource.com/government/12/9/an-open-source-white-house
16 https://opensource.com/government/12/11/france-latest-fully-embrace-open-source
17 https://opensource.com/government/15/8/india-adopts-open-source-policy

22

standards for their online government systems. This clearly shows the effects of such

philosophy on the decisions of the policy-makers at a governmental level which will

definitely affect a lot of people’s lives mainly their citizens.

From this perspective, this thesis focuses on using the existing free open source software

solutions like Pglogical and PgBouncer, and building new ones for fixing the database

upgrade problem in an automated way. An in-depth analysis shows that in terms of code

quality, open-source code quality appears to be at least equal and sometimes better than

the quality of closed source code implementing the same functionality according to

various measures such as maintainability, reliability, extensibility and portability [21].

For creating a tool for database upgrades one should consider the importance of using an

open source solution first. When there is a publicly available software solution, it is

naturally accessible by users whom they need the solution for solving their problems

under their own system architectures. This means a variety of use cases and tests on

different production systems from small-sized architectures to very-large-sized

architectures under different system loads and requests. Case studies of the open-source

solutions that are used in the thesis include PostgreSQL [22] and Ansible [23] back up

how these open-source products solve specific business needs, lowered cost of ownership,

and reduced deployment time for complex infrastructures and highlight the capabilities

of open source solutions.

The Growth of Open Source Software in Organizations Study [24] results show that open

source software adoption and usage is on the climb in small to large organizations. When

more people started to use open source solutions, they will require more features to make

open source tools fitting their own environments better. Since the source code is open and

accessible by others, these requests will likely to be handled by other people who also

needs that feature or feature set. Hence, the solution will improve over time with the

contributions from the other community members. The key is flexibility to modify the

source code base on the needs of the IT environment that open source project lives in. A

study [25] shows that one of the primary reasons why people prefer using Linux is the

ability to modify the source code to meet their needs which proves the importance of

being able to modify the code base.

On the other hand, if the solution has a bug or security hole in it, it is more likely to be

found, reported and even fixed by the users of the open source solution. The same study

[25] shows that people prefer using Linux also because of fast software patches and bug

fixes. Open source model encourages users not only for reporting bugs, but actually track

them down to their root causes and fix them. For being able to fix the code the users need

to understand the code, hence developers review each other’s code; this peer review

process helps for detecting the bugs effectively.

Surely open source software has come a long way and it is commonly believed that open

source movement is one of the biggest reasons behind the technological improvements of

23

our era by its globally distributed and innovative nature which is shown in many research

papers [26] [27].

Conclusively, in the thesis, open source technologies are preferred to work with, in the

areas where they prove their capabilities, such as database management, service

discovery, and automation. The author believes that free from license fees, usage

restrictions, or redistribution issues, open source solutions accelerate the development and

deployment processes. In addition, open source solutions allow testing applications that

are written on different platforms even with different combinations of open source tools

without the risk of vendor locking as in commercial solutions. Furthermore, the freedom

and flexibility come with open source solutions make possible to experiment and develop

freely, without big-budget limitations of subscription and license fees.

3.2 PostgreSQL and Other Related Database Management Systems

PostgreSQL is chosen as the sample relational database management system [28] over

other open source alternatives such as MySQL18, Firebird19, SQLite20 or Apache Derby21.

The choice of PostgreSQL was based on the fact that it is a popular, open-source relational

database management system with a focus on standards compliance and the author of this

thesis has had good previous practical experience with it. However, to give a meaningful

perspective proprietary products and non-relational database alternatives are mentioned

shortly in this section.

The popularity of the database management systems is subject to several studies including

The TOPDB Top Database Index project22. The project analyzes Google Trends data by

looking how often the databases are searched on Google starting from 2005. According

to the worldwide study results that are illustrated in Figure 1, Oracle is the most popular

database of all and MySQL is the most popular open-source database. PostgreSQL ranks

fourth overall and second in open-source databases after MySQL. MongoDB is the most

popular NoSQL database and grew the most in the last 5 years (2.1%).

Debian Popularity Contest23 is another project that aims to find the popularity of database

management systems by tracking the database packages installed on Debian24 (a free and

open source operating system) platforms. The project publishes the statistical data of the

study participants. Using the published data, the author picked PostgreSQL, MySQL,

MongoDB, SQLite and Firebase databases for comparing the popularity of the open-

18 https://www.mysql.com/
19 https://firebirdsql.org/
20 https://www.sqlite.org/
21 https://db.apache.org/derby/
22 https://pypl.github.io/DB.html
23 http://popcon.debian.org/
24 https://www.debian.org/

24

source database packages. Figure 2 illustrates how many times a selected database

package installed on a Debian platform. The results match with the findings of the

TOPDB project (illustrated in Figure 1) that MySQL is the most popular open-source

database. However, it dramatically differs on MongoDB, to the result of Debian

popularity contest MongoDB is the least favorite amongst the chosen open-source

databases. Finally, PostgreSQL keeps its rank as being the fourth database of all.

Figure 1. Popularity of top 6 databases based on frequency of Google searches.

Figure 2. Popularity of Open Source Databases based on Debian package installations25.

The study [29] conducted by iDatalabs by tracking 50 Database Management System

product and technologies found that 594,246 companies using these products. The study

25 The diagram is created using the statistical data published on http://popcon.debian.org/source/by_inst

25

contains both open-source and commercial solutions and based on the data they

published, the market share of open-source databases is %38. As illustrated in Figure 3,

MySQL ranks first among open-source databases and has the biggest market share,

PostgreSQL comes next and MongoDB as the third.

Figure 3. Distribution of Open Source Databases in Business [29].

Before starting to talk about PostgreSQL, it is worth it to mention that PostgreSQL

belongs to relational database management system family as its open source alternative

MySQL and proprietary counterparts Oracle and MSSQL.

PostgreSQL (in the beginning called Postgres) started as a continuation of Ingres project

(1977-1985) by Michael Stonebraker at at the University of California at Berkeley in

1986. The main idea behind Ingres was developing a database system based on Relational

Database Management System theory [28] Ingres developed until 1985 and afterwards

Postgres (post-Ingres) project started for exploring “object relational” database concept.

Postgres was using POSTQUEL query language until two Ph.D. students from

Stonebraker’s lab replaced this query language with an extended subset of SQL in 1995,

by the name Postgres9526.

PostgreSQL got its current name in 1996 when a group of open source developers outside

of the academia discovered Postgres95 and dedicated themselves to develop the project

with many new features and enhancements. PostgreSQL community accepts 1996 as the

year of the beginning of PostgreSQL’s new life in the open source world. From that

moment, PostgreSQL attracted hundreds of developers all around the world and it has

been continuing to evolve with their contributions.

26 https://www.postgresql.org/about/history/

26

PostgreSQL is an advanced open source database management system and celebrated its

20th birthday27 in 2016 with the current major version PostgreSQL 9.6 (PostgreSQL

started with the version 6.0 for giving credit to earlier development efforts). Hence it is a

proven technology and has an active community, thanks to which it has a fast

development progress. Since its earliest versions, PostgreSQL relational database has

received various improvements in terms of performance, reliability, availability, and

consistency. PostgreSQL runs on all major operating systems, including Linux, Unix and

Windows. It is SQL-compliant (SQL:2011) and fully ACID-compliant (atomicity,

consistency, isolation, durability). PostgreSQL documentation provides an interactive

feature matrix28.

Database management systems that are based on the relational data model as also called

traditional SQL databases because they are using SQL query language like PostgreSQL,

MySQL, Oracle and MSSQL. Besides the relational databases there is a rise in popularity

of non-relational databases, commonly called as NoSQL databases to show the clear

distinction from SQL databases. They are using different querying languages and they

mainly do not use traditional table structure for storing data.

Looking through the origins of NoSQL databases, one can easily say that first databases

were “NoSQL” as there was no “SQL” yet. Structured Query Language (SQL) came from

IBM in the early 1970s and was standardized in 1980s. SQL was built for having a

standardized method for accessing and manipulating data in a relational database.

From the 1970’s to 2000’s expectations from the Internet has been changing rapidly, more

and more people has access to Internet all around the world. Accessibility to Internet

making more business which creates lots of applications hence data has been captured is

changing and evolving by years. The need for capturing and storing structured, semi-

structured and unstructured data, commonly referred as “Big Data” is getting increased

over the years with the help of the cheap storage options. Processing, querying and scaling

vast amount of data requires speed, flexible schemas and distributed databases, and

NoSQL databases claimed to satisfy these requirements.

Modern NoSQL databases were inspired by the paper Bigtable: A Distributed Storage

System for Structured Data [30] from Google. The term NoSQL was first used in 1998

by Carlo Strozzi as a name for his open source relational database that did not offer an

SQL interface [31]. The term was reintroduced by Johan Oskarsson of Last.fm in 2009 at

an event29 that he organized to discuss open source distributed, non-relational databases.

For understanding the main difference between traditional relational database

management systems and modern NoSQL databases, one should understand ACID

27 https://thenewstack.io/20-postgres-still-sign-times/
28 https://www.postgresql.org/about/featurematrix/
29 http://blog.sym-link.com/2009/05/12/nosql_2009.html

27

(Atomicity, Consistency, Isolation, and Durability) and BASE (Basically Available, Soft

state and Eventual consistency) terms. Relational database management systems are

ACID-compliant and NoSQL databases are considered as following BASE principles.

Most of NoSQL systems do not attempt to provide ACID guarantees, contrary to the

prevailing practice among relational database systems.

Atomicity ensures that all commands in a transaction are either succeeds or fails, there is

no in-between state preserved. Consistency enforces that all committed data is consistent

according to the rules and system-defined constraints which are defined in database.

Isolation provides control over what other clients can see; there are different transaction

isolation levels which are supported at different levels in various database systems.

Durability ensures that once data is written it will be always there regardless of failures

or crashes.

Most NoSQL databases lack true ACID transactions and offer BASE concept which is

diametrically opposed to ACID concept. Most distinguishable part of BASE is that it

offers “eventual consistency” by which it declares that system will be consistent over time

(typically within milliseconds). This might result in reading data that is not accurate,

because the data might not be updated by the recent changes immediately. In other terms,

ACID is pessimistic and forces consistency at the end of every operation and BASE is

optimistic and accepts that the database consistency will be a state of flux [32].

CAP Theorem [33] states that web services cannot ensure Consistency (has different

meaning than consistency in ACID) , Availability and Partition Tolerance at the same

time. BASE applications have their focus on trading consistency for availability. As a

result of this tradeoff, “Eventual consistency” allows BASE applications to achieve

higher levels of scalability that cannot easily obtained with ACID.

“Soft state” comes as a result of “Eventual consistency” model. The state of the system

may change over time even without client activity (without input) due to changes going

on to make the system consistent over time, thus the state of the system is always “soft”.

One can easily conclude that, soft state logic abandon the consistency requirements of the

ACID model pretty much completely.

“Basically Available” mentality of BASE is achieved through supporting partial failures

without total system failure which lead to a higher perceived availability of the system.

CAP Theorem’s “Partition Tolerance” corresponds to “always” available “Basically

Available” state of BASE applications. Operations will complete, even if individual

components are unavailable. Web applications need to make the decision between

consistency and availability if they have horizontal scaling strategy based on data

partitioning. The term horizontal scaling comes from how the increase in hardware

capacity is achieved. Traditional database architectures are designed to run well on a

single machine, and the simplest way to handle larger volumes of operations is to upgrade

the machine with a faster processor or more memory. That approach to increasing speed

is known as vertical scaling. More recent data processing systems, such as Hadoop and

28

Cassandra, are designed to run on clusters of comparatively low-specification servers,

and so the easiest way to handle more data is to add more of those machines to the cluster.

This horizontal scaling approach tends to be cheaper as the number of operations and the

size of the data increases, and the very largest data processing pipelines are all built on a

horizontal model. There is a cost to this approach, though. Writing distributed data

handling code is tricky and involves tradeoffs between speed, scalability, fault tolerance,

and traditional database goals like atomicity and consistency

NoSQL databases are differing from each other in many ways hence there is a need to

categorize them like document store (document-oriented), key value store, wide column

store (column families), graph store etc. Apart from the points that they try to achieve in

common, such as being non-relational, distributed and horizontally scalable they are

mainly optimized in what kind of data they store and how they store it (data model).

For storing data in a traditional database, the user first defines column types and column

names and creates the table where data will be stored. Then data is inserted as rows of

values into the columns as a cell of each row. This approach does not allow to have

additional values that were not specified when the table is created, and also every value

must be present, even if it is a NULL value. When NoSQL databases claim being

“schemaless” they refer being “schema-on-read” instead of “schema-on-write” which is

how traditional data storing works as explained above: define the schema first, write the

data into it, read the data which comes back in the schema that is predefined.

NoSQL databases have been oriented towards the schema-on-read approach. Document

stores such as MongoDB, RethinkDB and CouchDB allows users to enter each record as

a series of names associated with values. Even though the values have some specific

format (i.e. JSON, BSON, XML), users do not need to specify what names will be in each

table using schema. Parts of the value can be manipulated as long as the application layer

does not rely on the values that were removed. This brings more flexibility into document-

oriented approach comparing to relational databases where “schema-on-write” is applied,

on the other hand “schema-on-read” requires that application layer needs to be aware of

all versions of the schema [34].

Storing key-value pairs is another category in NoSQL databases such as Redis,

Memcached and RocksDB. In document stores, database is aware of the structure and

contents of the individual documents, but in key-value stores, value is opaque to the

database. Unlike document stores which allow users access to data using part of the value,

key-value stores allows access to the data only through the unique key. The operations

can be listed as getting the data associated with a particular key, storing some data against

a key, and deleting a key and its data. This simplicity makes scaling a lot easier, but

application layer has to handle building any complex operations which normally would

be handled in relational databases.

29

Another way of storing non-relational data is wide column store which has applications

in Cassandra and Hadoop. These databases store records (or rows) which contain arbitrary

amount of columns. In other words every record can have different columns. Wide

column stores are originated from the Google’s BigTable paper [30]. There are other

special type of NoSQL databases that are optimized for storing different types of data

such as graphs databases, but those are out of the focus of this thesis.

There is a new term worth to be mentioned is called NewSQL, which are influenced by

the designs proposed in Michael Stonebraker’s “The End of an Architectural Era (It’s

Time for a Complete Rewrite)” paper [35]. They represent a new wave of database

systems that retain many features of the relational model but also enhance or modify the

fundamental principles of the underlying technology in significant ways. Unlike NoSQL

databases, NewSQL databases such as Vertica, VoltDB, NuoDB and MemSQL employ

consistency models of the traditional RDBMS, ACID transactions and multi-version

concurrency control (MVCC). They also use SQL language unlike NoSQL databases, in

a way with NewSQL movement SQL has found its way back into the world of non-

relational databases.

In conclusion, NoSQL databases remove ACID in database layer by pushing consistency

problems into the application layer where they are not any easier to solve. They also

sacrifice SQL, which makes querying more complex comparing to SQL solutions.

NewSQL systems30 benefit high-level query capabilities of SQL, and offer high

performance and scalability while keeping ACID transactions.

Conclusively, it is very important to understand commonalities and differences that

database management systems have. Either relational or non-relational, open source or

commercial, database management systems share the same value proposition of storing

data and making the data retrieval convenient as possible for the users by different

implementations.

Upgrades are essential for all database management systems and for being able to create

a platform that automates database upgrades, different database design approaches

evaluated and discussed briefly in this section. The author believes that the success of the

platform applicability to the other database management systems is highly dependent on

the research about different database methodologies prior to the platform design.

3.2.1 Overview of PostgreSQL

In this thesis, PostgreSQL is chosen to apply automated upgrade platform approach.

There are several reasons behind this choice. The author has experience with PostgreSQL

in production systems for the last 6 years. PostgreSQL uses rich and standardized SQL

query language, which allows users to do most of the operations over the data inside the

30https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-

oltp-apps/fulltext

30

database. PostgreSQL offers many options regarding to the storage patterns; including

relational (normalized or not) data, document-based data (i.e. JSON, XML), key-value

pairs and many more. PostgreSQL is fully ACID-compliant and more mature comparing

to non-relational counterparts. Over the years, PostgreSQL has picked features from non-

relational databases and integrated them into its core, or provided some functionalities

through extensions.

PostgreSQL ranked in fourth place behind Oracle, MySQL and Microsoft SQL Server in

DB-Engines’ ranking31 of the most popular databases for February 2017. This result

shows that, PostgreSQL is more popular than the most popular NoSQL database on the

list which is MongoDB (ranked in fifth place). Unlike commercial databases that are

proprietary, expensive and require vendor lock-in, PostgreSQL is open source and

enterprises have been moving to open source options which explains the popularity of

PostgreSQL.

PostgreSQL has native JSON support, which allows users to start unstructured, but then

also convert it to structured data over time if the requirements change. As the application

matures, users have the flexibility to keep some of their data remain unstructured and

some of it strictly structured. For another way of keeping different data stores,

PostgreSQL has support for Foreign Data Wrappers (FDW) which allow PostgreSQL

Server to access different data stores, ranging from other SQL databases (i.e. MySQL,

Oracle, MSSQL Server) through to CSV or JSON files. In other words, data wrappers

allow users to connect a remote system within PostgreSQL, then read and write data from

other databases and use it as if it were inside the PostgreSQL database. They allow

PostgreSQL queries to include structured or unstructured data, from multiple sources,

such as NoSQL databases (i.e. MongoDB, Cassandra, Redis) or even other PostgreSQL

databases.

3.2.2 Upgrades in Database Management Systems

In this section, upgrades in different database management systems compared shortly to

give a better understanding why automated upgrade approaches are still a valid need in

database world. For making a reasonable comparison with PostgreSQL popular

alternatives are chosen. MySQL is chosen for being an open-source and relational;

MongoDB is chosen for being an open-source and non-relational; Oracle is chosen for

being a commercial and relational database management system.

In PostgreSQL, for major release upgrades, there are three possible paths that can be

taken. First method is upgrade by restoring from a logical dump, second one is physical

upgrade and the last method is online upgrade.

31 https://db-engines.com/en/

31

First and the most tested method requires a logical dump using pg_dump32 from the old

version, and pg_restore33 on a clean cluster created with the newly installed version. This

method gives flexibility to upgrade from very old versions (goes back to version 7.0’s,

which were released by 2000) to one of the recent releases. Many other database systems

(MySQL, MongoDB, Oracle etc.) and upgrade methods lack the ability to jump from very

old releases to new releases, most of the time supported upgrades are limited between the

latest version and the previous major version. For being able to start running pg_dump,

write connections to database have to be stopped, and especially on large databases this

will create a huge total downtime. Another disadvantage to this method is that it requires

double disk space, or the removal of the old cluster before restoring.

Second method is called “in-place” upgrades because the process is done over the same

server and preferably on the same data directory. It is also categorized by physical

upgrade because this method does not require logical dump/restore processes. A clear

advantage to this, since there is no logical dump required, there is no extra space needed

for another copy of the cluster. In PostgreSQL, this method is provided by pg_upgrade34

tool and pg_upgrade supports upgrades from version 8.4 and later to the current major

release of PostgreSQL. Major releases come with new features that often change the

layout of the system tables, but internal data storage format rarely changes in PostgreSQL.

PostgreSQL community tries to avoid changing internal data storage and this is an

advantage that pg_upgrade uses as a benefit. The pg_upgrade tool performs upgrades by

creating new system tables and reusing the old user data files. As a result, downtime is

much lower compared to using pg_dump. Even though it is considered faster than

pg_dump method, it has some disadvantages. Once the new version of PostgreSQL is

started, there is no way to go back to the old version. Cluster will work only with the new

version from there on. (There is a way to run pg_upgrade to make it generate a second

copy on disk of the cluster but then there is almost no advantage of using this method

over pg_dump). It will perform poorly in clusters with many databases, or databases with

many thousand objects.

Business continuity requires a better method for database upgrades ideally achieving

zero-downtime upgrades which are not the case with pg_dump/pg_restore and

pg_upgrade methods. The findings of a recent survey [3] that was conducted in 2015,

with more than 200 enterprises involved, shows that enterprises cannot afford to maintain

the status quo when it comes to database availability. More than 70 percent of enterprises

report delaying database upgrades because of concerns over downtime in their critical

applications. Survey results show that having the most critical applications be offline for

20 minutes to three hours, more than once a month is not acceptable to any enterprise

today. It is clear that modern database management systems need to improve their

upgrade mechanism to achieve better results with minimal downtime.

32 https://www.postgresql.org/docs/current/static/app-pgdump.html
33 https://www.postgresql.org/docs/current/static/app-pgrestore.html
34 https://www.postgresql.org/docs/9.6/static/pgupgrade.html

32

The third and last method for PostgreSQL upgrades is called online upgrade. This type of

upgrade has been available since the first trigger-based replication solutions (i.e. Slony-

I, Londiste35) were developed even before PostgreSQL had a built-in replication support.

(Replication methods and how they are used for database upgrades is covered in details

in Section 3.2.3.) Upgrading PostgreSQL by using trigger-based replication solutions

requires several steps to follow. First, both versions (the existing one that is going to be

upgraded and the new one that is going to be upgraded to) should be installed, this gives

a flexibility to have them working in parallel without requiring a downtime. Then, on the

source node (the current existing version) an initial copy should be created, and the

changes should be replicated to the other node. The changes from the moment when the

copy operation started, eventually will be replicated to the new server. That is why logical

replication should be kept until the replication lag is close to zero. The final step is only

repointing the connection info from the application server to connect to the new server.

Online upgrade method is very convincing in the sense that making zero downtime

upgrades possible. Another advantage is that trigger-based replication solutions allow

upgrades regardless of which version is running on the nodes, the changes are copied

using triggers (supported SQL commands). They allow online testing of the new cluster

by read-only queries, so that if there is a problem there is a way to cancel the upgrade

operation without damaging the old cluster version. Even though this method has many

advantages comparing to the previous two methods, there are some major disadvantages

worth mentioning. Like pg_dump/pg_restore, it needs double storage space, as it has to

store the second copy of the data. All the changes are captured by using triggers, and

written into queue tables. This procedure doubles the write operations, doubles log files,

and slows down the system since all the changes has to be written twice; resulting more

disk I/O and load on the source server.

In the light of comparison of the existing PostgreSQL upgrade methods, the author chose

to use pglogical tool for this thesis. Although the method that is chosen is categorized as

logical replication, it has different implementation than trigger-based solutions. The

reasons for the choice of pglogical is explained in details in Section 3.2.3.

Second database is chosen for checking upgrade procedures is MySQL, and it supports

two methods36 for database upgrades. First method is called “in-place upgrade” and

similar to the current method for PostgreSQL minor version upgrades and running

pg_upgrade on top of that. Steps involve shutting down the old MySQL version, replacing

the old MySQL binaries or packages with the new ones, restarting MySQL on the existing

data directory and running mysql_upgrade37 tool which checks all tables in all databases

for incompatibilities with the new version of MySQL server, if problems are found,

attempts a table repair.

35 https://github.com/pgq/skytools-legacy
36 https://dev.mysql.com/doc/refman/8.0/en/upgrading.html#upgrade-methods
37 https://dev.mysql.com/doc/refman/8.0/en/mysql-upgrade.html

33

Second method for MySQL upgrades is called “logical upgrade”, which is similar to

PostgreSQL major upgrades via pg_dump and pg_restore. Data from the old MySQL

version is dumped with mysqldump38 tool, the new MySQL version is installed, and dump

file is restored into the new MySQL version and finally mysql_upgrade tool is run.

MySQL documentation recommends executing mysql_upgrade for any kind of upgrade

operation. As discussed above, MySQL does not have a built-in automated upgrade

solution.

MongoDB is chosen as a representative of NoSQL databases, and MongoDB upgrades

are also not automated and have some requirements over versions. For instance, to

upgrade an existing MongoDB deployment to version 3.2, system must be running on a

3.0-series release; or to upgrade to version 3.4, system must be running on a 3.2-series

release. Users also need to check compatibility changes document39 for the version that

they will upgrade to. Ensuring the applications and the deployments are compatible with

the new MongoDB version is the responsibility of the users (system owners, system

administrators, database administrators). Resolving the incompatibilities before upgrades

are crucial for the upgrade to succeed.

Upgrading MongoDB differs whether it is a standalone MongoDB instance, a replica set

(MongoDB defines group of instances with the same data set as replica sets, similar

concept called as a replication cluster in PostgreSQL or MySQL), or a sharded cluster (

MongoDB calls a cluster as sharded cluster if each shard contains a subset of the sharded

data, which can be deployed as a replica set. Sharding is the way for scaling data

horizontally within the cluster. PostgreSQL does not have a built-in sharding solution in

core yet, but there are solutions as Postgres-XL40 which implements scaling for

PostgreSQL.) Upgrading MongoDB requires manual operation for the three of the

scenarios that are listed above. There is an option to upgrade a standalone MongoDB

instance via package managers (i.e. apt, yum) if only MongoDB is installed via packages

(i.e. deb, rpm) on Linux distributions (i.e. RedHat, Debian, Ubuntu). Nevertheless, this

still means downtime and requires shutting down the mongod41 (is the primary daemon

process for the MongoDB system) instance, replacing the existing binary with the new

mongod binary and restart mongod. To conclude, MongoDB upgrades are also works in

a manual fashion.

Oracle is chosen as a representative of commercial databases. The terminology that has

been used in Oracle white papers are full of different product names and solutions (i.e.

Database Upgrade Assistant (DBUA), Oracle Active Data Guard Far Sync, Oracle

Multitenant, Oracle Fusion Middleware, Oracle WebLogic, Oracle Universal Installer

(OUI), Repository Creation Utility (RCU), Reconfiguration Wizard) and this results in an

38 https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
39 https://docs.mongodb.com/v3.2/release-notes/3.2-compatibility/
40 http://www.postgres-xl.org/
41 https://docs.mongodb.com/manual/reference/program/mongod/#bin.mongod

34

unnecessary complexity over a key system operation as database upgrades.

Documentation itself is very unstructured and backwards-incompatible for an open-

source background person as thesis author. Many of the methods are only applicable for

a subset of main Oracle versions; depending on which operating systems and the versions

that the source and destination are running on, what are the hardware platform and the

size of databases etc. There is an “in place” upgrade method for upgrading an Oracle

database by using Database Upgrade Assistant (DBUA) or command-line upgrade scripts.

These are two variants of the same method, DBUA offers GUI that executes the same

command-line scripts. As referred as “in place” upgrade, it does not require creating a

copy of the existing database. There are other methods that are simply depending on

dump/restore principles and applicable in different scenarios. These methods require

considerable amount of downtime and they do not claim to meet minimal downtime

requirements. However, there are strategies to minimize downtime for Oracle upgrades

by using the solutions like Oracle Data Guard and Oracle GoldenGate, which are covered

in Section 3.2.3.

There are services offered by companies to upgrade databases. For instance, Intelligent

Upgrade Robot42 is a paid service for upgrading Oracle databases.

For all the chosen sample databases, version upgrades require downtime and manual work

to a certain degree. In conclusion, built-in automated upgrades are not a standard

procedure for popular database management systems independent of being open-source

or commercial; relational or non-relational.

3.2.3 Replication in Database Management Systems

Upgrade methods were discussed in Section 3.2.2 and this section covers how database

replication methods are used in minimizing downtime in database upgrades. Database

replication is the general term for describing the technology of maintaining a copy of a

set of data on a remote system. In this thesis, the focus is on logical replication methods,

hence the mechanism allows online database upgrades in addition to their main

functionality as being database replication.

In PostgreSQL, each change made to the database (inserting a row into a table, creating

an index etc.) is recorded first in binary files called WAL (Write-ahead Log), hence the

name "write-ahead" log, as a synonym of "transaction log". Should PostgreSQL crash,

the WAL will be replayed, which returns the database to the point of the last committed

transaction. Write-ahead logging mechanism is the main fault tolerance system for

PostgreSQL which ensures the durability of any database changes.

PostgreSQL has Physical Streaming Replication in-core as state of the art of replication

in version 9.6 and the replication system is also based on WAL mechanism. Clients

execute queries on the master node, the changes are written to a WAL file and copied

42 http://infuse.it/solutions/intelligent-upgrade-robot/

35

over network to WAL on the standby node. The recovery process on the standby then

reads the changes from WAL and applies them to the data files just like during recovery.

To put it briefly, streaming a series of physical changes from one node to another is called

Physical Streaming Replication which is illustrated in Figure 4.

Figure 4. Physical Streaming Replication.

Logical replication allows streaming logical data changes between two nodes. Unlike

physical replication which captures changes to the raw data on disk, the logical replication

captures the logical changes to the individual records in database and replicates those.

The logical records work across major releases, hence logical replication can be used to

upgrade from one release to another. There are two basic approaches to logical

replication: the trigger-based and the changeset extraction (called logical decoding in

PostgreSQL). Using trigger-based replication solutions for PostgreSQL upgrades, is

mentioned in Section 3.2.23.2.2 Upgrades in Database Management Systems. Logical

decoding and the advantages of using it for minimal downtime database upgrades is the

focal point of this section.

In 2014, PostgreSQL has introduced Logical Decoding in version 9.4 and this feature

opened the door for a whole new world of possibilities. Logical decoding is a mechanism

that extracts information from WAL files into logical changes

(INSERT/UPDATE/DELETE). Since the data from WAL mechanism is used by

decoding the transaction logs, there is no write amplification as in the case of trigger-

based replication solutions, hence this method performs better43. Logical replication is

built on top of logical decoding. At the time of this thesis being written, logical replication

is only available as extensions. Pglogical extension is used for implementing Automated

PostgreSQL Upgrades Platform in this thesis. Pglogical serves as base for built-in logical

replication solution in the next major version of PostgreSQL (version 10) and this is one

of the main reasons why Pglogical has been chosen to implement thesis application.

Logical replication is also used for upgrading Oracle databases. Oracle calls this upgrade

method as “transient logical database rolling upgrade process” which is performed by

43 https://blog.2ndquadrant.com/on-pglogical-performance/

36

using Oracle Data Guard44. Oracle Data Guard can be used in similar fashion as Pglogical

to replicate between major versions of an Oracle database. However, due to restricted

licensing users are required to either always reuse the existing servers or to buy new

licenses which will not be used after the upgrade has finished which limits the usefulness

of this approach. Moreover, the upgrade operation requires manual operations in some

phases, different products need to be used, pre-upgrade and post-upgrade tasks and scripts

need to be executed, and it requires downtime in certain phases. Even though this method

provides a step towards near-zero downtime, there is still room for improvement.

3.3 Connection Management using PgBouncer

When a database upgrade operation is completed, any application that is using the

database server should point to the upgraded new cluster. Achieving zero downtime

upgrades require automated service discovery to avoid shutting down the application,

pointing to the new cluster and starting the application again. In the thesis, PgBouncer

tool is used to ease the transition from old server to the upgraded new server.

PgBouncer is an open-source PostgreSQL connection pooler originally developed at

Skype. PgBouncer acts as Postgres server, so any target application can be connected to

PgBouncer as if it were a PostgreSQL server. In the thesis, this tool is utilized to achieve

a graceful upgrade operation without dropping active database connections.

Upgrading a database cluster needs an external tooling or configuration setup to allow

applications to point the new cluster and this need is not only PostgreSQL’s concern. As

mentioned in Section 3.2.3, using Oracle Data Guard to perform transient logical database

upgrades require a brownout, to change the roles of the databases. As suggested in Oracle

documentation, when the goal is absolute zero downtime then Oracle GoldenGate tool

must be used in place of the Data Guard database rolling upgrade process [36].

3.4 Cloud Computing

Cloud computing platforms (AWS in specific) are chosen to implement Automated

Database Cluster Upgrade Platform for this thesis. There are several reasons behind why

cloud computing platforms are chosen instead of traditional physical servers that are

briefly discussed in this section.

One can argue that many of the concepts of cloud computing have been around for

decades, which is valid to some extent. The road to the cloud computing is paved with

techniques that are learnt from mainframe computing era through to Internet era.

In the very first concept of cloud computing model is that instead of saving the data of

the applications from a local computer or a server housed in an on-premise data center,

44 http://docs.oracle.com/database/121/SBYDB/concepts.htm#SBYDB00010

37

there is the ability to run the applications without owning any hardware or a server with

pay-as-you-go billing model, at a massive scale. Even though cloud term sounds like a

magical place to save the data, the truth is that the application data is actually served on

larger, more powerful systems in a remote place that the resources (processing,

networking, and storage) are mostly shared and distributed among many users of the

cloud service providers.

Centralized computing of the mainframe era was built on “time sharing” concept which

can be explained as sharing of a large computing resource by different customers. The

concept of sharing resources of cloud computing is very similar to mainframe computing

in this regard. Main motive behind both cloud computing resource sharing and mainframe

computing time sharing is reducing the cost of computing capability. Cloud computing

allows users to use cloud services, provision and deploy instances quickly without owning

any hardware. Same logic was applying to mainframe computing, they were extremely

expensive machines, also required entire rooms or buildings to be placed. In this sense,

cloud computing technology is giving back the central control of mainframe computing

by also offering broad network access over the Internet, and the ability to start using the

instances in a short amount of time and stop using when the need is over, and paying only

the amount that has been used in terms of resources and services.

As with every technology, there were some caveats in mainframe computing. Centralized

computing was not flexible enough for the companies that wanted more control over the

systems, this lead to “mini-mainframes”45 came to life. With this technology, companies

could own their own mainframes instead of renting time on a system used by other

companies, hence control their resources better. The technology got more advanced over

time and Personal Computer (PC) revolution made computers a lot cheaper than their

ancestor mainframes. The need of the information transfer between PCs triggered

networked PCs, so that computers could share the information between them over cables.

Cloud computing technologies made the computing resources available from anywhere

in the world, anytime when companies or individuals want to access or stop using the

resources. Before the cloud technologies, planning a migration project or starting to a new

software project was involving long time spans of hardware resource planning, research

about licensing and upgrade methodologies, feasibility analysis, supported platforms and

for how long that support would be available, what would be done with outdated instances

and hardware that was replaced and many more projections over how hardware and

software would work out together for the expected lifetime of the project. Cloud

technologies simplified and automated these services and made them available as highly

abstracted on-demand services with clear and affordable price points, that can be turned

on and off anytime [37].

45 https://techtalk.gfi.com/from-mainframe-to-cloud-its-technology-deja-vu-all-over-again/

38

Modern projects do not need to estimate and plan resources years in-front without enough

data available for projecting over the future of the application. Managing and scaling the

resources by the usage expands, or terminating and shifting the resources which are idle

or less busy to the areas that require more resource is a matter of clicks. The elasticity of

increasing or decreasing the size of an instance, adding hundreds of them together, scaling

the load by adding tens or hundreds of servers concurrently, that are globally distributed

is what makes cloud better than the initial centralized computing methods. Author, herself

is working from Tallinn for a company based in London, having colleagues from 23

countries with only a working laptop and Internet connection. She can provision and

deploy instances in Tokyo, California or Mumbai from the web console of a cloud

provider, manage the applications of the company’s hundreds of customers from

Australia, Dubai, or France with the applications that run in cloud and accessible to all

employees and customers.

Cloud computing considered as an evolving paradigm [38], and as in with every new

technology standards and best practices are missing amongst many cloud providers; by

time and expansion of the usage, cloud computing best practices will be clearer and

technology will be more standardized. Even though for software solutions, the author

preferred open source solutions, Amazon Web Services (AWS)46 is chosen for

implementing Automated Database Cluster Upgrade Platform in Cloud. Surely there are

open source cloud computing platforms for example OpenNebula47, Eucalyptus48,

OpenStack49 but the author has hands-on experience with AWS through her work

experience and it was chosen for reducing the cost of learning a new technology and risks

are related to the less known platforms.

Finally, it may be concluded that the accessibility of cloud computing resources, pay-as-

you-go flexibility, ease of experimenting with several sizes of instances, and scalable

nature of cloud computing enabled a fast and affordable solution to implement Automated

Database Upgrade Platform for the thesis. Otherwise, setting up physical servers,

configuring them properly and efficiently would require more time, and cost of ownership

would be much higher. As can be seen in Chapter 6, one of the case studies require adding

20 new servers to the cluster and removing 20 old ones during the test. Without the cloud

infrastructure, setting up 20 new instances and throwing out 20 old ones would be

impractical at the least. Fortunately, provisioning of the cloud instances is not difficult as

setting up traditional servers manually. In fact, setting up 20 cloud instances is not any

different than setting up one cloud instance time-wise and operation-wise. And the cost

of additional instances is only temporary.

46 https://aws.amazon.com/
47 https://opennebula.org/about/project/
48 https://github.com/eucalyptus/eucalyptus
49 https://www.openstack.org/

39

3.4.1 Service Models

National Institute of Standards and Technology (NIST) defines three service models for

Cloud Computing [38]: Infrastructure as a Service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS). Each model gives a different level of control of the

deployed applications in cloud, by automating remaining tasks and providing them as a

service. Before cloud systems, in a traditional on-premises data center, IT teams were

responsible of building and managing all infrastructure, hence they had full control over

their systems. Cloud service models provide a level of abstraction for the cloud

applications, and IT teams can focus on developing their applications rather than

managing network, storage, database, and operating system layers, or they can manage

these IT elements at a scale and in a more automated way.

Figure 5. Cloud Service Models.

The definitions of service models from NIST, made the illustration easier for the author.

As it can be seen in Figure 5, the difference between IaaS, PaaS, SaaS and On-Premises

is mainly depending on who is in charge of the application and infrastructure beneath

either cloud provider or the company who uses the cloud services. In the case of On-

Premises there would be no cloud services available and companies were managing all

the systems and components related with their applications themselves.

IaaS is the model where companies/users have the most autonomy over their system,

cloud provider manages and controls the underlying cloud infrastructure, as service is

being infrastructure, and company who uses the cloud service gets the rights to deploy

and run their software. In this model, provisioning process, storage, networks, operating

systems and applications are responsibility of the paying customer (either company or

individual) and cloud provider neither controls nor manages these computing resources,

40

only provides the cloud infrastructure that allows consumers to manage their resources,

build and deploy their applications.

From the perspective of the cloud services consumer, in the decreasing order of control

of the system, PaaS comes second after IaaS. Cloud provider serves the platform by

offering cloud infrastructure including network, servers, operating systems and storage.

The consumer of the service has the control over the deployed applications and possibly

configuration settings related to their application and hosting environment. The cloud

platform which is provided by the cloud vendor, supports some programming languages,

libraries, services and tools. Consumers of the platform service, could deploy their own

or acquired applications onto the cloud infrastructure by using these offered tools,

libraries and programming languages that are supported by the cloud vendor. Even

though, this capability does not necessarily prevent the use of alternative set of tools and

the software stacks, it would not be wrong to say that there is a certain limitation for the

application developers while using PaaS coming through cloud vendor. The ease of using

a platform to develop cloud applications without dealing with the underlying

infrastructure, comes with a subtle price: developers almost have no control over low

level software controls like memory allocation, caching, number of threads etc.

The last cloud model is SaaS, which can be summarized as having a software solution

runs in cloud, and paying a subscription fee to use the application over the Internet

through a web interface. Consumers do not have any control over the underlying cloud

infrastructure or even in the application itself; only have rights to use the application and

might configure some user-specific application settings. SaaS provider has full

responsibility over the software application and its performance, security, scalability,

privacy and IT elements running beneath it, consumer only has to pay a price for the

service usage.

In conclusion, each service model offers a different level of flexibility to the consumers

by automating underlying IT tasks and utilizing the cloud services. Consumers should

consider the requirements of their IT environments and make the decision accordingly by

understanding capabilities and restrictions of each model.

In this thesis, IaaS model is used for provisioning the cloud instances and deploying

Automated Database Upgrade Platform application. The IaaS model provides enough

control which is needed to install and use all the required components that are not

available in PaaS and SaaS situations, like the Pglogical extension or SSH access for

Ansible, while still providing more flexibility than on-premise solution thanks to a

dynamic environment with pay as you go price model.

3.4.2 Deployment Models

NIST defines four cloud deployment models: Private, Public, Community and Hybrid

Cloud. Cloud deployment models differ from each other by factors like scalability,

41

flexibility, cost, security and customizability, hence each model fits best for different

system and business requirements.

One can use a simple analogy to describe different cloud models. If each cloud model

was a living plan, a public cloud would be an apartment where multiple tenants living at

the same apartment within different flats but they also have common places and shared

utilities. Following the analogy, a private cloud would be a family owned house with

different rooms, which are mainly used by different family members, but also have

common areas like living room and kitchen. Using the same analogy, a community cloud

would be like a hippie camp where only members of a peaceful community with similar

views, and concerns can join and use the camp area. Lastly, a hybrid cloud would fit into

a mix of other living plans like the one that is offered by the popular renting application

Airbnb50, where people rent the flats or houses that they own to different tenants for a

short period of time. Flat or house owners can still use some of the rooms privately for

their usage, and rent other parts of their houses and that would be fitting to hybrid cloud

model in the analogy.

Evaluating the requirements of Automated Database Cluster Upgrade Platform to

determine which type of cloud is the best fit in respect of the thesis application, Public

Cloud model is chosen for the implementation. The primary benefits of the public cloud

include the speed and pay-per-use policy. Mainly, public clouds are ideal for any kind of

project which has a need for fast deployment include the thesis period with a tight

deadline of one semester. In addition, public clouds are based on shared physical

hardware (with other tenants) which is owned and operated by the public cloud provider

and usually cheaper than the dedicated private clouds. Lastly, public cloud model gives a

higher flexibility to scale (add or drop capacity) within the capacity of the cloud provider

(i.e. AWS, Google Cloud, Microsoft Azure) which is likely to be higher than a sole private

cloud owner’s computing capacity.

Although Private Cloud model has its own advantages over Public Cloud model, none of

the benefits were required for the thesis implementation. For example, if the thesis

application would have required more security and privacy, then having a dedicated

private hosted environment would be a better choice which is offered by the private cloud.

Another reason for choosing private cloud would be the requirement of the need for very

specific hardware (or configuration) to solve intensive computational problems. In this

case, the public cloud would not be an option, simply because the edge-case

computational needs usually not offered by the cloud vendor for the general public use.

A private cloud could be thought of owning a car, then you would surely know how much

it will cost for you to fill the fuel tank. Similarly, a private cloud comes with a predictable

cost and it is better if the application will need this resource with the everyday load. Using

the same analogy, if you have a family and need to use the car for dropping the kids the

50 https://www.airbnb.com/

42

school, going to shopping, regular hospital visits, going to work, picking up the kids,

visiting friends and family, then you know that the car is helpful and owning this car gives

you more control for organizing your life, and better management visibility since you

drive the car and you pay for the predictable cost.

A public cloud could mean not owning the private car in the analogy, but instead using

public transport like bus or tram for everyday commute and ordering a taxi when you are

late to a business meeting, or the weather is inconvenient for using the public transport,

or the bus is full and you are too tired waiting until the next bus comes. As the analogy

reveals, a public cloud is flexible and you do not need to pay as much for filling the fuel

tank of a car every month, which is more expensive than having a monthly ticket for the

bus. When you need to use faster and more expensive service from time to time, as a taxi

in the analogy, you are free to expand your computing resources for an amount of time,

like a spike in your system load that would require immediate action (scaling out the

cluster or adding more memory, disk, CPU etc.).

When you own the car, you are free to customize the features of your car, but you cannot

expect to add a speed wheel to a bus. As the owner of the private car, you can modify and

customize your private car as you like, but there is always a limit for that. You cannot

exceed the physical limits of the car. On the other side of the story where you do not own

the car, you can order a limousine or a truck to solve your problem but surely do not need

to own them or maintain their well-beings as you have to when you own the car. Similarly,

private cloud owners can customize the compute, storage and networking components to

best suit the specific system requirements within the limits of their cloud infrastructure,

and public cloud is not customizable.

Finally, a last result from the car analogy is that you need to know how to drive a car if

you are the owner and the driver of your car. Similarly, in private cloud, the owner of the

cloud needs to know how to configure and manage the underlying cloud infrastructure.

On the other hand, if you use a taxi (or a bus), you do not need to know how to drive or

shortcuts to escape the city traffic but enjoy the ride. Likewise, a public cloud owner

leaves the control of the infrastructure to the cloud provider and focuses on the core

competency of the business.

To sum up, public cloud model is found as the best deployment approach considering the

requirements of the thesis application. The advantages and disadvantages of the public

and private cloud models are discussed previously in this section to give a meaningful

comparison. However, the four main criteria that make public cloud the best fit for the

thesis are scalability, flexibility, low cost, and pay-per-use billing model.

3.4.3 Amazon Web Services

This section gives an overview of Amazon Web Services (AWS) and mentions briefly

the services that are used in the thesis application.

43

Amazon Web Services (AWS) is a cloud computing platform offering solutions for

computing, storing, and networking, at different layers of abstraction. Similar cloud

platforms include Google Cloud51 and Microsoft Azure52. The term “web service” in

Amazon Web Services means the provided cloud services can be controlled via a web

interface [39].

The author has been using AWS services for the internal projects and supporting cloud

customers at the company53 that she works for and has a good experience with the AWS

services overall. Although the author’s prior knowledge of AWS was a factor while

choosing the cloud platform, it was not the sole reason. The thesis focuses on automating

database cluster upgrades in the cloud environment. As declared in the first chapter,

Ansible is chosen as the automation tool for implementing the solution. Ansible has many

built-in modules (simple programs that are specialized for solving specific problems) and

these modules are the building blocks to use when developing automated solutions using

Ansible. For this reason, Ansible cloud modules carry a great value to develop an

automated solution in the cloud. A comparison between cloud modules54 shows that

Ansible has 100 AWS modules while both Google Cloud and Microsoft Azure have less

than 20 modules. As a result, AWS is found more practical while using Ansible to

automate the cloud processes.

Amazon Web Services officially launched55 in 2006 by announcing their first service

Amazon Simple Storage Service (Amazon S3). Initially, Amazon S3 was a service that

offered developers a storage infrastructure via an application programming interface

(API). In 2015, The Company’s Letter to Shareholders [40], it is claimed that AWS is

used by more than 1 million customers from organizations of every size across nearly

every industry. Same report points that AWS announced 722 new features and services

in 2015, a %40 increase over 2014. AWS shows prominent results as a fast-growing

platform and also an innovative nature with new services and features overall the years.

Being the pioneer of the cloud computing technology, AWS is considered the most

mature cloud provider by the study results of the famous technological research company

Gartner56 [41]. According to the same study, AWS has the richest array of IaaS and PaaS

capabilities, and it provides the deepest capabilities for governing a large number of users

and resources comparing to its all competitors.

In the thesis, Amazon Elastic Compute Cloud (Amazon EC2)57 service is used to launch

virtual servers in the cloud and Amazon Virtual Private Cloud (Amazon VPC)58 service

51 https://cloud.google.com/
52 https://azure.microsoft.com/en-us/
53 https://www.2ndquadrant.com/en/
54 http://docs.ansible.com/ansible/list_of_cloud_modules.html
55 http://phx.corporate-ir.net/phoenix.zhtml?c=176060&p=irol-newsArticle&ID=830816
56 http://www.gartner.com/technology/home.jsp
57 https://aws.amazon.com/ec2/
58 https://aws.amazon.com/vpc/

44

is used to create a virtual network for the EC2 instances. Amazon VPC service allows

selecting an IP address range, creating subnets, configuring route tables and security

groups, defining network gateways to the internet or a VPN endpoint, hence the service

gives a complete control over the virtual networking environment that is built for the

thesis application. As a side note, services on AWS are charged for on a pay-per-use

pricing model.

AWS offers different data centers that are distributed in North America, South America,

Europe and Asia Pacific. As of April 2017, the AWS Cloud operates 42 availability zones

within 16 geographic regions around the world59. In AWS terminology, a region is a

physical location in the world where AWS has multiple availability zones. Availability

zones consist of one or more discrete data centers to provide better high availability, fault

tolerance, and scalability than a single data center.

Globally distributed architecture of AWS Cloud has many benefits for AWS customers.

First, this allows AWS customers to build business and serve their clients worldwide

easily by only choosing a region (i.e. EU (Frankfurt), Asia Pacific (Tokyo), and South

America (São Paulo)) for their AWS service. Most Amazon Web Services (i.e. Amazon

EC2, Amazon DynamoDB, Amazon SQS) offer a regional endpoint (a URL that is the

entry point for a web service) to reduce data latency in the applications distributed

globally. Second, it is possible to avoid service outages (AWS provides a service level

agreement60 of 99.95 percent per zone that equates roughly 4 hours a year) with cross-

region and cross-zone deployments of the applications. When the architecture is

anticipated and designed for failure by multiple regions and zones, the possible outages

will not impact the availability of the applications.

3.5 Configuration Management and Automation with Ansible

Ansible61 is a configuration, and IT automation tool. This section gives an overview of

Ansible and discusses why Ansible is chosen to work with over other alternatives such as

Puppet62, Chef63 or SaltStack64.

Among many other configuration management tools available, Ansible has some

advantages. Primarily, Ansible has been designed to make configuration easy in many

ways, from its choice for YAML65 as its configuration management language to its ease

59 https://aws.amazon.com/about-aws/global-infrastructure/
60 https://aws.amazon.com/ec2/sla/
61 https://www.ansible.com/
62 https://puppet.com/
63 https://www.chef.io/chef/
64 https://saltstack.com/
65 YAML is a language that approaches plain English http://yaml.org/

45

of setup without requiring any agents on the machines but only a working SSH

connection.

Even though Ansible is one of the newer players in the configuration management tool

market, it is very popular compared to its main competitors. Table 1 compares the

popularity66 of the tools based on their project profiles on source-code sharing platform

Github. According to the data, Ansible is highly favoured by Github users with the

maximum numbers of stars (rating mechanism by users), the highest numbers of project

forks (copy of a repository) and the most watched (subscribed to the changes via

notifications) project among other alternatives. The Ansible project has also an active

community with the largest number of contributors and the second best ratio of releases

per year after Chef Project.

Configuration management and IT automation tools can be classified in many ways, but

it is possible to divide them into two architecture groups based on how they propagate the

configurations: agent-based and agentless architectures. As it is shown in Table 1, Ansible

supports agentless architecture, unlike other alternative products are chosen to compare

such as Puppet, Chef, and SaltStack.

Agent-based systems have two different components: a server and a client called agent.

The central server (usually called as master) contains all the configuration for the whole

infrastructure, while the agents will contact to the master server to check if there is a new

configuration for its machine is present. If there is a new configuration is present, the

client will download it and apply it. As a consequence, agent-based architectures mostly

implement pull-based configuration propagation model. In contrast, Ansible is push-

based by default. As soon as the user (i.e. system administrator, software developer) runs

the playbook (configuration scripts), Ansible connects to the remote server(s), executes

the modules and changes the server state to a new state. This approach gives more control

over when the changes will be applied to the servers, unlike waiting for the changes will

be detected by the clients as in pull-based mechanisms. As can be seen in Table 1, Ansible

also has official support for pull mode.

In agentless Ansible, there is no notion of a master node and children nodes (i.e Puppet

master and agents, Chef server and clients, SaltStack master and minions), and no specific

agent is present. SSH (Secure Shell) protocol is used for communications between the

servers. Integrating an agentless system in an existing infrastructure is easier since it will

be seen by the clients as a normal SSH connection and therefore no additional

configuration is needed [42].

An agent-based system, like any other centralized system, involves certain availability

and security concerns. First of all, the central machine that keeps all the configurations

could easily be the single point of failure for the whole system. Secondly, since all

66 Github popularity and activity data populated on May 6, 2017

46

machines have to be able to initiate a connection to the master machine, this machine

could be attacked more easily than in an agentless case where the other machines do not

have to be connected to the control machine. In agentless Ansible, control machine can

remotely push the changes to all machines over SSH connection. In this scenario, control

host could be placed behind a firewall that will block any incoming connection and reduce

the attack risk.

Each config management tool appeals different IT experts from different backgrounds

with different skillsets. Puppet and Chef require the knowledge of Ruby software

language because both of them using a Ruby domain-specific language (DSL). To be

productive with Puppet and Chef, one should know how to code in Ruby that eliminates

System Administrators who do not necessarily have to have development skills to pursue

their operations. Ansible is written in Python software language, but there is no need to

know Python to use Ansible unless one needs to write her own module.

Anyone who is familiar with basic Linux (or any other system) system administration

tasks can be productive with Ansible without any prior development skills. For example,

if a person knows how to connect to a remote machine using SSH, install software

packages, scripting and using basic commands via bash command-line shell, start and

stop services, check and set file permissions and set environment variables, or familiar

with these concepts then ready to use Ansible. Ansible uses YAML (data format language

that was designed to be easy readable by humans) for configuration management and

Jinja2 for templates. YAML is simple and intuitive for anyone who can write in English

and Jinja2 templating language is well documented to check anytime it is needed.

Before automation tools are available, configuration management meant mainly editing

configuration files manually. System administrators were writing lots of scripts,

connecting to multiple servers to apply these scripts on each of the servers repetitively.

Since these operations were mostly manual and manual tasks are known for their error-

prone nature, they lead to heterogeneous and difficult to manage environments. Recent

developments in cloud computing and the high rates of data growth created the need to

manage infrastructure at a scale. For this reason, automation of the dynamic, complex

infrastructures has become a necessity at every stage of the operations. The role of

Ansible and other related configuration management and IT automation tools (i.e. Chef,

Puppet, SaltStack) is helping to build the infrastructure as code as any mission-critical

software in the system.

The other important detail of how different deployment models behave is that the push

model is more suited for orchestration of a series of actions in specific order between

multiple servers. For that type of orchestration, it is important to have control process

which is aware of state on every machine and is able to make decisions about what to do

next and where. As Ansible uses centrally controlled push model it fits the requirements

to orchestrate the whole upgrade process well.

47

Table 1. Configuration Management Tools Comparison.

 Ansible Puppet Chef SaltStack

Architecture Agentless Agent-based Agent-based Agent-based

Initial Release 2012 2005 2009 2011

Written in Python Ruby Ruby & Erlang Python

Appealing to System

Administrators

Software

Developers

Software

Developers

System

Administrators

Learning Curve Easy to Start and

Develop Further

Steep Learning

Curve

Steep Learning

Curve

Easy to Start

Terminology Directive: Task

Script: Playbook

Master: Control

Machine

Children: Hosts

Directive:

Resource

Script: Manifest

Master: Master

Children: Agents

Directive:

Resource

Script: Recipe

(plural Cookbook)

Master: Server

Children: Client

Directive: State

Script: SLS

Formula

(SLS SaLt State)

Master: Master

Children: Minions

Configuration

Language

YAML Puppet DSL,

Ruby DSL

Ruby DSL YAML

Template

Language

Jinja2 EPP (Embedded

Puppet)

ERB (Embedded

Ruby)

Jinja2

Communication SSH Agents Agents Agents or SSH

Model Push-based

supports pull

mode

Pull-based Pull-based Push-based

Remote

Execution

Easy, built-in Challenging,

Puppet Enterprise

provides built-in

tools

Challenging (Knife

Tool)

Easy, built-in

Execution Order Sequential Random by

default requires

explicit

Sequential Sequential by

default supports

requisites

Ad-hoc Task

Execution

Simple Not supported Not supported Simple, allows

execution over

SSH

Enterprise

Offering

Ansible Tower Puppet Enterprise Chef Automate,

AWS OpsWorks,

Hosted Chef

SaltStack

Enterprise

Graphical User

Interface

Offered with

Ansible Tower

Offered with

Puppet Enterprise

Offered with Chef

Automate

Offered with

SaltStack

Enterprise

Popularity on

Github

Stars: 22961

Forks: 7615

Watchers: 1635

Stars: 4439

Forks: 1836

Watchers: 496

Stars: 4810

Forks: 2002

Watchers: 410

Stars: 7654

Forks: 3561

Watchers: 563

Activity on

Github

Contributors:

2665

Commits: 30031

Branches: 51

Releases: 151

Contributors: 442

Commits: 24857

Branches: 11

Releases: 303

Contributors: 509

Commits: 19236

Branches: 207

Releases: 954

Contributors:

1793

Commits: 81656

Branches: 17

Releases: 146

48

In conclusion, there are many reasons explained in this section why Ansible is chosen

over the alternatives to automate database upgrades and the cloud infrastructure

underneath. The main reasons include the ease of learning and installing Ansible, the large

number of built-in modules, popularity and active community of Ansible, agentless

architecture and push-based model.

49

4 Automated Upgrades in PostgreSQL

Availability of the system that is provided to customers is one of the indicators of a

success and profitability of a company. Providing high availability can be (and usually is)

achieved by adding redundancy to all components in the system (application servers,

databases, etc). Here, automation is important for two reasons. First, having redundancy

itself is only part of the equation, there is also need for switching the users (be it end users

or applications) to the active server when the one they have been connected to fails. This

can, of course, be done manually but automated systems will often detect problems and

do the switch much faster and more reliably. The second reason why automation is

important is the fact that having more and more redundancy means that the system also

has more and more components that need to be managed and their configuration needs to

be kept in a synchronized state. The repeatability is very important in this case (the

redundant servers should be as close to each other as possible so that one can replace the

other), so it is the ideal place where to automate because repeatability of results is one of

the areas where software automation excels.

People who have the expertise on the system and operations area include system and

database administrators, developers, or support engineers should put their knowledge into

automating the processes and provide the team with a greatly simplified method of

executing upgrades, ideally as simple as running a command or two. Moreover,

automated tasks are easy to track, mainly because they apply “infrastructure as code”

approach and the tasks can put through the source code versioning systems. The outcome

of the automated tasks is clear and any team member can run the scripts without the

requirement of becoming deeply familiar with all the little nuances of the upgrade

procedure. Less time spent on upgrades leaves more time for the tasks that add the most

value to the software projects.

4.1 Architecture and Implementation of the Automated Upgrade

Platform

This section of the thesis gives an overview of how the Automated Cluster Upgrade

Platform works. The platform is primarily designed to automate upgrades of PostgreSQL

clusters in cloud. In addition to database upgrades, the platform allows provisioning cloud

instances in a simple, customizable and more importantly automated way.

In the rest of this thesis, the Automated Cluster Upgrade Platform will be referred to as

“pglupgrade” [43] tool. The “pglupgrade” name is derived from “(P)ost(g)reSQL

(L)ogical (Upgrade)” phrase which emphasizes the logical replication feature of

PostgreSQL that enables implementing an automated platform to achieve minimal

downtime upgrades. Pglupgrade automates PostgreSQL cluster upgrades by utilizing

pglogical (logical replication extension) and pgbouncer (connection pooler for

PostgreSQL) tools with Ansible.

50

Pglupgrade tool is developed using Ansible. To be able to explain the platform design in

details, key development concepts of Ansible including tasks, modules, playbooks, and

plays should be described first. In Ansible, playbooks are the main scripts that are

developed to automate the processes such as provisioning cloud instances and upgrading

database clusters.

Playbooks may contain one or more plays. For example, the main playbook (shown in

Appendix 1) of the pglupgrade tool, that is written to organize upgrade process, has eight

plays to perform specific tasks on different host (server) groups. Playbooks may also

contain variables, roles, and handlers in defined. Further explanations of these concepts

can be found in the presentations [44] [45] [46] that the author herself delivered at the

conferences include PostgreSQL Conference Europe 201567, FOSDEM PGDay 201668,

and 5432...MeetUs! 201669. In addition, she published articles [47] [48] about these

concepts in her company blog as well.

The Pglupgrade tool consists of two main playbooks. The first playbook is provision.yml

that automates the process for creating Linux machines in cloud, according to the

specifications. The second playbook is pglupgrade.yml that automates upgrade process

of database clusters. This chapter explains pglupgrade playbook (pglupgrade.yml), hence

it is the primary focus of the thesis. Provisioning playbook (provision.yml) is explained

in Section 4.2.1.

Pglupgrade playbook has eight plays to orchestrate the upgrade. Each of the plays uses

one configuration file (config.yml), perform some tasks on the hosts or host groups that

are defined in host inventory file (host.ini).

An inventory file lets Ansible know which servers it needs to connect using SSH, what

connection information it requires, and optionally which variables are associated with

those servers Figure 6 shows a version (with a set of values) of the pglupgrade host.ini

file that has been used to execute automated cluster upgrades for one of the case studies.

The sample inventory file that is illustrated in Figure 6 contains five hosts under five host

groups that include old-primary, new-primary, old-standbys, new-standbys and

pgbouncer. A server could belong to more than one group. For example, the old-standbys

is a group containing the new-standbys group, which means the hosts that are defined

under the old-standbys group (54.77.249.81 and 54.154.49.180) also belongs to the new-

standbys group. In other words, the new-standbys group is inherited from (children of)

old-standbys group. This is achieved by using the special “:children” suffix.

67 October 27-30, 2015 Vienna Austria https://2015.pgconf.eu/
68 January 29, 2016, Brussels Belgium https://fosdem2016.pgconf.eu/
69 June 28-29, 2016, Milan Italy http://2016.5432meet.us/en/home-en/

51

[old-primary]

54.171.211.188

[new-primary]

54.246.183.100

[old-standbys]

54.77.249.81

54.154.49.180

[new-standbys:children]

old-standbys

[pgbouncer]

54.154.49.180

Figure 6. Configurable Host Inventory File (host.ini).

Once the inventory file is ready, Ansible playbook can be run via ansible-playbook

command, shown in Figure 7, by pointing to the inventory file (if the inventory file is not

located in default location otherwise it will use the default inventory file).

$ ansible-playbook -i hosts.ini pglupgrade.yml

Figure 7. Running an Ansible Playbook.

As mentioned earlier, pglupgrade.yml file is the main playbook in the pglupgrade tool

that organizes the actual upgrade operation. This playbook uses a configuration file

(config.yml) that allows users to specify values for the logical upgrade variables.

The configuration file (config.yml) that is shown in

Figure 8, stores mainly PostgreSQL-specific variables that are required to setup a

PostgreSQL cluster such as “postgres_old_datadir” and “postgres_new_datadir” to store

the path of the PostgreSQL data directory for the old and new PostgreSQL versions;

“postgres_new_confdir” to store the path of the PostgreSQL config directory for the new

PostgreSQL version; “postgres_old_dsn” and “postgres_new_dsn” to store the

connection string for the “pglupgrade_user” to be able connect to the

“pglupgrade_database” of the new and the old primary servers. Connection string itself

is comprised of the configurable variables so that the user (“pglupgrade_user”) and the

database (“pglupgrade_database”) information can be changed for the different use cases.

As a key step for any upgrade, the PostgreSQL version information can be specified for

the current version (“postgres_old_version”) and the version that will be upgraded to

(“postgres_new_version”). In contrast to physical replication where the replication is a

copy of the system at the byte/block level, logical replication allows selective replication

where the replication can copy the logical data include specified databases and the tables

in those databases. For this reason, config.yml allows configuring which database to

replicate via “pglupgrade_database” variable. Also, logical replication user needs to have

52

replication privileges, which is why “pglupgrade_user” variable should be specified in

the configuration file. There are other variables that are related to working internals of

pglogical such as “subscription_name” and “replication_set” which are explained in

details in Section 4.2.3 while describing pglogical role.

ansible_user: admin

pglupgrade_user: pglupgrade

pglupgrade_pass: pglupgrade123

pglupgrade_database: postgres

replica_user: postgres

replica_pass: ""

pgbouncer_user: pgbouncer

postgres_old_version: 9.5

postgres_new_version: 9.6

subscription_name: upgrade

replication_set: upgrade

initial_standbys: 1

postgres_old_dsn: "dbname={{pglupgrade_database}} host={{groups['old-
primary'][0]}} user={{pglupgrade_user}}"

postgres_new_dsn: "dbname={{pglupgrade_database}} host={{groups['new-
primary'][0]}} user={{pglupgrade_user}}"

postgres_old_datadir: "/var/lib/postgresql/{{postgres_old_version}}/main"

postgres_new_datadir: "/var/lib/postgresql/{{postgres_new_version}}/main"

postgres_new_confdir: "/etc/postgresql/{{postgres_new_version}}/main"

Figure 8. Configuration File (config.yml).

Pglupgrade tool is designed to give the flexibility in terms of High Availability (HA)

properties to the user for the different system requirements. The “initial_standbys”

variable is the key for designating HA properties of the cluster while the upgrade

operation is happening. For example, if “initial_standbys” is set to 1 (can be set to any

number that cluster capacity allows), that means there will be 1 standby created in the

upgraded cluster along with the master before the replication starts. In other words, if you

have 4 servers and you set initial_standbys to 1, you will have 1 primary and 1 standby

server in the upgraded new version, as well as 1 primary and 1 standby server in the old

version. This option allows the reuse the existing servers while the upgrade is still

happening. In the example of 4 servers (as demonstrated in first use case), the old primary

and standby servers can be rebuilt as 2 new standby servers after the replication finishes.

53

When “initial_standbys” variable is set to 0, there will be no initial standby servers created

in the new cluster before the replication starts.

Finally, configuration file allows specifying old and new server groups. This could be

provided in two ways. First, if there is an existing cluster, IP addresses of the servers

should be entered into hosts.ini file by considering desired HA properties while upgrade

operation. The second way is to run provision.yml playbook to provision empty Linux

servers in cloud (AWS EC2 instances) and get the IP addresses of the servers into the

hosts.ini file. Either way, config.yml will get host information through hosts.ini file.

Figure 9. Workflow of the upgrade process.

After explaining the configuration file (config.yml) which is used by pglupgrade

playbook. The workflow if the upgrade process is shown on Figure 9. There are six server

groups that are generated in the beginning based on the configuration (both hosts.ini and

54

the config.yml). The new-primary and old-primary groups will have always one server,

pgbouncer group can have one or more servers and all the standby groups can have zero

or more servers in them. Implementation-wise the whole process is split into eight steps.

Each step corresponds to a play in the pglupgrade playbook, which performs the required

tasks on the assigned host groups. The upgrade process is explained through following

plays:

1. Build hosts based on configuration: Preparation play which builds internal groups

of servers based on the configuration. The result of this play (in combination with

the hosts.ini contents) are the six server groups shown on Figure 9 which will be

used by the following seven plays.

2. Setup new cluster with initial standby(s): Setups an empty PostgreSQL cluster

with the new primary and initial standby(s) (if there are any defined). Ensures that

there is no remaining from PostgreSQL installations from the previous usage.

3. Modify the old primary to support logical replication: Installs pglogical extension.

Then sets the publisher by adding all the tables and sequences to the replication.

4. Replicate to the new primary: Sets up the subscriber on the new master which acts

as a trigger to start logical replication. This play finishes replicating the existing

data and starts catching up what has changed since it started the replication.

5. Switch the pgbouncer (and applications) to new primary: When the replication lag

converges to zero, pauses the pgbouncer to switch the application gradually. Then

it points pgbouncer config to the new primary and waits until the replication

difference gets to zero. Finally, pgbouncer is resumed and all the waiting

transactions are propagated to the new primary and start processing there. Initial

standbys are already in use and reply read requests.

6. Clean up the replication setup between old primary and new primary: Terminates

the connection between the old and the new primary servers. Since all the

applications are moved to the new primary server and the upgrade is done, logical

replication is no longer needed. Replication between primary and standby servers

are continued with physical replication.

7. Stop the old cluster: Postgres service is stopped in old hosts to ensure no

application can connect to it anymore.

8. Reconfigure rest of the standbys for the new primary: Rebuilds the other standbys

if there are any remaining hosts rather than initial standbys. In the second case

study, there are no remaining standby servers to rebuild. This step gives the chance

to rebuild the old primary server as a new standby if pointed in the new-standbys

group at hosts.ini. The reusability of existing servers (even the old primary) is

achieved by using the two-step standby configuration design of the pglupgrade

tool. User can specify which servers should become standbys of the new cluster

before the upgrade and which should become standbys after the upgrade.

55

4.2 Ansible Roles

Playbooks organize tasks and roles organize playbooks. Even though it is possible to write

all the automation tasks in one big playbook, it may result in an unmaintainable solution

in long term. Modern IT systems have many moving parts that require modularity in

automated scripts. Instead of repeating the same tasks (or config files, templates,

dependencies, variable files) in many playbooks; wrapping them as roles and calling these

roles from wherever necessary, will make playbooks efficient, easy to understand, debug

and maintain. This way, contents can be easily shared between playbooks, without

rewriting the same components over and over.

Pglupgrade tool uses roles to organize playbooks efficiently. The tool contains four main

roles include AWS, Postgres, Pglogical, and PgBouncer. This section discusses these

roles and their sub-roles by explaining key tasks and modules.

4.2.1 AWS Role

Pglupgrade tool is developed to automate database upgrades in cloud environments.

Therefore, the platform is tested in cloud, specifically on AWS EC2 instances. The tool

provides optional provisioning solution via provisioning playbook (provision.yml, see

Appendix 5). The provisioning playbook creates empty Linux machines that are

configured according to the specifications such as which Linux distribution will be used,

which SSH keys will be installed, in which cloud region the machine(s) will be installed,

how many machines will be provisioned, what are the disk sizes, memory and storage

limits, what is the name of the VPC, subnet info etc. If the user already has the machines,

there is no need to run the provisioning playbook, but this is the easiest way to set up the

machines that fit the system requirements that are defined in config-aws.yml.

Provisioning playbook contains aws/provision role (shown in Appendix 6) to accomplish

provisioning of the cloud instances. The aws/provision role consists of tasks that are

divided into three files: main.yml, ami.yml and vpc.yml. The main.yml is the primary

task file that includes ami.yml for the tasks related to Amazon Machine Images (AMIs),

and vpc.yml for the tasks related to Amazon Virtual Private Cloud (Amazon VPC). The

role performs the following tasks on the designated hosts:

● Ensure the SSH key is present: Makes sure that the user’s SSH key, which will be

used to access the servers, is present in every AWS region defined in the config-

aws.yml.

● Configure VPCs (in vpc.yml): Ensures VPC is present (creates the VPC if it does

not exist), configures the subnet of the VPC, creates internet gateway and route

table for the VPC. Finally, it creates security groups and enables access to SSH

and Postgres ports.

● Configure AMIs (in ami.yml): Finds the AMI (is a virtual image that is used to

create a virtual machine within the Amazon EC2) that is given in aws-config.yml

56

and registers this AMI with the other useful AMI-related information as a fact for

the playbook.

● Ensure EC2 instances and volumes are present: Checks if all the servers present,

creates empty Linux servers if they do not exist and configures them based on the

given specification in config-aws.yml.

4.2.2 PostgreSQL Role

Pglupgrade tool contains a PostgreSQL role (see Appendix 2) that has five sub-roles for

automating PostgresSQL-specific tasks. PostgreSQL sub-roles include postgres/conf,

postgres/pkg, postgres/primary, postgres/remove and postgres/standby roles that are

explained in the following list:

1. postgres/pkg: Installs PostgreSQL packages automatically based on the new

PostgreSQL version specified in the config.yml.

2. postgres/conf: Ensures the PostgreSQL configuration directory exists (and creates

if it does not exist) for the new PostgreSQL cluster. Sets up two main

configuration files namely postgresql.conf and pg_hba.conf via matching jinja2

templates. Users can modify these two configuration files but default values are

ready to support logical replication.

3. postgres/primary: Creates the PostgreSQL instance that will be the new primary

server. Ensures that the database that is being upgraded and the user that is used

by standby servers exists. Additionally, this role utilizes several Ansible

PostgreSQL modules (i.e. postgresql_db: creates database, postgresql_user:

creates user).

4. postgres/standby: Creates a base backup of the new primary server and starts the

new standby servers based on this backup.

5. postgres/remove: Stops postgres service and cleans all PostgreSQL installations.

4.2.3 Pglogical Role

Pglupgrade tool utilizes Pglogical [49] extension as its upgrade method and contains a

Pglogical role (see Appendix 3) for automating Logical Replication processes. The

Pglogical role has four sub-roles include pglogical/common, pglogical/publisher,

pglogical/subscriber and pglogical/cleanup roles that are explained in the list below:

1. pglogical/common: Establishes the common logic between publisher and

subscriber nodes. Installs the pglogical extension, creates the temporary logical

replication user with the correct permissions (i.e. SUPERUSER, REPLICATION,

LOGIN). Additionally, this role utilizes postgresql_ext module to add the

pglogical extension to the pglupgrade database.

2. pglogical/publisher: Creates the pglogical publisher node. Then, creates the

replication set which is used in the upgrade. Lastly, adds all the tables and the

sequences to the replication set. An important detail is here that the tables are

added one by one to the replication set. This sequential approach is applied to

57

avoid possible deadlocks for running transactions. Because the order of table

locking might be different in the software application and this method eliminates

the deadlock risk by considering the possibility.

3. pglogical/subscriber: Creates the pglogical subscriber node. Then, creates the

subscription. Finally, waits for the subscription to be ready. This step takes some

time (depending on the data size) because it copies all the existing data.

4. pglogical/cleanup: First, ensures the subscription does not exist by dropping it if

exists. Next, ensures the local node does not exist by dropping it if it is present.

Then, removes the pglogical extension and drops the temporary pglogical user.

4.2.4 PgBouncer Role

Pglupgrade tool has a PgBouncer role (shown in Appendix 4) for automating the tasks

related with PgBouncer.

The PgBouncer role starts with waiting for the replication lag to drop under 16 MBs. This

buffer is needed because it might not be possible to reach zero difference while there are

still data being written by the active database sessions. After the minimal lag is achieved,

the next task pauses PgBouncer. Already running transactions will finish but the new ones

will be queued. While PgBouncer is paused, the configuration file of PgBouncer

(pgbouncer.ini) is updated to point to the new primary server and is reloaded. Then, the

next task waits until the replication difference gets to the zero because now it is possible

to catch up the replication since there are no writes happening (PgBouncer was paused

and the transactions were queued). Once this happens, PgBouncer is resumed. Finally,

all the waiting transactions are directed to the new primary server and start running on

there.

4.3 Implementation Limitations

It is worth noting that the upgrade mechanism as implemented will not work on every

PostgreSQL cluster. One example of where the pglupgrade would not work well is visible

in the figures showing the impact of initial data copying on the old primary server. In case

there are no spare resources on the primary server, the pglupgrade would limit the

usability of the server or possibly completely overload it when copying the initial data. It

is the opinion of the author that logical replication implementations (such as Pglogical

extension) should have the option for limiting the speed of the initial data copy so that the

impact on the server can be reduced at the price of longer overall time needed for the

upgrade.

It is also possible to have PostgreSQL cluster which has so many writes that the logical

replication will never finish the catchup phase because of the growing backlog of data to

be applied.

58

Another potential problem is that pglogical can only replicate tables which have primary

keys or tables without primary keys which are not subject to updates or deletes (insert-

only tables). This limitation is however removed in the upcoming PostgreSQL 10.

Finally, neither pglogical nor the PostgreSQL logical replication support transparent

replication of DDL commands so applications cannot run those commands while the

upgrade is running. In practice, DDL commands are only needed during deployment of a

new version of the application (database) so this requirement is easy to enforce.

4.4 Applicability to Other Systems and Environments

The software chosen is all open source and will work same in traditional data centers on

both bare metal and virtual machines as well as in other cloud systems. With the exception

of pglupgrade Ansible script, all of the components will work on Windows operating

system as well.

The proposed upgrade method will work on most databases that allow logical replication

across major versions. These include MySQL with the binlog replication or Oracle using

GoldenGate.

One component missing in most other database management system is pgbouncer which

acts as connection proxy with knowledge of the protocol and ability to pause connections,

making the switch of servers completely transparent to the application which sees it as a

just short temporary slowdown. But even then minimum downtime can be achieved using

virtual IP, DNS, or some other TCP connection proxy software. The main difference

between using protocol aware proxy like pgbouncer and other methods to switch

applications to new cluster is that with pgbouncer the application only sees increased

latency for the queries while with the other methods it will get connection errors during

the few seconds it takes to switch.

59

5 Case Studies for Automated PostgreSQL Upgrades

To evaluate the proposed approach, it was tested in practice with two different cluster

configurations that serves two different purposes. The upgrade tools provided as part of

PostgreSQL were used for comparison with the approach proposed in this thesis.

It is necessary to simulate the impact of the upgrade on the application(s) connected to

the database cluster. The sample application chosen for this purpose was pgbench70 which

is the standard benchmarking tool included in PostgreSQL. Pgbench simulates (O)n(L)ine

(T)ransaction (P)rocessing (OLTP) application and is loosely based on the TPC-B71

benchmark specification. In default settings, pgbench will try to execute as many

transactions as possible and generate reports about how many transactions per second

were possible and also latencies of given transaction. This allows us to see the impact of

the upgrade on the application’s ability to serve requests. It also shows the impact of the

online upgrade as proposed in this thesis on a fully loaded server.

5.1 Impact Analysis of PostgreSQL Upgrades

Upgrading to a new major version is a task which can require considerable preparation

over total execution time. Upgrade planning takes a lot of time with ecosystem

discussions, an order of planned processes, different scenarios for minimizing the

downtime which usually extends into multiple long meetings. Automation of upgrade

process is a clear benefit which will reduce the stress of a large regular process for many

companies and time-consuming meetings will leave its place to efficient evaluation

meetings.

Traditional methods of upgrading PostgreSQL major version require the cluster to be shut

down during the process of the upgrade. This presents a problem for overall service

availability. As a result, the upgrade usually requires long preparation and careful

selection of the right time when to upgrade. Sometimes it is possible to use the standby

servers to provide limited read-only service. This, however, complicates both the

application development and the upgrade procedure as the application has to support read-

only mode and the upgrade procedure has to include additional steps for the switch to

read-only mode and back and reconfiguring the standby servers accordingly.

The upgrade procedure proposed in this thesis tries to avoid this problem completely. This

is achieved by using the pgbouncer connection proxy which can move the application to

the new server(s) transparently. The other important method for achieving service

availability is the fact that the pglupgrade is capable of having standby servers running

both for old and new server during the whole upgrade procedure. The result is that even

70 https://www.postgresql.org/docs/devel/static/pgbench.html
71 http://www.tpc.org/tpcb/default.asp

60

if some server fails, it is immediately possible to failover to the standby. This may in some

situations result in failure to upgrade, but not in service interruption. The service

availability is one of the main issues with the standard method of upgrading PostgreSQL

which is impossible to completely avoid without a radical change in the procedure. The

case studies demonstrated a way for improving the situation and making major version

upgrades a less scary proposition for the organizations that use PostgreSQL.

5.2 Setting up the Environment and Choosing Software Version

For most of the software used in the testing, the chosen version was the latest stable

release available at the time of running the tests (April 2017). The exception is

PostgreSQL, where both previous major version and current major version are used as

the test, is supposed to demonstrate the version upgrade. The only important limitation in

terms of software version for testing is the need to use PostgreSQL 9.4 or higher as that

is the version which added support for logical decoding feature which Pglogical uses to

implement replication. The actual versions of software used are following:

● Ubuntu 16.04

● Ansible 2.3

● Pgbouncer 1.7.2

● PostgreSQL 9.5.6

● PostgreSQL 9.6.1

● Pglogical 2.0.0

All tests were running on Amazon EC2. Each instance was running on a 64-bit system,

had 2 Virtual CPUs, 4GB RAM for memory, and 110GB EBS for storage.

5.3 Defining Metrics

To evaluate the proposed approach against the ones provided as standard solutions by

PostgreSQL, it is necessary to describe metrics which will be used for comparison.

The first main metric is the downtime of the primary server needed for the upgrade to

complete. This translates to the time application cannot use the database at all. The

second main metric is the time it takes for the upgraded cluster to reach original high

availability and scalability properties of the old cluster. This is important because it maps

directly to how long it takes until the application can serve requests at full capacity.

There are also some side metrics that can be also collected. Namely, the time it takes to

partial HA (when it is safe to start using the cluster), the time it takes for the whole

upgrade process to finish and any additional disk space required by the upgrade procedure

is also measured.

61

Additionally, performance measurements of the cluster is taken during the Pglupgrade to

judge feasibility of cluster use during the upgrade. For similar reasons the performance

of the cluster is also measured during the additional standby creation.

5.4 Cluster Size Considerations

The size of a database cluster will affect the length of the upgrade process as well as

network bandwidth and disk space required.

The instance size (the size of data directory on disk) directly affects the time needed to

upgrade the database. Different methods of upgrade will be affected differently by various

parts of what database stores in the data directory. The old traditional method of logical

dump and restore will be mostly affected by the actual data size as will the proposed

method of logical replication. The newer traditional method of upgrade, pg_upgrade is

mainly affected by the size of metadata (the information about what tables and other user

objects exist in the database and also the transaction status and data visibility information

which PostgreSQL also stores).

Another cluster property which has an effect on the upgrade is the instance count (number

of servers in the cluster). This affects how fast the upgraded cluster reaches high

availability and transactional load targets.

5.5 Evaluation Setup

Both of the use cases have a similar setup of the initial cluster. The main difference is the

cluster topology that is described in details for each case in Chapters 6.6 and 6.7.

The initial instances were provisioned using the provision.yml. However, the PostgreSQL

instances, including configuration and replication setup, was done manually.

Once cluster was running the initial data was loaded using the pgbench with scaling factor

of 2000 which produces the database size of around 27GB (1GB of database size is

scaling factor of approximately 75 in pgbench). Database cluster with freshly loaded data

does not represent real-life cluster well enough however because of PostgreSQL also

stores per transaction information in various LRU (Least Recently Used) caches on disk

and size of these affects the length of the upgrade. For this reason, application usage was

simulated by running the pgbench in normal benchmark mode for the period of one hour.

This generated additional 3 GB of the database size, primarily as part of the

pgbench_history table where pgbench inserts new data during the benchmark run.

Once everything was done, the data directory of the to-be-upgraded cluster had 30GB.

Before testing started a snapshot of the data directory was made so that the different

62

upgrade solutions would have the same state of the database before the upgrade was done

using each of them.

5.6 Evaluation Procedure

Each use case database was upgraded using three different methods.

First one is the pg_dump/pg_restore procedure, which is the standard logical backup and

restore tooling for PostgreSQL which is the oldest method available for upgrading the

PostgreSQL clusters.

The second method is pg_upgrade which does the conversion of binary data files from

old major version to the new one. This tool is available as part of standard “contrib”

modules of PostgreSQL.

And finally, the third method is the pglupgrade tooling introduced in this thesis. This is

the only method of the three that keeps the cluster running during the whole upgrade. As

such it is also important to monitor the transaction rate and the latency of queries that are

being executed on the primary server during the upgrade itself. These help assessing the

feasibility of the online upgrade process as too low transaction rate or too high latency

would mean that the primary is not usable in practice during the upgrade.

5.7 First Case: Database with 3 standby servers used for high

availability

For the first test case, a cluster with 1 primary server and 3 standby servers are chosen.

The 3 standby servers are used for high availability purposes. This is a common setup

which allows having standby servers available, even after the failover procedure was

executed due to the failure of the primary server. It also allows having cluster spread

across two regions so that failover can happen when the whole primary region has

problems.

The setup used 5 AWS servers in total, 4 for the database cluster and 1 acting as a

connection proxy using PgBouncer as described by Figure 10a. The standby servers from

original cluster were reused by the new cluster to limit the cost while keeping some high

availability requirements during the upgrade.

The changes in the cluster configuration done by Pglupgrade during the upgrade are

presented on Figure 10. The initial state shown on Figure 10a is common for all three

methods of upgrade. The intermediary step where there are two clusters connected using

logical replication is visible on Figure 10b. The Figure 10c shows again two clusters but

this time after the replication is cut and the applications are connected to the upgraded

63

cluster. And finally the Figure 10d shows the final state of the cluster which is again

common for all three upgrade methods.

In a real-life scenario, there would be 2 pgbouncer servers for high availability of the

connection proxy as well. But since that does not change the upgrade process in any

meaningful way (the only difference is that the step 3 needs to be done for more than one

server) it is decided to not include this for budget reasons.

Table 2 presents the results for individual metrics defined in the Section 6.2. These

numbers were collected based on following facts. It took 6 minutes and 47 seconds for

pg_dump to dump the database and then 17 minutes and 40 seconds to restore it using

pg_restore to the new version of PostgreSQL. The new cluster in case of pg_dump already

had one standby ready so the restore was also replicated immediately, hence no difference

of time between primary downtime and partial HA. It took approximately 38 minutes to

clone one standby and in the case of pg_dump, two standbys were cloned in parallel to

decrease the time needed for full cluster capacity.

The pg_upgrade did a copy of the data directory, which was slightly smaller as there was

less per transaction metadata so the additional space needed was slightly less than the size

of existing cluster. It managed to do so in 16 minutes and 25 seconds. As we were reusing

the same old servers, the standbys did not need to be cloned from the scratch but rsync72

utility was used to synchronize the data directory of the old standbys with the new primary

(while the primary was still off) which took 12 minutes and 31 seconds for all servers in

parallel. That means the upgrade with pg_upgrade was much faster than with pg_dump,

although depending on the exact needs, the downtime as seen by the application could be

slightly longer. Also, the total time spent upgrading was relatively short.

Table 2. Comparison of the Upgrade Methods (First Case).

Metric pg_dump/pg_restore pg_upgrade pglupgrade

Primary downtime [hh:mm:ss] 00:24:27 00:16:25 00:00:03

Partial cluster HA [hh:mm:ss] 00:24:27 00:28:56 00:00:03

Full cluster capacity [hh:mm:ss] 01:02:27 00:28:56 00:38:00

Length of upgrade [hh:mm:ss] 01:02:27 00:28:56 01:38:10

Extra disk space 800 MB 27 GB 10 GB

72 https://linux.die.net/man/1/rsync

64

Figure 10. Four steps pglupgrade goes through during upgrade (first case).

65

Finally, the pglupgrade achieved minimal system interruption with just 3 seconds of

downtime and this downtime was perceived by the application (pgbench) as delay in

query response, no errors were returned to the application. Since pglupgrade created a

new cluster with one standby similarly to pg_dump, the partial HA was again achieved

immediately as the data in the new primary were replicated to the standby during the

upgrade. The 10GB or extra space was needed to hold the write ahead log of PostgreSQL

as new data were written but the logical replication needed to see historical records so

that it could replicate everything correctly. The conclusion which can be drawn from this

experiment is that the pglupgrade has indeed caused least disruption to the application

(and users) of the three compared solutions, providing near-zero downtime upgrade.

5.8 Second Case: Database with 10 standby servers used for spreading

the reads

The second case used a total of 23 servers. One was again reserved for pgbouncer to do

the proxy. The old cluster comprised of one primary and ten standbys. This simulates the

scenario where the application needs to do a high amount of reads and so many standby

servers are used to satisfy the read scalability requirements. This time there was no reuse

of the servers and the new cluster was created on freshly provisioned servers again with

one primary and ten standbys. The reasoning for creating a fresh cluster is that given the

requirements for read scalability, the cluster is not practically usable unless there are

several standbys present and having freshly built cluster improves the speed of the

upgrade.

This is also another example of advantages automated deployment in a cloud

environment. Without the cloud, it would be necessary to either buy new servers or

decommission the old ones once the upgrade is done, or prolong the upgrade by reusing

the old servers like in the first use case. The automated setup makes it easy to create all

these new instances without having to repeat the provisioning steps and configuring each

server individually.

As with the previous use-case, there are four cluster configurations that the upgrade goes

through as shown in Figure 11. The initial state before the upgrade (Figure 11a) and final

state after the upgrade (Figure 11d) are again common for all three solutions. The

intermediary steps are done by pglupgrade where there are two clusters connected using

logical replication, and same two clusters after the replication are cut and the applications

are connected to the upgraded cluster are visible on Figure 11b and Figure 11c

respectively.

Table 3 presents the results for individual metrics defined in Section 6.2. These numbers

were collected based on following facts. It took 6 minutes and 34 seconds for pg_dump

to dump the database and then 17 minutes and 18 seconds to restore it using pg_restore

to the new version of PostgreSQL. As the new cluster was on a completely new set of

66

servers, it already had all standby servers ready so the restore was also replicated

immediately, hence the time for downtime, HA, capacity and upgrade length are all the

same.

The pg_upgrade as expected created a slightly smaller copy of the data directory, like was

the case with the previous use case. It managed to do it in 17 minutes and 3 seconds.

However, it needed to reclone all the new standbys which were done two at a time and

took about 37 and half minutes per server. This resulted in very long time for the whole

upgrade and for full cluster capacity and the application using this cluster for read scaling

may need to wait for over 3 hours to work for all users.

Table 3. Comparison of the Upgrade Methods (Second Case).

Metric pg_dump/pg_restore pg_upgrade pglupgrade

Primary downtime [hh:mm:ss] 00:23:52 00:17:03 00:00:05

Partial cluster HA [hh:mm:ss] 00:23:52 00:54:29 00:00:05

Full cluster capacity [hh:mm:ss] 00:23:52 03:19:16 00:00:05

Length of upgrade [hh:mm:ss] 00:23:52 03:19:16 01:02:10

Extra disk space 800 MB 27 GB 10 GB

Finally, the pglupgrade achieved minimal system interruption with just 5 seconds of

downtime again without any errors show to the application, an only long time taken by

some queries. Just like was the case with pg_dump, the pglupgrade created the new cluster

with all 10 needed standby servers so the application using the cluster for scaling the reads

would be able to run uninterrupted during the whole upgrade as well as after the upgrade

was finished.

67

Figure 11. Four steps pglupgrade goes through during upgrade (second case).

68

5.9 Interpreting the Results

To interpret the results collected during evaluation of the two use-cases it is important to

understand that the upgrade is happening in multiple phases each with different impact

on the cluster. These steps are somewhat different based on which upgrade method is

used.

For pg_dump and pg_restore method, the first phase is stopping the connections to the

server, this can be done either on connection proxies like pgbouncer, or firewall or by

shutting down the applications. The second phase is the actual dump of the data into a

file. Afterwards, the data are restored to the new version of PostgreSQL.

In the case of pg_upgrade, the first phase is stopping the old server, followed by the run

of pg_upgrade which copies the binary data to the new cluster and updates the system

catalogs (metadata) accordingly.

These steps are interactive and there is not much one can monitor except the growing size

of the data directory.

Once the initial upgrade of the primary server is done, either with pg_dump or

pg_upgrade, the standbys are added. Cloning of standbys usually happens when the new

primary is already being used to limit the downtime of the cluster to a minimum. It is

important to monitor the state of the cluster while cloning is in progress because it affects

the performance of the database. For this reason, it is not feasible to clone too many

standby servers in parallel, but either serialize the process or limit the parallelization to

the only couple of servers at a time so that the impact on performance is minimized. The

impact of the performance is shown in Figure 12. It is visible that there is about 25%

performance impact on the primary server in this test.

Figure 12. Transaction rate and latency graph during standby cloning process.

69

A similar situation occurs for pglupgrade already during the initial upgrade process. Since

the cluster is being actively used while the upgrade is happening, the effect of the upgrade

needs to be monitored as well. The pglupgrade has multiple, more granular steps which

happen mostly in the background as a result of the logical replication implementation in

Pglogical. Figure 13 shows the growth of data directory during the initial stages of the

upgrade and highlights the individual steps there.

Figure 13. Graph of database size growth during logical replication initialization.

The importance of highlighting individual steps is visible in Figure 14 which shows the

transaction rate and latency of requests during the same period of time.

Figure 14 shows that the data copy affects the performance of the server in a similar way

the standby cloning does, decreasing transactions per second (TPS) in the benchmark also

by approximately 25%. This suggests that the upgrade using pglupgrade method cannot

be done on the server which does not have some spare resources during the upgrade

period, so scheduling the upgrade for a period of a lower load is still important. It also

shows that the actual replication, once we get to index and catch up phase have minimal

effect on the server so both clusters can run in this configuration indefinitely and if needed

tests can be run on the new cluster before switching the main load to it.

Another interesting point shown by the Figure 14 is the minimal downtime during the

switch from the old cluster to new cluster (marked as Switch in the picture). What happens

is that the TPS goes to 0 for about 3 seconds and latencies get high because the queries

have to wait in the queue but once the pgbouncer moves queries to the new server, they

get immediately served. In other words, the behavior proposed in the previous chapters

was confirmed by the experimental run!

70

Figure 14. Transaction rate and latency graph during the upgrade process.

The figures used in this section were produced from monitoring the run of the first case

(Database with 3 standby servers used for high availability). The graphs for the second

case look very similar as same data size and server configuration was used for both use

cases. Different data size and different server configuration would affect the time of

upgrade and in the case of pg_dump/pg_restore and pg_upgrade the length of the

downtime as well. The ratio of downtime between different tools would be different with

different data size but using same data size was convenient to create instances easily.

71

6 Summary

This thesis has discussed problems associated with database upgrades with a focus on

open source database management system PostgreSQL. The main problem identified in

the thesis is the length of the downtime of a database cluster during the upgrade. This has

a direct impact on any application which needs the database cluster being upgraded and

normally means downtime or at least reduced functionality of the application as well.

Based on the above, the thesis focused on a task of minimizing the downtime that is

required for PostgreSQL major version upgrades and on developing a solution that also

automates the whole upgrade process.

To achieve this goal, existing upgrade methods for PostgreSQL and other related

databases were researched. Currently available and built-in database upgrade methods for

PostgreSQL (i.e. pg_dump/pg_restore, pg_upgrade) were not feasible to accomplish near-

zero downtime objective. Therefore, the author explored Logical Replication capabilities

of PostgreSQL that are available for the PostgreSQL 9.4 and newer versions as the

upgrade method. Primarily using the Logical Replication extension Pglogical as the base

of the proposed upgrade method, the author implemented an automated PostgreSQL

cluster upgrade tool, namely Pglupgrade. Pglupgrade tool also provides a graceful method

for pointing applications to the new (updated) cluster by utilizing PgBouncer connection

proxy tool.

Ansible configuration management and IT automation tool was used to orchestrate the

upgrade process. The platform built specifically to run in Cloud to benefit from flexible

nature of the Cloud Computing and pay-as-you-go billing model, as well as the ease of

integration with automation tool Ansible. Pglupgrade tool provides provisioning option

for Cloud instances with the required specifications include multiple Cloud regions,

different instance sizes, customizable host configurations and network rules.

To evaluate the upgrade method that is developed in Pglupgrade tool, two case studies

were performed. The first case study was focused on a small cluster that was set for high

availability reasons. The results of the first case study were in favour of our approach

comparing to the alternative upgrade methods. Pglupgrade was the sole method that did

not disrupt the application and perceived as a delay by only causing a longer transaction

response when only 3 seconds of downtime experienced. The second case study

performed on a bigger cluster with 23 servers that were set up to scale read queries to

divide system load. Pglupgrade approach outperformed other solutions by achieving

minimal primary downtime of 5 seconds, without disrupting the application as in the first

use-case. The results of the second experiment also proved that Pglupgrade enabled the

large cluster to operate in full capacity immediately after 3 seconds.

In conclusion, this thesis suggested how database clusters can be upgraded with minimal

downtime. The author has shown that by using the power of replication of logical changes

and a protocol aware connection proxy it is possible to make applications oblivious to the

fact that the database is being upgraded and have users of that application largely

unaffected by such upgrade barring small performance drop. Using the automated

configuration management and orchestration, it is also possible to make this process

relatively painless and repeatable. The Pglupgrade tool itself has demonstrated the

practical application of the ideas described in this thesis and proved usability of the

suggested approach during the evaluation.

72

 References

[1] P. Beynon-Davies, Database Systems, 3rd toim., Palgrave, 2003.

[2] P. Lake ja P. Crowther, „Data, an Organisational Asset,“ %1 Concise Guide to

Databases: A Practical Introduction, London, : Springer London, 2013, pp. 3-19.

[3] ScaleArc, „The State of Application Uptime in Database Environments,“

ScaleArc, Santa Clara, CA, 2015.

[4] 2ndQuadrant, „pglogical,“ may 2017. Available:

https://2ndquadrant.com/en/resources/pglogical/.

[5] P. Authors, „PgBouncer,“ may 2017. Available: https://pgbouncer.github.io/.

[6] M. Attaran ja S. Attaran, „Collaborative supply chain management: The most

promising practice for building efficient and sustainable supply chains,“ Business

Process Management Journal, kd. 13, pp. 390-404, 2007.

[7] M. Attaran, „Information technology and business‐ process redesign,“ Business

Process Management Journal, kd. 9, pp. 440-458, 2003.

[8] A. Moenkeberg, P. Zabback, C. Hasse ja G. Weikum, „The COMFORT

Prototype: A Step Towards Automated Database Performance Tuning,“ SIGMOD

Rec., kd. 22, pp. 542-543, #jun# 1993.

[9] C. Deba , E. Kurt, A. Ashish ja A. Waleed, „Manageability with Oracle Database

12c,“ Oracle Corporation, Redwood Shores, CA 94065, 2013.

[10] C. M. Garcia-Arellano, S. S. Lightstone, G. M. Lohman, V. Markl ja A. J. Storm,

„Autonomic features of the IBM DB2 universal database for linux, UNIX, and

windows,“ IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), kd. 36, pp. 365-376, May 2006.

[11] S. Agrawal, N. Bruno, S. Chaudhuri ja V. Narasayya, „AutoAdmin: Self-Tuning

Database Systems Technology,“ %1 Data Engineering Bulletin, 2006.

[12] S. Chaudhuri, A. C. Konig ja V. Narasayya, „SQLCM: a continuous monitoring

framework for relational database engines,“ %1 Proceedings. 20th International

Conference on Data Engineering, 2004.

[13] R. S. Xin, W. McLaren, P. Dantressangle, S. Schormann, S. Lightstone ja M.

Schwenger, „MEET DB2: automated database migration evaluation,“ Proceedings

of the VLDB Endowment, kd. 3, pp. 1426-1434, 2010.

[14] I. B. M. Redbooks, Migrating from Oracle . . . to IBM Informix Dynamic Server

on Linux, Unix, and Windows, Vervante, 2009.

[15] Oracle, Oracle Migration Workbench User’s Guide, Redwood Shores, CA 94065:

Oracle, 2005.

[16] S. Gajre, B. Bordia ja V. Soni, „Migration to Microsoft SQL Server 2014 Using

SSMA,“ Microsoft Corporation, Albuquerque, New Mexico, 2015.

73

[17] S. Abdul Khalek ja S. Khurshid, „Automated SQL Query Generation for

Systematic Testing of Database Engines,“ %1 Proceedings of the IEEE/ACM

International Conference on Automated Software Engineering, New York, NY,

USA, 2010.

[18] K. Taneja, Y. Zhang ja T. Xie, „MODA: Automated Test Generation for Database

Applications via Mock Objects,“ %1 Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering, New York, NY, USA, 2010.

[19] R. Nehme ja N. Bruno, „Automated Partitioning Design in Parallel Database

Systems,“ %1 Proceedings of the 2011 ACM SIGMOD International Conference

on Management of Data, New York, NY, USA, 2011.

[20] C. Curino, H. J. Moon ja C. Zaniolo, Automating Database Schema Evolution in

Information System Upgrades.

[21] I. Samoladas, I. Stamelos, L. Angelis ja A. Oikonomou, „Open Source Software

Development Should Strive for Even Greater Code Maintainability,“ Commun.

ACM, kd. 47, pp. 83-87, #oct# 2004.

[22] G. D. G. PostgreSQL, „PostgreSQL Case Studies,“ apr 2017. [Võrgumaterjal].

Available: https://www.postgresql.org/about/casestudies/.

[23] I. Red Hat, „Ansible Case Studies,“ apr 2017. [Võrgumaterjal]. Available:

https://www.ansible.com/case-studies.

[24] S. Walli, D. Gynn ja B. V. Rotz, „The Growth of Open Source Software in

Organizations,“ Optaros, Inc., Boston, MA, 2005.

[25] UBM, „Linux Outlook,“ InformationWeek, San Francisco, CA, 2005.

[26] H. a. V. W. a. W. J. Chesbrough, Open Innovation: Researching a New Paradigm,

2006.

[27] A. Metiu ja B. Kogut, Distributed Knowledge and the Global Organization of

Software Development, 2002.

[28] E. F. Codd, „A Relational Model of Data for Large Shared Data Banks,“

Commun. ACM, kd. 13, pp. 377-387, #jun# 1970.

[29] iDatalabs, „Market Share of Database Management System products,“ apr 2017.

Available: https://idatalabs.com/tech/database-management-system.

[30] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes ja R. E. Gruber, „Bigtable: A Distributed Storage System for

Structured Data,“ ACM Trans. Comput. Syst., kd. 26, pp. 4q1--4q26, #jun# 2008.

[31] A. a. M. J. Lith, „Investigating Storage Solutions for Large Data,“ 2010.

[32] D. Pritchett, „BASE: An Acid Alternative,“ Queue, kd. 6, pp. 48-55, #may# 2008.

[33] S. Gilbert ja N. Lynch, „Brewerś Conjecture and the Feasibility of Consistent,

Available, Partition-tolerant Web Services,“ SIGACT News, kd. 33, pp. 51-59,

#jun# 2002.

[34] P. Warden, Big Data Glossary: A Guide to the New Generation of Data Tools,

OŔeilly Media, 2011.

74

[35] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem ja P.

Helland, „The End of an Architectural Era: (Itś Time for a Complete Rewrite),“

%1 Proceedings of the 33rd International Conference on Very Large Data Bases,

Vienna, 2007.

[36] Oracle, „Oracle Database Rolling Upgrades Using a Data Guard Physical Standby

Database,“ 2016.

[37] M. J. Kavis, Architecting the Cloud: Design Decisions for Cloud Computing

Service Models (SaaS, PaaS, and IaaS) (Wiley CIO), Wiley, 2014.

[38] P. Mell ja T. Grance, „The NIST definition of cloud computing,“ National

Institute of Standards and Technology, kd. 53, p. 50, 2009.

[39] A. Wittig ja M. Wittig, Amazon Web Services in Action, Manning Publications,

2015.

[40] D. A. Zapolsky, „2015 Letter to Shareholders,“ 2016.

[41] L. Leong, P. Gregor, B. Gill ja M. Dorosh, „Magic Quadrant for Cloud

Infrastructure as a Service, Worldwide,“ 2016.

[42] F. A. Locati, Learning Ansible 2 - Second Edition, Packt Publishing - ebooks

Account, 2016.

[43] G. Yıldırım, „Pglupgrade repository,“ may 2017. Available:

https://gitlab.com/gulcin/pglupgrade.

[44] G. Yıldırım, „Managing PostgreSQL with Ansible PGConf.EU,“ 2015. Available:

http://slides.com/apatheticmagpie/managing-postgres-withansible#/.

[45] G. Yıldırım, „Managing PostgreSQL with Ansible FOSDEM PGDay,“ 2016.

Available: http://slides.com/apatheticmagpie/managing-postgres-with-

ansiblefosdem#/.

[46] G. Yıldırım, „Ansible Loves PostgreSQL 5432...MeetUs! Milano,“ 2016.

Available: http://slides.com/apatheticmagpie/ansible-loves-postgres#/.

[47] G. Yıldırım, „Ansible Loves PostgreSQL,“ apr 2017. Available:

https://blog.2ndquadrant.com/ansible-loves-postgresql/.

[48] G. Yıldırım, „PostgreSQL Planet in Ansible Galaxy,“ apr 2017. Available:

https://blog.2ndquadrant.com/postgresql-planet-in-ansible-galaxy/.

[49] P. Jelinek, „Logical Replication in PostgreSQL,“ 2016.

75

Appendix 1 - Pglupgrade Playbook

Pglupgrade.yml

- name: Build hosts based on configuration

 hosts: new-standbys

 vars_files:

 - config.yml

 tasks:

 - add_host: name={{item}} group=new-initial-standbys

 with_items: "{{groups['new-standbys'][:initial_standbys]}}"

 - add_host: name={{item}} group=new-other-standbys

 with_items: "{{groups['new-standbys'][initial_standbys:]}}"

- name: Setup new cluster with {{initial_standbys}} standby(s)

 hosts: new-primary, new-initial-standbys

 become: true

 become_user: postgres

 vars_files:

 - config.yml

 roles:

 - role: postgres/remove

 - role: postgres/pkg

 - role: postgres/primary

 when: inventory_hostname in groups['new-primary']

 - role: postgres/standby

 when: inventory_hostname in groups['new-standbys']

- name: Modify the old primary to support logical replication

 hosts: old-primary

 become: true

 become_user: postgres

 vars_files:

 - config.yml

 roles:

 - role: pglogical/common

 - role: pglogical/publisher

- name: Replicate to the new primary

 hosts: new-primary

 become: true

 become_user: postgres

 vars_files:

 - config.yml

 roles:

 - role: pglogical/common

 - role: pglogical/subscriber

- name: Switch the pgbouncer (and applications) to new primary

 hosts: pgbouncer

76

 become: true

 become_user: postgres

 vars_files:

 - config.yml

 roles:

 - role: pgbouncer

 tags:

 - pgbouncer

- name: Clean up the replication setup between old primary and new primary

 hosts: new-primary, old-primary

 serial: 1

 become: true

 become_user: postgres

 vars_files:

 - config.yml

 roles:

 - role: pglogical/cleanup

 tags:

 - cleanup

- name: Stop the old cluster

 hosts: old-primary, old-standbys

 become: true

 become_user: root

 vars_files:

 - config.yml

 tasks:

 - service:

 name: postgresql

 state: stopped

 tags:

 - cleanup

- name: Reconfigure rest of the standbys for the new primary

 hosts: new-other-standbys

 become: true

 become_user: postgres

 vars_files:

 - config.yml

 roles:

 - role: postgres/remove

 - role: postgres/pkg

 - role: postgres/standby

77

Appendix 2 - Postgres Roles

Postgres/Conf Role

postgres/conf/tasks/main.yaml

- block:

 - name: Ensure the config directory exists

 file:

 path: "{{ postgres_new_confdir }}"

 state: directory

 owner: postgres

 group: postgres

 mode: 0700

 - name: Install new postgresql.conf

 template:

 src: postgres/conf/templates/postgresql.conf.j2

 dest: "{{ postgres_new_confdir }}/postgresql.conf"

 owner: postgres

 group: postgres

 mode: 0600

 - name: Install new pg_hba.conf

 template:

 src: postgres/conf/templates/pg_hba.conf.j2

 dest: "{{ postgres_new_confdir }}/pg_hba.conf"

 owner: postgres

 group: postgres

 mode: 0600

 become: yes

 become_user: root

postgres/conf/templates/pg_hba.conf.j2

TYPE DATABASE USER ADDRESS METHOD

local all all peer

host all all 0.0.0.0/0 trust

local replication all peer

host replication all 0.0.0.0/0 trust

postgres/conf/templates/postgresql.conf.j2

data_directory = '{{ postgres_new_datadir }}'

hba_file = '{{ postgres_new_confdir }}/pg_hba.conf'

listen_addresses = '*'

max_connections = 100

hot_standby = on

78

wal_level = 'logical'

max_worker_processes = 50

max_replication_slots = 50

max_wal_senders = 50

shared_preload_libraries = 'pglogical'

Postgres/Pkg Role

postgres/pkg/tasks/main.yml

- name: Install Postgres packages

 become: yes

 become_user: root

 package: name={{ item }} state=latest

 with_items: "{{ postgres_packages }}"

postgres/pkg/defaults/main.yml

postgres_packages:

 - postgresql-{{postgres_new_version}}

 - postgresql-{{postgres_new_version}}-dbg

 - postgresql-client-{{postgres_new_version}}

 - postgresql-contrib-{{postgres_new_version}}

 - postgresql-server-dev-{{postgres_new_version}}

 - postgresql-plperl-{{postgres_new_version}}

 - postgresql-{{postgres_new_version}}-plv8

 - postgresql-{{postgres_new_version}}-pglogical

Postgres/Primary Role

postgres/primary/tasks/main.yml

- name: Check to see if the data directory is empty

 stat: path="{{ postgres_new_datadir }}/PG_VERSION"

 register: pgdata

 tags: [postgres, initdb]

- name: Create new data directory

 become: yes

 become_user: root

 command: "pg_createcluster {{ postgres_new_version }} main"

 when: not pgdata.stat.exists

- include: postgres/conf/tasks/main.yaml

- name: Start Postgres

 become: yes

 become_user: root

 service:

 name: postgresql

 state: restarted

- name: Ensure pglupgrade user exists

79

 postgresql_user:

 name: "{{ replica_user }}"

 password: "{{ replica_pass }}"

 encrypted: true

 role_attr_flags: REPLICATION,LOGIN

 state: present

- name: Ensure the database exists on the new server

 postgresql_db:

 db: "{{ pglupgrade_database }}"

Postgres/Standby Role

postgres/standby/tasks/main.yml

- name: Stop Postgres if necessary

 become: yes

 become_user: root

 service:

 name: postgresql

 state: stopped

- name: Ensure the data directory is empty

 become: yes

 become_user: root

 file:

 path: "{{ postgres_new_datadir }}"

 state: absent

- name: Ensure the data directory exists

 become: yes

 become_user: root

 file:

 path: "{{ postgres_new_datadir }}"

 state: directory

 owner: postgres

 group: postgres

 mode: 0700

- name: Create clone of the master

 command: pg_basebackup -w -c fast -X stream -R -d "{{ postgres_new_dsn }}" -
U "{{ replica_user }}" -D "{{ postgres_new_datadir }}"

- include: postgres/conf/tasks/main.yaml

- name: Start Postgres

 become: yes

 become_user: root

 service:

 name: postgresql@9.6-main

 state: started

80

Postgres/Remove Role

postgres/remove/main.yml

- name: Ensure that Postgres is not running

 service: name=postgresql state=stopped

- name: Ensure the old config and data directories don't exist

 file:

 path: "{{ item }}"

 state: absent

 with_items:

 - "{{ postgres_old_datadir }}"

 - "{{ postgres_old_confdir }}"

81

Appendix 3 - Pglogical Roles

Pglogical/Common Role

pglogical/common/tasks/main.yml

- name: Ensure pglupgrade user exists

 postgresql_user:

 name: "{{ pglupgrade_user }}"

 password: "{{ pglupgrade_pass }}"

 encrypted: true

 role_attr_flags: SUPERUSER,REPLICATION,LOGIN

 state: present

- name: Ensure pglogical extension exists in user databases

 postgresql_ext:

 db: "{{ pglupgrade_database }}"

 name: pglogical

Pglogical/Publisher Role

pglogical/publisher/tasks/main.yaml

- name: Create node

 command: psql -qAtw -c "SELECT pglogical.create_node('{{subscription_name}}-
old', '{{ postgres_old_dsn }}')"

- name: Create replication set

 command: psql -qAtw -c "SELECT
pglogical.create_replication_set('{{replication_set}}')"

- name: Gather tables

 command: psql -qAtw -c "SELECT oid FROM pg_catalog.pg_class WHERE relkind =
'r' AND relpersistence = 'p' AND oid >= 16384 AND NOT relnamespace =
ANY(ARRAY(SELECT oid FROM pg_catalog.pg_namespace WHERE oid = 11 OR nspname
IN ('pglogical', 'information_schema')))"

 register: tables

- name: Add tables to replication set

 command: psql -qAtw -c "SELECT
pglogical.replication_set_add_table('{{replication_set}}', '{{item}}',
false);"

 with_items: "{{ tables.stdout_lines }}"

- name: Gather sequences

 command: psql -qAtw -c "SELECT oid FROM pg_catalog.pg_class WHERE relkind =
'S' AND relpersistence = 'p' AND oid >= 16384 AND NOT relnamespace =
ANY(ARRAY(SELECT oid FROM pg_catalog.pg_namespace WHERE oid = 11 OR nspname
IN ('pglogical', 'information_schema')))"

 register: sequences

- name: Add sequences to replication set

82

 command: psql -qAtw -c "SELECT
pglogical.replication_set_add_sequence('{{replication_set}}', '{{item}}',
false);"

 with_items: "{{ sequences.stdout_lines }}"

Pglogical/Subscriber Role

pglogical/subscriber/tasks/main.yaml

- name: Create node

 command: "psql -qAtw -c \"SELECT
pglogical.create_node('{{subscription_name}}-new', '{{ postgres_new_dsn
}}')\""

- name: Create the subscription

 command: "psql -qAtw -c \"SELECT
pglogical.create_subscription('{{subscription_name}}', '{{ postgres_old_dsn
}}', ARRAY['{{ replication_set }}'], synchronize_structure := true,
synchronize_data := true)\""

- name: Wait for subscription to be ready (this will take a while)

 command: "psql -qAtw -c \"SELECT status FROM
pglogical.show_subscription_status('{{subscription_name}}')\""

 register: result

 until: result.stdout.find("replicating") != -1

 delay: 10

 retries: "{{sync_wait_time|default(10000)}}"

Pglogical/Cleanup Role

 pglogical/cleanup/tasks/main.yml

- name: Drop subscription if preset

 command: psql -qAtw -c "SELECT pglogical.drop_subscription('upgrade',
true);" -d "{{pglupgrade_database}}"

- name: Drop local node if preset

 command: psql -qAtw -c "SELECT pglogical.drop_node(sub_name, true) FROM
pglogical.subscription WHERE sub_name IN ('{{subscription_name}}-old',
'{{subscription_name}}-new');" -d "{{pglupgrade_database}}"

- name: Remove pglogical extension

 command: psql -qAtw -c "DROP EXTENSION IF EXISTS pglogical CASCADE" -d
"{{pglupgrade_database}}"

- name: Remove the upgrade user

 postgresql_user:

 name: "{{ pglupgrade_user }}"

 state: absent

83

Appendix 4 - PgBouncer Role

pgbouncer/tasks/main.yaml

- set_fact:

 pgbouncer_dsn: "port=6432 dbname=pgbouncer user={{pgbouncer_user}}"

- name: Wait for subscription to catch up

 # Wait to get less than 1 WAL file behind so that the following pause is
short

 command: "psql -qAtw -d \"{{ postgres_old_dsn }}\" -c \"SELECT 'ok' FROM
pg_catalog.pg_stat_replication s WHERE s.application_name = 'upgrade' AND
pg_xlog_location_diff(pg_current_xlog_location(), write_location) <
16000000\""

 register: result

 until: result.stdout.find("ok") != -1

 delay: 10

 retries: "{{sync_wait_time|default(1000)}}"

- name: Pause pgbouncer

 command: "psql -qAtw -d \"{{ pgbouncer_dsn }}\" -c \"PAUSE;\""

- name: Update pgbouncer config

 become: yes

 become_user: root

 replace:

 path: /etc/pgbouncer/pgbouncer.ini

 regexp: "{{ groups['old-primary'][0]|regex_escape() }}"

 replace: "{{ groups['new-primary'][0] }}"

 backup: true

 owner: postgres

 group: postgres

 mode: 0640

- name: Reload pgbouncer config

 command: "psql -qAtw -d \"{{ pgbouncer_dsn }}\" -c \"RELOAD;\""

- name: Wait for replication to fully catch up

 command: "psql -qAtw -d \"{{ postgres_old_dsn }}\" -c \"SELECT 'ok' FROM
pg_catalog.pg_stat_replication s WHERE s.application_name = 'upgrade' AND
s.flush_location >= pg_current_xlog_location()\""

 register: result

 until: result.stdout.find("ok") != -1

 delay: 10

 retries: 10

 ignore_errors: yes

- name: Resume pgbouncer

 command: "psql -qAtw -d \"{{ pgbouncer_dsn }}\" -c \"RESUME;\""

84

Appendix 5 - Provision Playbook

Provision.yml

- name: Provision servers

 hosts: 127.0.0.1 # localhost

 vars_files:

 - config.yml

 - config-aws.yml

 roles:

 - role: aws/provision

config-aws.yml

ec2_ami_name: "ubuntu/images/ebs/ubuntu-trusty-16.04-amd64-server-*"

ec2_ami_owner: 099720109477

ec2_ssh_user: ubuntu

ec2_ssh_key: ~/.ssh/id_rsa.pub

ec2_ssh_key_name: postgresql-key

ec2_vpc_name: Test

ec2_regions:

 eu-west-1:

 subnet: 10.33.0.0/16

 eu-central-1:

 subnet: 10.33.0.0/16

servers:

 - role: old-master

 type: t2.micro

 region: eu-west-1

 volume_size: 50

 count: 1

 roles:

 - role: new-master

 type: t2.micro

 region: eu-west-1

 volume_size: 50

 count: 1

 - role: pgbouncer

 type: t2.micro

 region: eu-west-1

 volume_size: 50

 count: 1

 - role: standby

 type: t2.micro

 region: eu-west-1

 volume_size: 50

85

 count: 1

 - role: standby

 type: t2.micro

 region: eu-central-1

 volume_size: 50

 count: 1

86

Appendix 6 - AWS/Provision Role

aws/provision/tasks/main.yml

- name: Ensure the SSH key is present

 ec2_key:

 state: present

 region: "{{ item.key }}"

 name: "{{ ec2_ssh_key_name }}"

 key_material: "{{ lookup('file', ec2_ssh_key) }}"

 with_dict: "{{ ec2_regions }}"

- name: Configure VPCs

 include: 'vpc.yml'

 with_dict: "{{ ec2_regions }}"

 loop_control:

 loop_var: region

- name: Configure AMIs

 include: 'ami.yml'

 with_dict: "{{ ec2_regions }}"

 loop_control:

 loop_var: region

- name: Ensure master EC2 instances & volumes are present

 ec2:

 assign_public_ip: yes # our machines should access internet

 instance_tags: { name: "pgl-{{ item.role }}-{{ item.region-item.0+1 }}",
role: "{{ item.role }}", region: "{{ item.region }}" }

 exact_count: "{{ item.count }}"

 count_tag:

 role: "{{ item.role }}"

 region: "{{ item.region }}"

 image: "{{ ec2_regions[item.region].ami_id }}"

 instance_type: "{{ item.type }}"

 group_id: "{{ ec2_regions[item.region].security_group_id }}"

 key_name: "{{ ec2_ssh_key_name }}"

 region: "{{ item.region }}"

 volumes:

 - device_name: /dev/sdc

 volume_size: "{{ item.volume_size }}"

 delete_on_termination: false

 vpc_subnet_id: "{{ ec2_regions[item.region].subnet_id }}"

 wait: yes

 register: ec2

 with_items: "{{ servers }}"

- name: Wait for SSH to become ready

 wait_for:

 host: "{{ item.public_ip }}"

87

 port: 22

 timeout: 320

 state: started

 with_items: "{{ ec2.instances }}"

aws/provision/tasks/vpc.yml

- name: Ensure VPC is present

 ec2_vpc_net:

 state: present

 name: "{{ ec2_vpc_name }}"

 region: "{{ region.key }}"

 cidr_block: "{{ region.value.subnet }}"

 register: vpc

- name: "Register vpc {{ vpc.vpc.id }} region {{ region.key }}"

 set_fact:

 ec2_regions: "{{

 ec2_regions|default({})|combine({

 region.key: {'vpc_id': vpc.vpc.id}

 }, recursive=True)

 }}"

- name: Create internet gateway for VPC

 ec2_vpc_igw:

 vpc_id: "{{ vpc.vpc.id }}"

 region: "{{ region.key }}"

 state: present

- name: Create subnets

 ec2_vpc_subnet:

 state: present

 cidr: "{{ region.value.subnet }}"

 vpc_id: "{{ vpc.vpc.id }}"

 region: "{{ region.key }}"

 register: subnet

- name: "Register subnet {{ subnet.subnet.id }} region {{ region.key }}"

 set_fact:

 ec2_regions: "{{

 ec2_regions|default({})|combine({

 region.key: {'subnet_id': subnet.subnet.id}

 }, recursive=True)

 }}"

- name: Create VPC route table

 ec2_vpc_route_table:

 region: "{{ region.key }}"

 vpc_id: "{{ vpc.vpc.id }}"

 subnets:

88

 - "{{ region.value.subnet }}"

 routes:

 - dest: 0.0.0.0/0

 gateway_id: igw

- name: Ensure the PostgreSQL security group is present

 ec2_group:

 state: present

 vpc_id: "{{ vpc.vpc.id }}"

 region: "{{ region.key }}"

 name: "{{ ec2_vpc_name }} - pglPostgreSQL"

 description: "Security group for PostgreSQL database servers"

 rules:

 - proto: tcp

 from_port: 22

 to_port: 22

 cidr_ip: 0.0.0.0/0

 - proto: tcp

 from_port: 5432

 to_port: 5432

 cidr_ip: 0.0.0.0/0

 - proto: all

 from_port: -1

 to_port: -1

 cidr_ip: "{{ region.value.subnet }}"

 register: security_group

- name: "Register security group {{ security_group.group_id }} region {{
region.key }}"

 set_fact:

 ec2_regions: "{{

 ec2_regions|default({})|combine({

 region.key: {'security_group_id': security_group.group_id}

 }, recursive=True)

 }}"

aws/provision/tasks/ami.yml

- name: Find the ami

 ec2_ami_find:

 name: ec2_ami_name

 owner: ec2_ami_owner

 region: "{{ region.key }}"

 sort: name

 sort_order: descending

 sort_end: 1

 register: ami_find

- name: "Register ami {{ ami_find.results[0].ami_id }} region {{ region }}"

 set_fact:

 ec2_regions: "{{

89

 ec2_regions|default({})|combine({

 region.key: {'ami_id': ami_find.results[0].ami_id}

 }, recursive=True)

 }}"

