
1

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Eyyüp Direk 156396

COMPARISON OF RELATIONAL AND NON-

RELATIONAL DATABASES ON THE

EXAMPLE OF PROPERTY INFORMATION

MAP

Master’s thesis

Supervisor: Vladimir Viies

 Co-supervisor : Lembit Jürimägi

Tallinn 2017

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Eyyüp Direk

3

Abstract

Nowadays almost every information can be reached through internet. Applications,

internet, smart devices are everywhere and they are simplifying our lives. Data is crucial

for these applications so are the Databases, with the increasing usage of internet of

things even it will be much more crucial. Based on this demands, our perspective to

databases have also changed through years. Many years ago when we started using

databases we mostly care about the size of the data. Mainly this memory concern has

driven us to develop relational database and its normalization. Even though we still care

about the size today, we have much more memory space than we used to have. As users,

we always want to be informed much faster and reliable data and with the growing

popularity of social networks, users query a huge amount of data, since there is a trade-

off between query speed and the data stored size in the database, it has driven us to find

different solutions than regular SQL and the way we store the data in databases. In the

last decade this demands has steered the wheel of the database structures to NOSQL and

rather than having a strict dependencies of data, data relationships is required to be more

flexible and lightweight.

One of the most prominent applications that we use in our daily life are map

applications which guides, informs and even based on traffic jam they can suggest us

less congested routes to our home. Data is crucial for these applications so are the

Databases. We may not be even aware of that in our daily lives because as users of

those applications we mostly interact with the user interface and don’t know much

about how we are delivered data through. As Users of those applications, we always

desire and care about more reliable, faster and more informative data.

The main purpose of this thesis is to research and experiment the differences between

relational and non-relational databases on the map application of property information..

This paper sets out to explore the particular types of SQL and NOSQL databases. The

research topic has wide variety of different databases comparison. Mostly two types of

those databases are focused on this paper. The empirical analysis focuses on the

structure of databases used and implemented for the property information map.

The Applications developed uses modern ASP.net web pages, Google Maps API,

Oracle SQL developer, IIS 10 Express, Oracle database express edition 11g and

4

MongoDB 3.4.4 which the last 2 ones are the members of relational and non-relational

databases.

As a conclusion, it will be discovered both implementation of the property information

map and the differences of databases which are used to feed information for the map.

Keywords: SQL(Structured Query Language), NOSQL(Non-structured Query

Language), Database models, relational database, non-relational database, Google Maps

Api, Oracle, MongoDB, IIS(Internet Information Service)

This thesis is written in English and is 63 pages long, including 8 chapters, 24 figures

and 1 table.

5

Annotatsioon

Relatsiooniliste ja mitterelatsiooniliste andmebaaside võrdlus

kinnisvara kaardirakenduse näite

Internetist võib tänapäeval kätte saada peaaegu iga teabe. Kõikjal on rakendused,

internet, nutiseadmed ja need lihtsustavad meie elu. Andmed, sealhulgas andmebaasid,

on nende rakenduste jaoks väga olulised ning üha suureneva interneti kasutamisega

muutuvad veelgi olulisemateks. Sellest tulenevalt on aastate jooksul muutunud ka

ootused andmebaasidele. Aastaid tagasi, kui hakkasime kasutama andmebaase, oli meie

jaoks oluline andmete maht. Peamiselt antud mälumahu probleem viis edasi

relatsioonandmebaaside ja nende normaliseerimise arendamiseni. Isegi kui me ka

tänapäeval endiselt selle pärast muretseme, on meil palju rohkem mäluruumi kui varem.

Kasutajatena soovime me alati palju kiiremalt ja usaldusväärsemaid andmeid ning üha

suureneva sotsiaalmeedia kasutamise tõttu tehakse tohutul hulgal andmepäringuid,

tasakaalu otsimine andmebaasi talletatud andmete ja päringu kiiruse vahel on sundinud

meid otsima teisi lahendusi kui tavaline SQL ning viise, kuidas säilitada andmeid

andmebaasides. Viimasel kümnendil on võetud suund andmebaaside NOSQL

struktureerimisele ning andmete range sõltuvuse asemel nõutakse seostes rohkem

paindlikkust ja kergust.

Ühed populaarseimad igapäevaselt kastutatavatest rakendustest on kaardirakendused,

mis juhendavad, teatavad ja isegi põhinevad liiklusummikutel ning oskavad soovitada

meile vähemhõivatud marsruuti koju. Nimetatud rakendustele on olulised nii andmed

kui ka andmebaasid. Oma igapäevaelus ei pruugi me olla sellest isegi teadlikud, kuna

kasutajatena suhtleme me enamasti kasutajaliidesega ja ei tea, kuidas andmed meieni

edastatakse. Nende rakenduste kasutajatena soovime me aga alati veel

usaldusväärsemaid, kiiremaid ja informatiivsemaid andmeid.

Antud lõputöö põhieesmärk on uurida ja testida kinnisvarainfo kaardirakenduste

relatsioonandmebaaside ja mitterelatsioonandmebaaside erinevusi. Töö eesmärk on

uurida konkreetseid SQL ja NOSQL andmebaaside tüüpe. Uurimisteema sisaldab palju

erinevaid andmebaaside võrdluseid. Antud töös on keskendutud põhiliselt kahele

andmebaasi tüübile. Empiiriline analüüs keskendub andmebaaside struktuurile, mida

kasutatakse ja rakendatakse kinnisvarainfol põhineval kaardil.

Arendatud rakendused kasutavad kaasaegset ASP.net veebilehte, Google Maps Api,

Oracle Sql arendust, IIS 10 Express, Oracle database express edition 11g ja Mongodb

6

3.4.4, milledest kaks viimast kuuluvad relatsioonandmebaaside ja

mitterelatsioonandmebaaside hulka.

Kokkuvõtteks leitakse, kuidas teostada kinnisvarainfo kaarti ja millised on kaardile

teabe sisestamiseks kasutatavate andmebaaside erinevused.

Märksõnad: SQL(Structured Query Language), NOSQL(Non-structured Query

Language, struktuur), Database models, relational database, non-relational database,

Google Maps Api, Oracle, Mongodb, IIS (Internet Information Service)

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 63 leheküljel, 8 peatükki, 24

joonist, 1 tabelit.

7

List of figures

Figure 1: RDBMS Popularity Rankings. ... 20

Figure 2: Document based databases sample structure. ... 23

Figure 3: Wide column databases sample structure. ... 24

Figure 4: Graph store database sample structure. ... 25

Figure 5: NOSQL Databases popularity rankings pointed out in yellow. 26

Figure 6: Estonia Administrative units and settlements. ... 28

Figure 7: Tallinn districts. .. 28

Figure 8: Estonia Land Board Administrative and settlement unit structure. 29

Figure 9: General Structure and components of Property Information Web Page. 31

Figure 10: Google Maps API Key. .. 33

Figure 11: E-R diagram of Information Map Database. ... 35

Figure 12: Property Information Database Model and Relations. 36

Figure 13: Property Information Database Model and Relations. 37

Figure 14: Property Information Map implemented in Oracle.. 38

Figure 15: Property Information Map with Google Street View implemented in Oracle.

 .. 39

Figure 16 : Property Information Map Implemented in MongoDB. 41

Figure 17 : Property Information Map Implemented in MongoDB with Google Street

View .. 42

Figure 18: Joined Tables. .. 43

Figure 19: MongoDB data query and Representation of a document in a collection. .. 44

Figure 20: Execution plan for the Query. ... 45

8

Figure 21: Query Result of Necessary Information for the Map. 46

Figure 22: Size of Tables List. .. 46

Figure 23: Size of Collection in MongoDB. ... 47

Figure 24: Execution Plan for Collection in MongoDB. .. 48

List of tables

Table 1: SQL vs NoSQL Terminologies .. 43

9

List of abbreviations and terms

RDBMS Relational Database Management System

DBMS Database Management System

SQL Structured Query Language

NoSQL Non-Relational or Not Only Sql

JSON Java Script Object Notation

BSON Binary JSON

CSS Cascading Style Sheet

HTML Hyper Text Markup Language

DCL Data Control Language

DML Data Manipulation Language

DDL Data Definition Language

TCL Transaction Control Language

API Application Programming Interface

ER Entity Relationship

ADSOID Address Object ID

UI User Interface

CRUD Create, Read, Update, Delete

10

Table of Contents

Author’s declaration of originality ... 2

Abstract ... 3

Annotatsioon ... 5

List of figures .. 7

List of tables .. 8

List of abbreviations and terms ... 9

1. Introduction .. 12

2. Databases History ... 13

3. Background Information ... 15

3.1. Relational Databases (SQL) ... 15

3.2. Relational Database Management System (RDBMS) 16

3.2.1. Oracle as an RDBMS ... 19

3.2.2. MSSQL as an RDBMS ... 19

3.2.3. MYSQL as an RDBMS .. 20

3.3. Non-Relational Databases .. 21

3.3.1. Key-Value databases .. 22

3.3.2. Document databases ... 22

3.3.3. Wide Column Store / Column Families .. 23

3.3.4. Graph stores .. 24

4. Case study: Property information map .. 26

4.1. Classification of Estonia administrative units and settlements 27

5. Implementation of Property Information Map ... 30

5.1. General Structure of the Implementation .. 30

5.2. Using Google Maps API for Property Information User Interface 32

5.2.1. Google Maps API .. 33

5.3. Implementation with Oracle Database ... 33

11

5.4. Implementation with MongoDB .. 40

6. Analysis and Comparison of Results .. 42

6.1. Terminology, Implementation and Concept differences 42

6.2. Analyzing Oracle on Querying Property Information 45

6.3. Analyzing MongoDB on Querying Property Information 46

6.4. Comparison of Results ... 48

7. Suggestions for Future Work .. 49

8. Conclusion ... 49

References.. 51

Appendix 1 – Source code for Oracle Database connected 52

Appendix 2 – Source code for Mongo Database connected 58

12

1. Introduction

Our lives are flooded with all kind of information. Owing to databases we interact with

information through internet or web applications, easily and seamlessly on a daily basis.

When we look at the database definitions more or less we would see something similar

to these definitions below.

“A database is an organized collection of information treated as a unit. The purpose of a

database is to collect, store, and retrieve related information for use by database

applications. “ [1]

“A database is designed, built, and populated with data for a specific purpose. It has an

intended group of users and some preconceived applications in which these users are

interested.” [2]

As it can be understood from definitions, storing data is not enough to be a database.

Databases shouldn’t only store but also should be able to manipulate, respond and

interact with the users who query them. Since we are in an era which extremely requires

to instant access, store, update or delete the data we provide, databases play extremely

important role in our interaction with Internet, smart device applications and with the

growing popularity of IOT, basically everything we are surrounded and use in our daily

life. This interaction between the user and database are done through the DBMSs which

allows multiple users to interact with data stored by database. Moreover, DBMSs

manage all the processes like where to and how to store data. While it allows to multiple

users to modify the data stored by the database, DBMS ensures the data consistency at

the same time. Otherwise, the data provided to users, couldn´t respond the demands and

it would be nothing but failure. Since these requirements, databases have evolved

through the years. Maybe not the first but the most influential database model is

relational-database model which comes with the term of relational database

management systems and ensures the data integrity with the ACID characteristics. In

the Last decade , with the increasing amount of data demands over the web, technology

companies has been driven to search for different solutions to supply more reliable

,consistent ,fast , maintainable and secure data. Thus today it is getting more popular to

use non-relational databases. As its name suggests, without having a relation it targets to

have a faster response time than relational databases and at the same time intends to be

very lightweight and consistent. Even though this paper concerns more about the

13

querying data, knowing the general database models and databases history would give a

better overview for the this thesis’ case study.

2. Databases History

if we go back to first ages of human civilization, just after the invention of writing, we

could easily see people using the clay tablets or carvings on walls to be able to record

daily data specially by farmers. After people changed their lifestyle from nomadic to

more settled life. We needed to keep records of the trades and taxation. Basically, we

needed to keep track of our account. This meant not only recording data but also

deleting, updating and retrieving records. In the end, this lead to the development of

double entry book keeping which emerged in the 13th and 14th centuries. Indexes were

used to ease the process of retrieving data.

If we come little bit closer to near past we would encounter first stages of modern times

databases ,which examples are ship manifests, card catalogs and product inventories,

libraries, governmental records and statistics. The Reporting was another issue that

requires fast and impeccable data management which was made manually, and this was

quite cumbersome, time consuming, and possible to have error during that process.

Although mechanical calculators were used by the mid nineteenth century to fasten the

process, it was far from the desired level of ease and processing times of reporting.

Computers allowed us to automate our databases. Early computer databases were

constructed with flat file model a single consecutive list of records but when it comes to

search, this was an inefficient way to solution. Over time, we have needed to search and

maintain large volumes of records, which have to be faster, reliable and safe.

That requires to retrieve and reach the data in a random order rather than in consecutive.

Undoubtedly, this was also flaw of early stage computers storage disks which stores

data on magnetic tape.

After IBM introduced hard disk drives in 1956 which allows user to access data

randomly, In 1960s IBM has used a hierarchical model for their information

management systems. This was constituted by tree structural systems which every node

has pointer to its child nodes it has been used successfully by NASA for the lunar

lander. After some time of that a more flexible database model was developed by

14

Charles bachman, which used the same tree structure but every node might have more

than one parent nodes yet when the database get complicated it was hard to manage all

the pointers between nodes.

 In 1970s Ted Codd developed relational database model which was proposing to

organize the data into simple tables with related information. There were no pointers to

maintain, relations were maintained by having matching data fields in each table. It

made it a lot easier to access, merge and change data. Several companies used it as a

base for commercial products. In 1975 IBM produced an experimental relational

databases named system R. it used structured query language developed by Don

Chamberlain and Raymond boyce to search and modify data.

In 1977, Oracle was introduced as a first commercially available relational database

compatible with SQL. Since then many companies and individuals have contributed the

evolution of relational databases and structured query languages.

Parallel to SQL and relational databases, there has been another way of implementing

databases but it wasn’t as popular as relational–databases until big data era. Today, we

are all connected any social networks and services with our smart phones, tablets and

near future with internet of things. Introducing of this services into our life bring

another necessity about the way of recording data which gained to NOSQL popularity.

“There are a number of reasons for the rise in interest on NOSQL. The first is speed and

the poor fit of traditional query languages to technologies such as in memory databases.

Secondly there is the form of the data which people want to store, analyze and retrieve.

Tweets from Twitter are data that do not easily fit a relational or object oriented

structure. Instead column based approaches were a column is the smallest unit of

storage or a document based approach where data is denormalized can be applied” [.

The idea of No-SQL is on the contrary of the SQL ,it doesn’t require strict rules and it

is very flexible and scalable and besides dominant web and social service companies

like Google, Facebook, Yahoo, it also targets the startup-companies, enterprise

companies and open-source developers which requires to be very flexible in aspect of

database models. As this thesis topic concerns about the relational and non-relational

databases, the next chapter it will be more focused on the relational and non-relational

databases’ structures and the way how they store and reach data.

15

3. Background Information

The features and characteristics of database systems vary. These feature differences like

how they store, access and manipulate the data makes the differences in the non-

functional requirements like accessibility, performance, maintainability, consistency i.e.

In this chapter, it is intended to give some background information on general

differences of different databases pointing out relational and non-relational databases’

types.

3.1. Relational Databases (SQL)

As it is mentioned in history part, relational databases exist since 1970s and E. F. Codd

defined a relational model based on mathematical set theory.

A relational database is a database that conforms to the relational model. The relational

model has the following major aspects:

Structures

Well-defined objects store or access the data of a database.

Operations

Clearly defined actions enable applications to manipulate the data and structures of a

database.

Integrity rules

Integrity rules govern operations on the data and structures of a database.

A relational database stores data in a set of simple relations. A relation is a set of tuples.

A tuple is an unordered set of attribute values.

A table is a two-dimensional representation of a relation in the form of rows (tuples)

and columns (attributes). Each row in a table has the same set of columns. A relational

database is a database that stores data in relations (tables). For example, a relational

database could store information about company employees in an employee table, a

department table, and a salary table.

https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-C76D1B18-B273-4163-A12A-F88AC06E8057
https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-F81FA4BC-AFAF-4A1B-BDFA-0BDF42512B7A
https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-C7F27053-7E3C-4F7A-945A-656598050C70
https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-DA8F7E11-B6AF-4ED3-B2A9-B5741E9AE2D4

16

Relational Database Elements

Table

Represents the collection of data in consecutive rows and those tables row mostly

connected to each other with foreign keys

Primary and Unique Keys

Primary and unique keys uniquely identifies each row of the table main difference

between two keys primary key is enforced to be set default not null which means if

there is a record to be inserted into a table it can’t have an empty value on primary key

column.

Foreign Keys

Foreign keys can be considered as a reference from one table to another table row and

depends on the relation of tables it can constraint the insert, delete or update operations.

Views

Basically, Views can represent subset of one or many tables virtually. The main reason

to use it is accessibility and speed of querying in case of multiple joined tables view.

Functions

As it is in the all programming languages they can return scalar or table values.

Procedures

Same as functions yet instead of returning value it generally modifies data.

Triggers

They function same as procedures but only under certain circumstances like while

inserting, deleting or updating the data in a table. Generally they are used for

maintaining the data consistency

3.2. Relational Database Management System (RDBMS)

Basically, RDBMS is a product or system which presents data as collection of rows and

columns .Besides that it requires using SQL as a query language which allows user to

retrieve, delete, manipulate, create and all kind of transactions to implement. An

RDBMS Is responsible for 2 the following types of operations:

Logical operations

17

These type operations specify what content is required. For example, a patient requests

some information regarding his medical condition in a hospital or a doctor as the user of

DBMS, he can keep record of his or her patients.

Physical operations

In this type operations, the RDBMS determines how things should be done, For instance

how to access data or how to modify or store data .For example, after an application

queries a table, the database may use an index to fetch the requested rows, brings the

data into memory, and may perform many operations before it returns the final result to

the user.

The most common RDBMSs are Oracle, MySql, PostgreSql, MsSql. All these database

management systems support relational model as represented by SQL language.

SQL is a set-based declarative language that provides an interface to an RDBMS such

as Oracle Database. In contrast to procedural languages such as C, which

describe how things should be done, SQL is nonprocedural and describes what should

be done [3].

SQL is the ANSI standard language for relational databases. All operations on the data

in an Oracle, MySql, PostgreSql, MsSql databases are performed using SQL statements.

For example, you use SQL to create tables and query and modify data in tables.

Users specify the result that they want (for example, the names of employees), not how

to derive it.

Examples of SQL statements;

Select employee_name ,employee_address ,employee_salary from employees;

INSERT INTO employees

(employee_id ,employee_name ,employee_address ,employee_salary)

VALUES (12434, ‘john doe’,’Camden town str. 19’, 5000);

SQL statements have 4 main groups. The first one is called DDL (data definition

language) and the other is DML (data manipulation language) which includes normal

select statements. DCL helps control and access of database objects. The last one is

TCL ensuring data integrity by managing transactions.

18

DDL

Main DDL statements are CREATE, ALTER, or DROP which really defines or totally

deletes an object or type or tables structure.

DML

Main DML statements are SELECT, INSERT, DELETE, UPDATE, ALTER which

query or change the contents.

DCL

Main DCL statements are GRANT, INVOKE which allow users to control their rights

on database object like table, procedure and functions i.e.

TCL

Main TCL statements are COMMIT, ROLLBACK, BEGIN, which are generally used

for ensuring data integrity.

The database must ensure and have the integrity which most of the time, the case must

be so that multiple users can work concurrently without corrupting one another's data.

In the heart of the integrity and consistency, there is a term which is called transaction

which is a logical, atomic unit of work that contains one or more SQL statements. An

RDBMS must be able to group SQL statements so that they are either all committed,

which means they are applied to the database, or all rolled back, which means they are

undone.

To be able to maintain this integrity the transactions have 4 important characteristics

that is simply called ACID consists of the first characters of the terms atomicity,

consistency, isolation and durability properties.

Atomicity

Transactions are all-or-nothing. Either all operations go through, or none of them get

done.

Consistency

Transactions lead database from one consistent state to another.

Isolation

Transactions cannot see intermediate (not committed) results of each other.

Durability

DBMS must ensure that after committing a transaction all its changes are saved (they

can't get lost, for instance, because of power failure).

19

Even though all RDMBSs requires those all characteristics, they have got different

features and they might serve to different targeted users

3.2.1. Oracle as an RDBMS

Oracle was the first commercially available to use database. It has been implemented in

C and C++ programming languages. It was the first RDBMS supports SQL. Besides

being an RDBMS, “Oracle implements object-oriented features such as user-defined

types, inheritance, and polymorphism is called an object-relational database

management system (ORDBMS). Oracle Database has extended the relational model to

an object-relational model, making it possible to store complex business models in a

relational database” [1]

Another aspect of what makes one database different from the others is the way how

they store and manage the data. As a database server, which manages to respond

multiple users requests, Oracle consists of 2 primary architecture components Oracle

Database and Oracle Instance ;

The Oracle Instance mostly composed of the memory part and it is a means to access

Oracle Database, while the Oracle Database includes all the physical files on the server.

While Oracle instance provides access to multiple users it has to manage all background

processes and functionalities which has to comply with ACID principles. A database

can be considered in both physical and logical perspective , In logical level Oracle

database hierarchically consists of Data blocks ,which corresponds to specific size of

memory , an Extent , which contiguous data blocks and A segment consists of Extents

allocated for a user object. Over top all, Table-spaces is a container for a segment [4].

PL/SQL

Another feature of Oracle, it supports PL/SQL which is a procedural extension of

standard SQL. With the PL/SQL it is possible to use variables, loops, conditions, error

catching mechanisms.

3.2.2. MSSQL as an RDBMS

As it is in Oracle, MSSQL is another SQL-based relational database management

systems which developed by Microsoft Corporation. It is developed based on C++

programming language.

https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-B5A50116-D8BD-431E-93E6-4C6516297756
https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-B5A50116-D8BD-431E-93E6-4C6516297756

20

Same as in all RDBMSs, MSSQL represents data by a table and it has the same

elements as the other RDBMSs provides, like trigger, functions, procedures views i.e.

What makes different MSSQL from others is its extension language to SQL which is

called as TSQL and it can correspond to ORACLE’s PL/SQL. It has totally different

syntaxes and its own defined variables which intends to improve querying and CRUD

operations

3.2.3. MYSQL as an RDBMS

MySQL is another popular RDBMS, which is developed in C and C++ programming

languages, renowned with being open-source and first released in 1995 later than its

peers. Yet being an open-source platform, it has gained popularity. Company later

owned by Oracle corp. Main disadvantage of the MySQL is poor performance scaling in

contrast with the Oracle and MSSQL. In spite of this disadvantage, MySQL is very

popular as an RDBMS because of being an Open-Source Database platform (Figure 1).

Figure 1: RDBMS Popularity Rankings.

(Source: https://db-engines.com/en/ranking/relational+dbms)

https://db-engines.com/en/ranking/relational+dbms

21

3.3. Non-Relational Databases

It is a new trend in database world tough, in reality it is not a totally new thing. Such

databases have existed since the late 1960s, but did not obtain the "NoSQL" moniker

until a surge of popularity in the early twenty-first century [5], the term of “NoSQL”

was in fact the first time used by Carlo Strozzi in 1998 as the name of file-

based database he was developing. Ironically it was a relational database just one

without a SQL interface. As such it is not actually a part of the whole NoSQL trend we

see today. The term re-surfaced in 2009 when Eric Evans used it to name the current

surge in non-relational databases [6].

When compared with Relational Databases, NoSQL databases don’t consists of table

column and row like structures .instead of them they have got more flexible structures

to store data. NoSQL can refer to any of these 3 terms; “not SQL”, “not only SQL” or

“non-relational”.

As the technology advanced, RDBMS have increasingly failed to meet the performance,

scalability, and flexibility needs that next-generation, data-intensive applications

require, NoSQL databases have been adopted by mainstream enterprises. NoSQL is

particularly useful for storing unstructured data, which is growing far more rapidly than

structured data and does not fit the relational schemas of RDBMS. Unlike RDBMS,

NOSQL databases are designed to easily scale out as and when they grow. Most

NOSQL systems have removed the multi-platform support and some extra unnecessary

features of RDBMS, making them much more lightweight and efficient than their

RDMS counterparts. The NOSQL data model does not guarantee ACID properties

(Atomicity, Consistency, Isolation and Durability) but instead it guarantees BASE

properties (Basically Available, Soft state, Eventual consistency).It is in compliance

with the CAP (Consistency, Availability, Partition tolerance) theorem [7].

NoSQL TYPES

NoSQL databases differ from each other by data model or another way to say how they

store the data. Mainly, they can be categorized into 4 different types;

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page

22

3.3.1. Key-Value databases

Key-value databases have the most simplistic approach between types of NoSQL. Data

consists of 2 parts as the name suggests; Key and Value pairs. Keys are unique

identifiers as it is primary key in RDBMSs. This key and value pairs are inspired from

hash tables. Even though, the client can manipulate the value of key generally research

is limited to one way from key to value otherwise exact-match is required. Data stored

can be any type of binary object (text, video, JSON document, etc.) and are accessed via

a key, without concerning what's inside; it's the responsibility of the application to

understand what was stored. Since key-value stores always use primary-key access, they

generally have great performance and can be easily scaled [8].

Main popular key-value databases are Riak, Redis , Berkeley DB, upscaledb (especially

suited for embedded use), Amazon DynamoDB (not open-source), Project Voldemort

and Couchbase.

3.3.2. Document databases

Documents are the main concept in document databases. The database operates on

documents, which can be in different formats like XML, BSON, JSON (Figure 2) and

many others. These documents can contain many different datatypes and even can be

nested but this totally depends on designer’s choice. The documents stored are similar to

each other but do not have to be exactly the same. This provides flexibility for the

CRUD operations.

http://basho.com/riak/
http://redis.io/
http://www.oracle.com/technetwork/database/berkeleydb/index.html
http://upscaledb.com/
http://www.couchbase.com/

23

They are similar to key-value stores, but in this case, a value is a single document that

stores all data related to a specific key. Key is a string but value can contain

MongoDB, CouchDB , Terrastore, OrientDB, RavenDB are the well-known prominent

document based databases.

3.3.3. Wide Column Store / Column Families

 Column-family databases store data vertically in column families as rows that can have

many columns related with a row key. It may seem similar to RDBMS, but names,

which correspond to attributes in RDBMSs and formats of columns can vary from row

to row across the table. The approach to store and process data by column instead of

Figure 2: Document based databases sample structure.

https://www.mongodb.org/
http://couchdb.apache.org/
https://code.google.com/p/terrastore/
http://www.orientechnologies.com/orientdb/
http://ravendb.net/

24

row (Figure 3) has its origin in analytics and business intelligence where column-stores

operating in a shared-nothing massively parallel processing architecture can be used to

build high-performance applications [9].

Cassandra is one of the popular column-family databases; there are others, such

as HBase, Hypertable, and Amazon DynamoDB.

3.3.4. Graph stores

A graph database structure is built upon graph theory to store, map, and query

relationships. Every graph has its own nodes, properties and edges. Data is stored on

nodes edges refer to the relationships. It is not an extension of key-value pairs and it’s

more efficient for storing interconnected data and handling relational querying. Thus

naturally they are more suitable for dependency analysis problem solving and some of

the social networking scenarios [10].

Figure 3: Wide column databases sample structure.

(Source: https://www.thoughtworks.com/insights/blog/nosql-databases-overview)

http://www.datastax.com/
https://hbase.apache.org/
http://hypertable.org/

25

There are many graph databases available, such as Neo4J, Infinite Graph, OrientDB,

or FlockDB.

Since it is given an overview of NoSQL databases of different types, it can be viewed

the ranks of NoSQL databases popularity (Figure 5).

Figure 4: Graph store database sample structure.

(Source: https://www.thoughtworks.com/insights/blog/nosql-databases-overview)

http://www.neo4j.org/
http://www.objectivity.com/infinitegraph
http://www.orientechnologies.com/orientdb/
https://github.com/twitter/flockdb

26

4. Case study: Property information map

First of all, since this thesis intends to compare two databases on an example of

Property information map, it is important to comprehend what property information

maps are used for. The existing web applications and websites mostly targets at real

estate agencies, land registration units and aims to provide the users geological,

geographical or historical data about the properties.

 Generally this data are recorded by governmental units and provided users on demand.

As internet and technology has spread, this kind of formal maps has been moved into

the digital environments. Even though there may not be many examples in Europe, in

USA many counties have its own property map websites. While the whole buildings in

a city or a district taken into account, this means a huge amount of data to be managed

and every units like cadastral, parcel, addresses and locations must be stated and

preserved clearly to keep data records in order. General name of this systems are called

Geographical Information Systems, GIS is a very broad term and they require to

Figure 5: NOSQL Databases popularity rankings pointed out in yellow.

(Source: https://db-engines.com/en/ranking)

27

manage all geographical data including roads, agricultural land areas, climate change

information, navigation, earthquake information, pipeline routes, tourism information,

deforestation information, land registry and many other areas. Due to being a very

complex and broad applications, GISs requires different type of Database structure.

Generally called GeoSpatial databases, which is more suitable and effective on GIS

applications.

However, this thesis case study is more focused on property information rather than all

geographical information. Nevertheless, Sample Data source being used in this research

are supplied from Estonian Land Board Portal, which besides providing property

information, it provides wide variety of land information such as Road Administration,

GeoCoding Service, Real Estate statistics and so on. For this research, among these

services, public service of the address data system and land registry query has been used

in implementation. Especially for the RDBMSs, the structure of data how we use in real

life affects the way how we implement our Data Model in relational databases.

Considering the fact that every country has different administrative units and different

settlement units which conducts the property information, as Estonian land registration

is used for this research, it is essential to know how Estonian land registration structures

the property’s data.

4.1. Classification of Estonia administrative units and

settlements

The territory of Estonia is divided into counties, rural municipalities, and towns. There

are 15 counties, as it can be seen in the Figure 6 below and each County has its own

cities and rural municipalities as subunits.

https://www.eesti.ee/eng/contacts/maavalitsused_1

28

Apart from that, Capital of Estonia; Tallinn has 8 different districts linked to City

administration (Figure 7).

Moreover, the structures of data provided by Estonia Land Board Geoportal are

available at 3 levels: counties, municipalities and settlements and each entity has

attributes as described in the Figure 8 below.

Figure 6: Estonia Administrative units and settlements.

Figure 7: Tallinn districts.

29

All these divisions are defined in Territory of Estonia Administrative Division Act

which has been accepted since 1995, chapter 1 clause 6 regarding settlement units states

the rules as below;

§ 6. Settlement units

1. Settlement units are settlements and urban regions.

2. A rural municipality is divided into settlements which are villages, small towns,

towns and cities without municipal status.

3. A city which is an administrative unit is also a settlement within the same

boundaries.

4. A city may be divided into urban regions.

5. The types and names of and division lines between settlement units are

determined on the basis of applications from rural municipality and city

councils, on the bases of and pursuant to the procedure specified by the

Government of the Republic.

6. State operations, including the management of statistics, the organization of

address systems and the maintenance of registers and cadastres, are based on

settlement units. [11]

In real life the rules that we determine, shapes the way of how we store data in a

relational Databases. Hence, in relational databases all this perspective should be taken

into account.

Figure 8: Estonia Land Board Administrative and settlement unit structure.

30

In conclusion, From Databases perspective, the requirements of property information

maps can be a good opportunity and challenge to compare different databases. In

previous chapters, Different NoSQL and Relational Databases is compared

theoretically. Among them, two most popular and well-structured ones; Oracle and

MongoDB are chosen to be compared practically. Before providing this comparison, the

platforms used to implement must be understood well.

5. Implementation of Property Information Map

As mentioned in previous chapters, the structure of data to be presented must be

designed depending on what exactly being represented on the map. Taking that into

account, Oracle Database relational data model and the MongoDB collection structures

are created so as to cover all this aspects. Asides from Database part, this particular web

application uses HTML, CSS, Javascript technology with the Google Maps Javascript

API for the front-end development, IIS as a web server, ASP.NET framework using

Razor Markup for back-end development and finally MongoDB and Oracle 11g

databases as database servers. Prior to Implementation, in this project, MongoDB 3.4

and Oracle 11g installed on a machine running an Intel i5 CPU 450M @2.40 GHz

processor, RAM 4GB.

5.1. General Structure of the Implementation

As it was noted in the introduction part of this chapter, there are many components of

this application. To be able to understand how it works, those components should be

separated to get a better understanding. First of all, as all web applications or web pages

use for their view, Javascript, HTML, CSS constitutes the most important part of the

front-end development. These web technologies were used and integrated with the

Google Maps Javascript API (Figure X) which shall be discussed further in next

subheadings of this chapter. To mention briefly, about ASP.NET and IIS web server,

Internet Information Services (IIS) 7 and later provide a request-processing architecture

which includes:

 The Windows Process Activation Service (WAS), which enables sites to use

protocols other than HTTP and HTTPS.

https://www.cdw.com/shop/products/Toshiba-Qosmio-X775-Q7270-Core-i5-2410M-2.3-GHz-17.3in-TFT/2477701.aspx

31

 A Web server engine that can be customized by adding or removing modules.

 Integrated request-processing pipelines from IIS and ASP.NET.

Basically IIS functions for listening requests made to the server managing processes,

and reading configuration files. These components include protocol listeners, such as

HTTP.sys, and services, such as World Wide Web Publishing Service (WWW service)

and Windows Process Activation Service (WAS) [12].

ASP.NET is a unified Web development model that includes the services necessary for

you to build enterprise-class Web applications with a minimum of coding. ASP.NET is

part of the .NET Framework, and when coding ASP.NET applications you have access

to classes in the .NET Framework. You can code your applications in any language

compatible with the common language runtime (CLR), including Microsoft Visual

Basic and C#. These languages enable you to develop ASP.NET applications that

benefit from the common language runtime, type safety, inheritance, and so on [13].

In this project, ASP.NET Razor syntax was used in implementation. Razor syntax

allows developers to write server side code into the client code and server checks if

there is any server code in the web application or web page, it runs server code firstly

then it sends the web page to browser.

Apart from Database part, different platforms and web technologies could have been

chosen for this dissertation, but because of the personal choice and better experience in

aforementioned technologies, these platforms were used in development.

Figure 9: General Structure and components of Property Information Web Page.

32

5.2. Using Google Maps API for Property Information User

Interface

There are some other map applications like Yandex or Bing Maps though, Google maps

is the most popular application that we all use in our daily lives to find our way to home

,or less congested roads to travel faster or nearest shopping centers, pharmacies,

restaurants and every kind of places that we can imagine. Since their launch in 2005,

Google Maps and Google Earth have had an enormous impact on the way people think,

learn, and work with geographic information. With easy access to spatial and cultural

information, Google Maps/Earth has provided users with the means to understand their

world and their communities of interest. Moreover, the customizable map features and

dynamic presentation tools found in Google Maps and Google Earth make each one an

attractive option for someone wanting to teach geographic information or make

customized maps. For academic researchers, Google Mapping applications are also

appealing for their powerful ability to share and host projects, create customized KML

files, and to easily communicate their own research findings in a geographic context

[14].

As it can be experienced in our daily life, Google API is being used by many different

application services. Using the API, numerous people have created useful and

interesting "mashups", combining the Google Maps interface with geographic

information from other data centers. A few examples are:

Chicago Crime (http://www.chicagocrime.org/) - uses Google Maps to visually locate

places where crimes have occurred in the Chicago area.

Housing Maps (http://www.housingmaps.com/)- combines Google Maps with classified

ads from Craigslist to display location of properties for rent or sale.

Incident Log (http://www.incidentlog.com/) - combines Google Maps with crime and

incident data from around the United States.

Cell Phone Reception and Towers (http://www.cellreception.com/) - combines Google

Maps with locations of cell phone towers [15].

As it can be seen in referenced examples above, Google API provides many features for

your specific target to show maps in your websites or applications. In the light of this

http://www.chicagocrime.org/
http://www.housingmaps.com/
http://www.incidentlog.com/
http://www.cellreception.com/

33

knowledge, it is wise to take a closer look how Google API provides this services and

how its features work.

5.2.1. Google Maps API

Google Maps API provides wide variety of tools and methods to create specific targeted

websites or software applications. These methods and tools are based on geo-locational

coordinates, in other way to say, if someone wants to point out a location on the map, it

requires knowing the geo-locational coordinates of that locations which consists of

latitude and the longitude of that specific location. Besides knowing that, Google Maps

API can only be used after getting an API KEY (Figure 10) which allows you to

monitor your application's API usage in the Google API Console. To be able to get an

API key, user must register his project on Google API Console, which is an

environment provides variety of different APIs based on users’ needs. After acquiring

the key, it is available to use Google maps in your application or websites.

To show a simple marker on the map, you have to specify latitude and longitude of that

location. Depending on users’ desire, it can be demonstrated many different information

in different styles by using JavaScript and HTML. Turning to Property information

maps it i0s crucial to know what data will be represented on the map and generally the

data provided is strictly structured in land registry units of governments. Hierarchically,

every property belongs to one sub unit of a city or a municipality.

5.3. Implementation with Oracle Database

In the first place, as Oracle being an RDBMS, to be able to create our database model it

is important to design and create ER diagrams.it is common and most-chosen and well-

Figure 10: Google Maps API Key.

34

known way to determine the data model. The first step of ER model is to define entities

and their relationships with each other. After this step, relational data model gets easier

to construct. The entity-relationship (E-R) data model was developed to facilitate

database design by allowing specification of an enterprise schema that represents the

overall logical structure of a database. The E-R model is very useful in mapping the

meanings and interactions of real-world enterprises onto a conceptual schema. Because

of this usefulness, many database-design tools draw on concepts from the E-R model.

[13] Mainly, there are three concepts or terms that must be comprehended. First, each

entity is a distinguishable object from the other entity’s types. Second, attributes, which

carries the data on entities and entity is represented by these attributes. Third, as it is

mentioned and the name of ER suggests, relations which define associations between

two entities. After briefly mentioning ER model, we can start defining our entities for

property information map database. As it is addressed in chapter 4.1, Estonia Land

Board has defined its main entities as settlements, municipalities and counties. For the

reason that this thesis topic is more focused on property information in a specific area

rather than the whole geographical information of all lands, entities defined more

specific to its own types. Specially, instead of settlement units, there are three entities

taking place of settlement units. Building is the main object which represents the each

property. Parcels are larger area and may consist of many buildings and the city district

which consists of many parcels. In Figure 11, roughly designed entity relationship

diagram can be seen to address entities, their relations and some of the attributes.

35

Apart from the main entities there are high level entities described for future extension

of the project as it can be applied to most of the countries. Over all, Country as an object

covers all other entities, one level below that cities are defined and under cities there are

counties as subunits. After defining entities, relationships and some of the attributes, as

a next step before the relational model, constraints should be defined, which are mostly

real life conditions that shapes our relational model.

Constraints of relations generally define the relationship types between entities. Since

property map’s ER diagram quite straight-forward and hierarchical, all the relationship

types between entities are one to many relationships, if we start from the top level for

example every countries has one or more counties and every county has at least one and

more cities and every city has one or more districts and it continues so on so forth.

Figure 11: E-R diagram of Information Map Database.

36

Normally, the structure used by Estonia Land Board includes municipalities which some

of them do not comply with this hierarchical data model, the reason why it is not used in

this model is municipalities’ information is not required to be represented in property

information map intended to be created and also some of the Estonia local

administrative units that mentioned in chapter 4.1, do not comply with the general

hierarchy because there are some cities and other units without municipal status. Instead

of municipality entities, more straight approach is taken to keep data consistent. After

completing ER diagram and knowing necessary constraints, it can be started to create

relational model based on ER diagram. Starting from Building entity, it has ADSOID,

which is a unique id given to every building with VERSIONID and, since it uniquely

identifies every building it can be considered as the primary key of Building table and to

maintain the relationship with the parcel as a foreign key PARCELID references to

parcel table. The next entity relation is between parcel and city district as every city

district consists of many parcels, the direction of foreign key DISTRICTID references

to city district table (Figure 12).

Figure 12: Property Information Database Model and Relations.

37

On the higher level, naturally every city district belongs to a city and one city consists

of many city districts so that CITYID as a foreign key points to the city table. Same

structure applies for the city table to county table and they are associated on

COUNTYID as a foreign key, which can be seen in Figure 13.

After creating database structure, the data belongs to buildings in Mustämae district was

inserted into the tables. Then as a next step, Interface of the web page was set by using

HTML, Javascript and Google API. HTML design roughly has two main parts. First

one is the division where general parcel information shown and the other is the google

maps focused on the point where most of the buildings that planned to be shown on the

map. Following the UI design, the connection between Oracle database and UI requires

to be implemented by using ORACLE Data Provider for .NET 4 Managed Driver.

Under the project solution, Managed Driver DLL was added as a reference to be able to

use connection methods to Oracle database from ASP.NET web page project. As a

Figure 13: Property Information Database Model and Relations.

38

backend development language C# razor syntax used which allows to embed server

based code into web pages. In the follow-up phase of the project, query string was

created to retrieve data from Oracle database. Retrieving the Data from Database, for

every building there was set a marker to point the building out on that location. Each

marker has its own latitude and longitude information taken from database and has its

own information window pops up when it is clicked on and represents information

about the building. When it is clicked, related parcel information is being represented at

the same time on the left pane (Figure 14).

Another useful feature of Google Maps API is the street view (Figure 15). By using that

feature users can step inside the locations nearby the buildings being represented and it

shows the landmarks around the buildings and the physical information can be matched

with the information provided on the map. Google Street View needs 4 elements SIZE,

HEADING, FOV, PITCH to show around a specific location size specifies the output

size of the image in pixels.

SIZE is specified as {width}X{height} - for example, size=600x400 returns an image

600 pixels wide, and 400 high.

HEADING indicates the compass heading of the camera. Accepted values are

from 0 to 360 (both values indicating North, with 90 indicating East, and 180 South). If

Figure 14: Property Information Map implemented in Oracle..

39

no heading is specified, a value will be calculated that directs the camera towards the

specified location, from the point at which the closest photograph was taken.

FOV (default is 90) determines the horizontal field of view of the image. The field of

view is expressed in degrees, with a maximum allowed value of 120. When dealing with

a fixed-size viewport, as with a Street View image of a set size, field of view in essence

represents zoom, with smaller numbers indicating a higher level of zoom.

PITCH (default is 0) specifies the up or down angle of the camera relative to the Street

View vehicle. This is often, but not always, flat horizontal. Positive values angle the

camera up (with 90 degrees indicating straight up); negative values angle the camera

down (with -90 indicating straight down) [16].

In the end, Implementation with the Oracle Database completed successfully and as it is

shown figures in the Figure 15, the web application reflects the data from Oracle

Database.

Figure 15: Property Information Map with Google Street View implemented in Oracle.

40

5.4. Implementation with MongoDB

Installation of MongoDB was the first step of this phase. MongoDB installation has 3

components to be installed, Mongo, Mongod, Mongos. Mongo is an interactive

JavaScript shell interface to MongoDB, which provides a powerful interface for systems

administrators as well as a way for developers to test queries and operations directly

with the database. Mongo also provides a fully functional JavaScript environment for

use with a MongoDB.

Mongod is the primary daemon process for the MongoDB system. It handles data

requests, manages data access, and performs background management operations.

Mongos for “MongoDB Shard,” is a routing service for MongoDB shard configurations

that processes queries from the application layer, and determines the location of this

data in the sharded cluster, in order to complete these operations. From the perspective

of the application, a mongos instance behaves identically to any other MongoDB

instance [17].

After completing all necessary installations the environment is ready to use MongoDB.

Implementing in one Database makes easier to implement on the other, since the data

model is constructed. Even though MongoDB is not a relational database the same data

was used to implement with MongoDB. One of the main advantages of MongoDB is

that it is possible to bulk insert into data with importing JSON files into it. By inserting

the collection, Document is automatically created and it makes the developers job much

easier then RDBMS do. The details about the implementation differences will be

discussed further in the next chapter of this research. Turning back to MongoDB

implementation, in the first place, The Data inserted in Oracle database was exported

into JSON document in such a way that the structure of collections determined by the

exported data. In another words, Data was shaped in Oracle Database to create

documents structure. After inserting the data, the same HTML and CSS design as in

Oracle was used for UI. Even though the same design was used, the packages and

drivers which are used to connect UI are totally different so that it required installing

MongoDB driver from Nuget Package manager, which provides packages to developers

in Microsoft Developer Platforms. As a next step, installed driver was added as a

reference to web page project without these references certain types of libraries and

methods cannot be used specially connection string created to connect the database and

https://docs.mongodb.com/manual/reference/glossary/#term-sharded-cluster

41

web server. To be able to retrieve data in the backend, C# Razor syntax was used, same

as in Oracle application

The way MongoDB returns results to queries are different from Oracle because of that,

The results returned after querying must be processed differently. MongoDB returns to

queries batch by batch which means after querying for the first time MongoDB do not

return whole records in the MongoDB database it only returns specific number of

documents as a response. Because of that reason, in C# code there is an asynchronous

method to handle each document coming from Database server and insert into the

markers.

Following all backend development process, the web page is ready to run and it creates

the UI as it is the same in Oracle example, then it points out every building which

locations of taken from MongoDB and the web page runs successfully showing the

related building and parcel information when clicked on the markers can be seen in the

figure above (Figure 16).

Figure 16 : Property Information Map Implemented in MongoDB.

42

To be able to differentiate MongoDB implementation from Oracle Implementation,

design of left pane and the markers icons was changed (Figure 17). Google street view

location on the left pane moved to the upper section.

6. Analysis and Comparison of Results

Analysis of data deducted from research can be interpreted in many different ways and

the comparison between these 2 databases can be done from many different aspects.

Therefore, prior to comparing the research results, it can be a good starting point to

compare Oracle and MongoDB in terms of database concepts and programming

syntaxes as a member of RDBMSs and NoSQL databases.

6.1. Terminology, Implementation and Concept differences

During the implementation and research of the project, it turned out that even though

both MongoDB and Oracle are two databases, as a terminology and the way they refer

to the objects of databases are defined different, yet they can be mapped and correspond

to counterparts.

Figure 17 : Property Information Map Implemented in MongoDB with Google Street View

43

SQL Terms/Concepts MongoDB Terms/Concepts

Database Database

Table Collection

Row Document or BSON document

Column Field

Index Index

Table Joins $lookup, embedded documents

Specify any unique column or

column combination as primary

key.

In MongoDB, the primary key is

automatically set to the _id field.

As it can be seen in the Table 1 above, MongoDB doesn’t support joins. There are not

any tables, columns or rows like structures. In spite of supporting non-structured or

half-structured data, MongoDB uses primary key to uniquely identify each document in

the collection and indexes are available to use. To be able to join two collections, there

is a specific function called lookup, it can match the fields but it doesn’t coerce to have

a relation between collections. In this project, there is only one collection was created to

store the data, which contains necessary information composed by 5 tables in Oracle

RDBMS (Figure 18).

Table 1: SQL vs NoSQL Terminologies

Figure 18: Joined Tables.

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#pipe._S_lookup
https://docs.mongodb.com/manual/reference/glossary/#term-id

44

The same data acquired by MongoDB in Mongo shell is more lightweight and being a

single collection doesn’t need to join and it can be reached just by single querying

method.

Since having one collection, lookup functions have no use. In MongoDB every

collection has 16 Mb limit, if the required data exceeds that size then user have to create

a new collection, which will be the case that joins might be necessary between

collections. Although not used in the MongoDB implementation because of importing

the same data acquired from Oracle Database, if a user desires to create a collection

simply writing name of collection and inserting in it is enough to create a new collection

without describing the collections’ features because of being a non-structured, shapeless

BSON object and every document in the collection doesn’t have to be in the same

structure as the other documents in the same collection, which means, users do not have

to determine what kind of document and in which order to insert into collection.

Besides many other simplifying approaches, there is a CRUD like operation which is

called UPSERT. It derives from combination of insert and update. In this operation,

Figure 19: MongoDB data query and Representation of a document in a collection.

45

MongoDB checks the collection if the data which is requested to be updated is

available, it updates, if it is not, it inserts the new data into the collection.

6.2. Analyzing Oracle on Querying Property Information

As it is mentioned in previous chapter, Oracle being a relational database, to gather the

whole information about the property, it has to reach every table to get necessary data of

Property information map. Owing to the fact that normalization rules applied, on the

one hand, reducing data redundancy and simplifying the database design, but on the

other hand, relational databases increases the required number of access to different

tables. For instance: In the database model shown in chapter 5.3. In order to get city

district information for a building, it is needed to be referenced to parcel first and then

necessary information can be accessed through matching parcel’s DISTRICTID. Taking

all these aspects into account, it is important to see execution plan of the queried

information shown in Figure 20 below.

What is Cost? The Oracle Optimizer is a cost-based optimizer. The execution plan

selected for a SQL statement is just one of the many alternative execution plans

considered by the Optimizer. The Optimizer selects the execution plan with the lowest

cost, where cost represents the estimated resource usage for that plan. The lower the

Figure 20: Execution plan for the Query.

46

cost the more efficient the plan is expected to be. The optimizer’s cost model accounts

for the IO, CPU, and network resources that will be used by the query [18].

There are 11001 records in total, which belongs to each building, gathered by joining

the tables and it takes 3,681 seconds to retrieve and the size of the whole data in all

tables is around 4 MB (Figure 21).

6.3. Analyzing MongoDB on Querying Property Information

In chapter 6.1 where stating the characteristic and implementation differences, it is

mentioned that being non-structured or half-structured gives quite convenience in terms

of development and flexibility. Nevertheless, this flexibility might cost more space in

Figure 21: Query Result of Necessary Information for the Map.

Figure 22: Size of Tables List.

47

the memory. As seen in the Figure 23 below, the total size of 11001 data equals to

4620288 byte which is approximately 5.5 Mb.

Having no relations, generally, MongoDB requires to access only one collection, same

case as in this project and to be able to return how collections are being reached, simply

explain command has to be run on the collection. The MongoDB query optimizer

processes queries and chooses the most efficient query plan for a query given the

available indexes. The query system then uses this query plan each time the query runs.

The query optimizer only caches the plans for those query shapes that can have more

than one viable plan. For each query, the query planner searches the query plan cache

for an entry that fits the query shape. If there are no matching entries, the query planner

generates candidate plans for evaluation over a trial period. The query planner chooses a

winning plan, creates a cache entry containing the winning plan, and uses it to generate

the result documents. If a matching entry exists, the query planner generates a plan

based on that entry and evaluates its performance through a replanning mechanism. This

mechanism makes a pass/fail decision based on the plan performance and either keeps

or evicts the cache entry. On eviction, the query planner selects a new plan using the

normal planning process and caches it. The query planner executes the plan and returns

the result documents for the query [19].

After running command, query planner was listed to show details as below (Figure 24).

Following the list, it suggests that 11001 records were reached with a collection scan,

which took 71 milliseconds.

Figure 23: Size of Collection in MongoDB.

https://docs.mongodb.com/manual/reference/glossary/#term-query-shape

48

6.4. Comparison of Results

Following the analysis, the query results, which retrieved the same data, of two

databases can be compared. According to the analysis made previous subheadings of

this chapter, both databases gave different results in terms of size and the performance.

However, these results can change, based on the servers workload, which databases run

on it and the execution plans` results are more like estimations rather than a real value in

terms of costs and time. To be able to more accurate while comparing, the execution

plans were run several times with queries. The figures representing, more reflects the

average value. Apparently, there is not a big difference from memory size perspective

but interestingly, in MongoDB the required data to be represented on the map is larger

than the Oracle database. However, considering tables and relations Oracle database

was expected to be larger in size. Even so that, since the data inserted with is relatively

small in size and it may not be suggesting a general assumption. In Oracle database the

Figure 24: Execution Plan for Collection in MongoDB.

49

size of data was approximately 4 Mb and it is 1.5 Mb less than MongoDB’s collection

size. Nevertheless, MongoDB was much faster to return query results and the result

execution plan suggested estimation time is 71 milliseconds which is much smaller than

3 seconds that Oracle responded for the full scanned tables. For a single query, based on

altitude and latitude data, MongoDB responded in 30 milliseconds while Oracle

Database corresponds in 1.4 seconds and during executions made through Property

Information Map application even though the difference was not so tangible, because of

once data accessed for the next time server keeps the data in memory, the response time

seemed to be slightly in favor of MongoDB.

7. Suggestions for Future Work

This thesis aimed to implement a property information map application by using 2

different databases, since the framework of this thesis is rather limited, the current

project should be extended in such a way that used databases can be compared from

different aspects. Thus, as a future work, this project can be extended both theoretically

and practically. In other words, the data size has to be increased which will entail the

increasing hardware requirements as well. After doing so, the interaction between users

and the application can be improved so that users should be able to update, delete or

create new information regarding properties. Moreover, following these steps, there can

be created more complicated data models which will be a better case to compare 2

databases under different circumstances. Property map’s features can be improved by

adding historical data which will show the changes about the property over time.

Considering the whole properties in a country, this project’s scale is rather small and if

all properties’ information is added into these databases then under that conditions the

project and the results can provide better understanding. It should be always taken into

account that this project is only focused on the property information rather than the

whole geographical land information.

8. Conclusion

The research yielded that being members of relational and non-relational databases

Oracle and MongoDB have certain advantages over each other. Specially, MongoDB is

much more flexible and implementation in MongoDB requires less effort and querying

50

response time faster than Oracle, Yet, it cannot be completely concluded that MongoDB

is superior of Oracle based on only this research. Also, reviewed literature suggests that

if the queries had been made on the similar structure for instance MongoDB having

more than one collection and relations between those collections the difference would

have been much less from the performance aspect [20]. Furthermore, for this research,

databases were used only for querying and there was no any CRUD operation

implemented. Considering all this aspects, to sum up, it can be said that for Property

Information Map which intends to give only information but not to be edited by users,

can provide better performance and flexibility if it is implemented in MongoDB.

Practically, the project which was implemented is more suitable for MongoDB rather

than Oracle because of easy implementation, data structure, faster response time and

being non-relational provides certain level of convenience. On the other hand, if the

project created such a way which requires more complex transactions and strictly

defined rules then it would be a better solution to use Oracle Database. DBMSs have

many different aspects and database is a very broad concept. Comparing Databases

from one aspect could lead a misjudgement. Based on requirements, designer or the

developer of the system must pick the right DBMS. Even sometimes some applications

can function better if both of relational and non-relational databases are used together.

Even the MongoDB and Oracle developers are very well aware of their strong and weak

sides such that MongoDB states that While most modern applications require a flexible,

scalable system like MongoDB, there are use cases for which a relational database like

Oracle would be better suited. Applications that require complex, multi-row transactions

(e.g., a double-entry bookkeeping system) would be good examples. MongoDB is also

not a drop-in replacement for legacy applications built around the relational data model

and SQL.A concrete example would be the booking engine behind a travel reservation

system, which typically involves complex transactions. While the core booking engine

might run on Oracle, those parts of the app that engage with users – serving up content,

integrating with social networks, managing sessions – would be better placed in

MongoDB [21].

Furthermore , Oracle as a corporation developed its own NoSQL database in 2011 and

the concepts of sharding and replication provides great flexibility and scalability when

workload over a server need to be distributed on multiple servers which creates costly

efficient solution for the existing but need to be overhauled database systems. Also,

social web sites lead to spread the usage of MongoDB, which data doesn’t have any

51

structure mostly and non-relational databases quickly adopted by many social websites’

corporations. To sum up, this thesis doesn’t give an overall view from all aspects of 2

databases and property information map tough, it certainly provides some understanding

on both an instruction on how to implement and the differences of NOSQL and SQL

databases on the example of Property Information Maps.

References

[1] Oracle Corp., "Oracle Help centre," 2017. [Online]. Available:
http://docs.oracle.com/cd/E25178_01/server.1111/e25789/intro.htm. [Accessed
12 03 2017].

[2] S. B. N. Ramez Elmasri, Fundamentals of database systems / .—6th ed., Boston,
Massachusets: Addison-Wesley, 2011.

[3] Oracle Databases, "Introduction to Oracle Database," 10 04 2017. [Online].
Available:
https://docs.oracle.com/cd/E11882_01/server.112/e40540/intro.htm#CNCPT001.

[4] Oracle Corp., "Oracle Help Centre," 2017. [Online]. Available:
[https://docs.Oracle.com/database/121/CNCPT/intro.htm#CNCPT88784.
[Accessed 12 3 2017].

[5] N. Leavitt, "Will NoSQL Databases Live Up to Their Promise?," CiSE, vol. 0018, no.
9162, pp. 12-14, 2010.

[6] S. G. S. N. Edward, Practical MongoDB: Architecting, Developing, and
Administering MongoDB, Apress, 2015.

[7] A. P. P. Ameya Nayak, "Type of NOSQL Databases and its Comparison with
Relational Databases," International Journal of Applied Information Systems
(IJAIS), vol. 5, no. ISSN : 2249-0868, pp. 16-19, March 2013.

[8] P. Sadalage, NoSQL Databases: An Overview, ThoughtWorks, Inc.
https://www.thoughtworks.com/insights/blog/nosql-databases-overview, 2014.

[9] C. Strauch, NoSQL Databases, Hochschule der Medien, Stuttgart, 2012.

[10] Y. Gurevich, Comparative Survey of NoSQL/ NewSQL DB Systems (Master's
Dissertation), The Open University of Israel Computer Science Division, 2015.

[11] Riigi Teataja, "Territory of Estonia Administrative Division Act," Riigikogu, Tallinn,
2013.

[12] R. Templin, "Introduction to IIS Architectures," 16 11 2007. [Online]. Available:
https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-
to-iis-architecture. [Accessed 15 1 2017].

[13] H. F. K. S. Abraham Silberschatz, Database system concepts, McGraw-Hill, 2011.

[14] A. N. Eva Dodsworth, "Academic Uses of Google Earth and Google Maps in a
Library Setting," Information Technology and Libraries , vol. 31, no. 2, p. 102,

52

2012.

[15] J. M. J. F. Nicholas C. Zakas, Proffesional Ajax, Wiley, 2005, p. 184.

[16] Google, "Google Developers," [Online]. Available:
https://developers.google.com/maps/documentation/streetview/intro. [Accessed
15 2 2017].

[17] MongoDB, "MongoDB Documentation," [Online]. Available:
https://docs.mongodb.com/manual/reference/program/mongo/. [Accessed 2 02
2017].

[18] White paper Oracle, "The Oracle Optimizer Explain the Explain Plan," april 2017.
[Online]. Available: http://www.oracle.com/technetwork/database/bi-
datawarehousing/twp-explain-the-explain-plan-052011-393674.pdf. [Accessed 5
May 2017].

[19] MongoDB Inc., "MongoDB Documentation," 2017. [Online]. Available:
https://docs.mongodb.com/manual/core/query-plans/. [Accessed 20 3 2017].

[20] L. S. S. Humasak T. A. Simanjuntak, "Query Response Time Comparison NOSQLDB
MONGODB with SQLDB Oracle," ResearchGate, vol. 13, no. 1, pp. 95-105, 2015.

[21] "MongoDB and Oracle Compared," MongoDB Inc., [Online]. Available:
https://www.mongodb.com/compare/mongodb-oracle. [Accessed 10 5 2017].

[22] L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press, 2009.

Appendix 1 – Source code for Oracle Database connected

1. @using WebMatrix.Data
2. @using Oracle.ManagedDataAccess.Client;
3. @using Oracle.ManagedDataAccess.EntityFramework;
4.
5. @{
6.
7.
8. Page.Title = "Home Page";
9. var db = Database.Open("BuildingInfo");
10. var selectQueryString = "select building.Address,buildingtype,

 building.adsoid,validsince,replace(building.latitude,',','.')
 as latitude";

11. selectQueryString += ",replace(building.longitude,',','.')
 as longitude ,parcelid";

12. selectQueryString += ",countyname,cityname,citydistrict.districtname,
 to_char(registrationdate,'DD/MM/YYYY') as registrationdate,
 to_char(changingdate,'DD/MM/YYYY') as changingdate";

13. selectQueryString += ",intendeduse1,intendeduse2,intendeduse3,
 parcel.area,otherarea ";

53

14. selectQueryString += ",landregistryarea,surveyingdate,surveyor,
 surveyingmethod,evaluationzone";

15. selectQueryString += " from building ,citydistrict,parcel ,city , county "
;

16. selectQueryString += " where parcel.districtid=citydistrict.districtid ";

17. selectQueryString += " and parcel.parcelidentifier=building.parcelid ";
18. selectQueryString += " and city.cityid=citydistrict.cityid ";
19. selectQueryString += " and county.isocountyid=city.countyid ";
20. }
21.
22.
23.
24. <html>
25. <head>
26. <!--<script src="JavaScript.js"></script>-->
27. <link rel="stylesheet" type="text/css" href="MapStyle.css">
28. </head>
29. <body>
30. <div class="container">
31. <div class="options-box">
32. <h1>District buildings info map </h1>
33. <div>
34. <input id="show-listings" type="button" value="Show info">
35. <input id="hide-listings" type="button" value="Hide info">
36. </div>
37. <div id="infowin">
38.
39. </div>
40.
41. </div>
42. <div id="map"></div>
43. </div>
44.
45. <script>
46.
47. var map;
48. // Create a new blank array for all the listing markers.
49. var markers = [];
50. function initMap() {
51. // Constructor creates a new map -

 only center and zoom are required.
52. map = new google.maps.Map(document.getElementById('map'), {
53. center: { lat: 59.396956, lng: 24.670968 },
54. zoom: 15,
55.
56. });
57.
58. var largeInfowindow = new google.maps.InfoWindow();
59. var tr = 0; var locations = [];
60. @foreach (var row in db.Query(selectQueryString))
61. {
62. <Text>
63. locations.push({
64. title: "@row.address",
65. location: {
66. lat: parseFloat("@row.latitude"),
67. lng: parseFloat("@row.longitude")
68. },
69. city:"@row.cityname",
70. district: "@row.districtname",
71. parcelid: "@row.parcelid",
72. registrationdate: "@row.registrationdate",
73. changingdate: "@row.changingdate",
74. intendeduse1: "@row.intendeduse1",
75. intendeduse2: "@row.intendeduse2",

54

76. intendeduse3: "@row.intendeduse3",
77. area: "@row.area",
78. otherarea: "@row.otherarea",
79. landregistryarea: "@row.landregistryarea",
80. surveyingdate: "@row.surveyingdate",
81. surveyor:"@row.surveyor",
82. surveyingmethod:"@row.surveyingmethod",
83. evaluationzone:"@row.evaluationzone",
84. buildingtype: "@row.buildingtype",
85. adsoid: "@row.adsoid",
86. validsince: "@row.validsince"
87. })
88. </Text>
89. }
90.
91. // The following group uses the location array to create an array

of markers on initialize.
92. for (var i = 0; i < locations.length; i++) {
93. // Get the position from the location array.
94. var position = locations[i].location;
95. var title = locations[i].title;
96. var year = locations[i].year;
97. var x = locations[i].location.lat;
98. var y = locations[i].location.lng;
99. var city=locations[i].city;
100. var district = locations[i].district;
101. var image = "/Images/Home.PNG";
102. var parcelid = locations[i].parcelid;
103. var registrationdate = locations[i].registrationdate;
104. var changingdate = locations[i].changingdate;
105. var intendeduse1 = locations[i].intendeduse1;
106. var intendeduse2 = locations[i].intendeduse2;
107. var intendeduse3 = locations[i].intendeduse3;
108. var area = locations[i].area;
109. var otherarea = locations[i].otherarea;
110. var landregistryarea = locations[i].landregistryarea;
111. var surveyingdate = locations[i].surveyingdate;
112. var surveyor = locations[i].surveyor;
113. var surveyingmethod = locations[i].surveyingmethod;
114. var evaluationzone = locations[i].evaluationzone;
115. var buildingtype = locations[i].buildingtype;
116. var adsoid = locations[i].adsoid;
117. var validsince = locations[i].validsince
118.
119.
120.
121.
122.
123. // Create a marker per location, and put into markers a

rray.
124. var marker = new google.maps.Marker({
125. map: map,
126. icon: image,
127. position: position,
128. title: title,
129. animation: google.maps.Animation.DROP,
130. id: i,
131. lng: y,
132. lat: x,
133. city:city,
134. district: district,
135. parcelid: parcelid,
136. registrationdate: registrationdate,
137. changingdate:changingdate,
138. intendeduse1: intendeduse1,
139. intendeduse2: intendeduse2,

55

140. intendeduse3: intendeduse3,
141. area: area,
142. otherarea: otherarea,
143. landregistryarea:landregistryarea,
144. surveyingdate:surveyingdate,
145. surveyor:surveyor,
146. surveyingmethod:surveyingmethod,
147. evaluationzone: evaluationzone,
148. buildingtype: buildingtype,
149. adsoid: adsoid,
150. validsince:validsince
151.
152.
153. });
154. // Push the marker to our array of markers.
155. markers.push(marker);
156. // Create an onclick event to open an infowindow at eac

h marker.
157. marker.addListener('click', function () {
158. populateInfoWindow(this, largeInfowindow);
159. });
160. }
161. document.getElementById('show-

listings').addEventListener('click', showListings);
162. document.getElementById('hide-

listings').addEventListener('click', hideListings);
163. }
164. // This function populates the infowindow when the marker is
165. clicked. We'll only allow
166. // one infowindow which will open at the marker that is clicked

, and populate based
167. // on that markers position.
168. function populateInfoWindow(marker, infowindow) {
169. // Check to make sure the infowindow is not already opened

on this marker.
170. if (infowindow.marker != marker) {
171. infowindow.marker = marker;
172. var contentstr = '<div>' +
173. '<h1 id="firstHeading" class="firstHeading">' + mar

ker.title + '</h1>' +
174. '</div>' +
175. ' <table class="dogisPopupTble">' +
176. '<tbody>' +
177. '<tr> <th style="text-align: center; background-

color: #dffddd;font-family: arial, sans-
serif;" colspan="2"> Parcel Info </th></tr>' +

178. '<tr><td>County:</td><td>Harju maakond</td></tr>' +
179. '<tr><td>Municipality:</td><td>'+ marker.city + '</td></tr>

' +
180. '<tr><td>Settlement unit:</td><td>' + marker.district + '</

td></tr>' +
181. '<tr><td>Identifier:</td><td>' + marker.parcelid + '</td></

tr>' +
182. '<tr><td>Registration date:</td><td>' + marker.registration

date + '</td></tr>' +
183. '<tr><td>Changing date:</td><td>' + marker.changingdate + '

</td></tr>' +
184. '<tr><td>Intended use 1:</td><td>'+marker.intendeduse1 +'</

td></tr>' +
185. '<tr><td>Intended use 2:</td><td>' + marker.intendeduse2 +

'</td></tr>' +
186. '<tr><td>Intended use 3:</td><td>' + marker.intendeduse3 + '

</td></tr>' +
187. '<tr><td>Area:</td><td>' + marker.area + '</td></tr>' +
188. '<tr><td>Other area:</td><td>' + marker.otherarea + '</td><

/tr>' +

56

189. '<tr><td>Land registry area:</td><td>' + marker.landregistr
yarea + '</td></tr>' +

190. '<tr><td>Surveying date:</td><td>' + marker.surveyingdate +
 '</td></tr>' +

191. '<tr><td>Surveyor:</td><td>' + marker.surveyor + '</td></tr
>' +

192. '<tr><td>Surveying method:</td><td>' + marker.surveyingmeth
od + '</td></tr>' +

193. '<tr>' +
194. '<td>Evaluation zone:</td>' +
195. ' <td>' +
196. ' <table>' +
197. ' <tbody>' +
198. ' <tr><td><a href="http://www.maaamet.ee/hv/

784.pdf" target="_blank"><u>H0784010</u></
a></td><td> 100% </td></tr>' +

199. ' </tbody>' +
200. '</table>' +
201. '</td>' +
202. '</tr>' +
203. '</tbody>' +
204. '</table>';
205. var buildingcontentstr =
206. ' <table class="dogisPopupTble">' +
207. '<tbody>' +
208. '<tr> <th style="text-align: center; background-

color: #dffddd;font-family: arial, sans-
serif;" colspan="2"> Building Info </th></tr>' +

209. '<tr><td>County:</td><td>Harju maakond</td></tr>' +
210. '<tr><td>Municipality:</td><td>' + marker.city + '</td></t

r>' +
211. '<tr><td>Address:</td><td>' + marker.title + '</td></tr>'

+
212. '<tr><td>adsoid:</td><td>' + marker.adsoid + '</td></tr>'

+
213. '<tr><td>Building type:</td><td>' + marker.buildingtype +

'</td></tr>' +
214. '<tr><td>Registration Valid Since:</td><td>' + marker.vali

dsince + '</td></tr>' +
215. '<tr><td>Lat, long:</td><td>' + marker.lat + ','+ marker.l

ng + '</td></tr>' +
216. '</tbody>' +
217. '</table>';
218.
219. infowindow.setContent('');
220. // infowindow.open(map, marker);
221. // Make sure the marker property is cleared if the info

window is closed.
222.
223. infowindow.addListener('closeclick', function () {
224. infowindow.setMarker = null;
225. });
226.
227. var streetViewService = new google.maps.StreetViewService();

228. var radius = 50;
229. // In case the status is OK, which means the pano was

 found, compute the
230. // position of the streetview image, then calculate

 the heading, then get a
231. // panorama from that and set the options
232. function getStreetView(data, status) {
233. infowindow.setContent(buildingcontentstr);
234.
235. if (status == google.maps.StreetViewStatus.OK) {

57

236. var nearStreetViewLocation = data.location.latLng;

237. var heading = google.maps.geometry.spherical.computeHeading(

238. nearStreetViewLocation, marker.position);
239. var streewtviewstr = '<div id="pano"></div>';
240. contentstr = contentstr + streewtviewstr;
241. document.getElementById("infowin").innerHTML =

contentstr;
242. var panoramaOptions = {
243. position: nearStreetViewLocation,
244. pov: {
245. heading: heading,
246. pitch: 30
247. }
248. };
249. var panorama = new google.maps.StreetViewPanora

ma(
250. document.getElementById('pano'), panoramaOpti

ons);
251. } else {
252. var nostreetstr = '<div>' + marker.title + '</d

iv>' +
253. '<div>No Street View Found</div>';
254. document.getElementById("infowin").innerHTML =

contentstr + nostreetstr;
255.
256. }
257. }
258.
259. }
260. // Use streetview service to get the closest streetview ima

ge within
261. // 50 meters of the markers position
262. streetViewService.getPanoramaByLocation(marker.position, ra

dius, getStreetView);
263. infowindow.open(map, marker);
264.
265.
266. }
267. // This function will loop through the markers array and

 display them all.
268. function showListings() {
269. var bounds = new google.maps.LatLngBounds();
270. // Extend the boundaries of the map for each marker and

 display the marker
271. for (var i = 0; i < markers.length; i++) {
272. markers[i].setMap(map);
273. bounds.extend(markers[i].position);
274. }
275. document.getElementById('infowin').style.display = "block";

276. map.fitBounds(bounds);
277. }
278. // This function will loop through the listings and hide them all

279. function hideListings() {
280. for (var i = 0; i < markers.length; i++) {
281. markers[i].setMap(null);
282. }
283. document.getElementById('infowin').style.display = "none";

284. }
285.
286.
287. </script>

58

288.
289. <script async defer
290. src="https://maps.googleapis.com/maps/api/js?key=AIzaSyCqhc

TpzfJWTABAc0zDozTtu2dGL4DM6z4&v=3&callback=initMap">
291. </script>
292.
293. </body>
294. </html>

Appendix 2 – Source code for Mongo Database connected

1. @using WebMatrix.Data;
2. @using MongoDB.Driver;
3. @using MongoDB.Driver.Core;
4. @using MongoDB.Driver.GeoJsonObjectModel;
5. @using MongoDB.Bson;
6. @using System;
7. @using System.Net.Http;
8. @using System.Net;
9. @using System.Threading.Tasks;
10. @using System.IO;
11.
12. @{
13.
14. Page.Title = "Home Page";
15. public async Task Mainasync(string[] args) {
16. var connectionstring = "mongodb://localhost:27017";
17. var client = new MongoClient(connectionstring);
18. var db = client.GetDatabase("test");
19. var col = db.GetCollection<BsonDocument>("buildingInfo");
20.
21. using (var cursor = await col.Find(new BsonDocument()).ToCursorAsync()

)
22. {
23.
24. while (await cursor.MoveNextAsync())
25. {
26. var tr = 0; var locations = [];
27. @foreach (var item in col.Find(_=>true).ToListAsync().Result)
28. {
29. <Text>
30. locations.push({
31. title: "@item["ADDRESS"].AsString",
32. location: {
33. lat: parseFloat("@item["LATITUDE"].AsString"),
34. lng: parseFloat("@item["LONGITUDE"].AsString")
35. },
36. city: "@item["CITY"].AsString",
37. district: "@item["DISTRICTNAME"].AsString",
38. parcelid: "@item["PARCELID"].AsString",
39. registrationdate:"@item["REGISTRATIONDATE"].AsString",
40. changingdate: "@item["CHANGINGDATE"].AsString",
41. intendeduse1: "@item["INTENDEDUSE1"].AsString",
42. intendeduse2: "@item["INTENDEDUSE2"].AsString",
43. intendeduse3: "@item["INTENDEDUSE3"].AsString",
44. area: "@item["AREA"].AsString",
45. otherarea: "@item["OTHERAREA"].AsString",
46. landregistryarea: "@item["LANDREGISTRYAREA"].AsString",
47. surveyingdate: "@item["SURVEYINGDATE"].AsString",

59

48. surveyor:"@item["SURVEYOR"].AsString",
49. surveyingmethod:"@item["SURVEYINGMETHOD"].AsString",
50. evaluationzone:"@item["EVALUATIONZONE"].AsString",
51. buildingtype:"@item["BUILDINGTYPE"].AsString",
52. adsoid: "@item["ADSOID"].AsString",
53. validsince:"@item["VALIDSINCE"].AsString"
54. })
55.
56. </Text>
57. }
58. }
59.
60.
61. }
62.
63. }
64.
65.
66. }
67.
68.
69. <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
70. <meta charset="utf-8">
71. <html>
72.
73. <head>
74. <!--<script src="JavaScript.js"></script>-->
75. <link rel="stylesheet" type="text/css" href="MapStyle.css">
76.
77. </head>
78. <body>
79. <div class="container">
80. <div class="options-box">
81. <h1>District buildings info map </h1>
82. <div>
83. <input id="show-listings" type="button" value="Show info">
84. <input id="hide-listings" type="button" value="Hide info">
85. </div>
86. <div id="infowin">
87.
88. </div>
89.
90. </div>
91. <div id="map"></div>
92. </div>
93.
94. <script>
95.
96. var map;
97. // Create a new blank array for all the listing markers.
98. var markers = [];
99. function initMap() {
100. // Constructor creates a new map -

 only center and zoom are required.
101. map = new google.maps.Map(document.getElementById('map'), {

102. center: { lat: 59.396956, lng: 24.670968 },
103. zoom: 15,
104.
105. });
106.
107. var largeInfowindow = new google.maps.InfoWindow();
108.
109. // The following group uses the location array to create an

 array of markers on initialize.
110. for (var i = 0; i < locations.length; i++) {

60

111. // Get the position from the location array.
112. var position = locations[i].location;
113. var title = locations[i].title;
114. var year = locations[i].year;
115. var x = locations[i].location.lat;
116. var y = locations[i].location.lng;
117. var city=locations[i].city;
118. var district = locations[i].district;
119. var image = "/Images/Home.PNG";
120. var parcelid = locations[i].parcelid;
121. var registrationdate = locations[i].registrationdate;
122. var changingdate = locations[i].changingdate;
123. var intendeduse1 = locations[i].intendeduse1;
124. var intendeduse2 = locations[i].intendeduse2;
125. var intendeduse3 = locations[i].intendeduse3;
126. var area = locations[i].area;
127. var otherarea = locations[i].otherarea;
128. var landregistryarea = locations[i].landregistryarea;
129. var surveyingdate = locations[i].surveyingdate;
130. var surveyor = locations[i].surveyor;
131. var surveyingmethod = locations[i].surveyingmethod;
132. var evaluationzone = locations[i].evaluationzone;
133. var buildingtype = locations[i].buildingtype;
134. var adsoid = locations[i].adsoid;
135. var validsince = locations[i].validsince
136.
137.
138.
139.
140.
141. // Create a marker per location, and put into markers

 array.
142. var marker = new google.maps.Marker({
143. map: map,
144. icon: image,
145. position: position,
146. title: title,
147. animation: google.maps.Animation.DROP,
148. id: i,
149. lng: y,
150. lat: x,
151. city:city,
152. district: district,
153. parcelid: parcelid,
154. registrationdate: registrationdate,
155. changingdate:changingdate,
156. intendeduse1: intendeduse1,
157. intendeduse2: intendeduse2,
158. intendeduse3: intendeduse3,
159. area: area,
160. otherarea: otherarea,
161. landregistryarea:landregistryarea,
162. surveyingdate:surveyingdate,
163. surveyor:surveyor,
164. surveyingmethod:surveyingmethod,
165. evaluationzone: evaluationzone,
166. buildingtype: buildingtype,
167. adsoid: adsoid,
168. validsince:validsince
169.
170.
171. });
172. // Push the marker to our array of markers.
173. markers.push(marker);
174. // Create an onclick event to open an infowindow at

 each marker.

61

175. marker.addListener('click', function () {
176. populateInfoWindow(this, largeInfowindow);
177. });
178. }
179. document.getElementById('showlistings').addEventListener('click', showL

istings);
180. document.getElementById('hide-

listings').addEventListener('click', hideListings);
181. }
182. // This function populates the infowindow when the marker is

 clicked. We'll only allow
183. // one infowindow which will open at the marker that is clicked

, and populate based
184. // on that markers position.
185. function populateInfoWindow(marker, infowindow) {
186. // Check to make sure the infowindow is not already opened

on this marker.
187. if (infowindow.marker != marker) {
188. infowindow.marker = marker;
189. var contentstr = '<div>' +
190. '<h1 id="firstHeading" class="firstHeading">' + marker.title + '</h1>'

+
191. '</div>' +
192. ' <table class="dogisPopupTble">' +
193. '<tbody>' +
194. '<tr> <th style="text-align: center; background-color: #dffddd;font-

family: arial, sans-serif;" colspan="2"> Parcel Info </th></tr>' +
195. '<tr><td>County:</td><td>Harju maakond</td></tr>' +
196. '<tr><td>Municipality:</td><td>'+ marker.city + '</td></tr>

' +
197. '<tr><td>Settlement unit:</td><td>' + marker.district + '</

td></tr>' +
198. '<tr><td>Identifier:</td><td>' + marker.parcelid + '</td></

tr>' +
199. '<tr><td>Registration date:</td><td>' + marker.registration

date + '</td></tr>' +
200. '<tr><td>Changing date:</td><td>' + marker.changingdate + '

</td></tr>' +
201. '<tr><td>Intended use 1:</td><td>'+marker.intendeduse1 +'</

td></tr>' +
202. '<tr><td>Intended use 2:</td><td>' + marker.intendeduse2 +

'</td></tr>' +
203. '<tr><td>Intended use 3:</td><td>' + marker.intendeduse3 + '

</td></tr>' +
204. '<tr><td>Area:</td><td>' + marker.area + '</td></tr>' +
205. '<tr><td>Other area:</td><td>' + marker.otherarea + '</td><

/tr>' +
206. '<tr><td>Land registry area:</td><td>' + marker.landregistr

yarea + '</td></tr>' +
207. '<tr><td>Surveying date:</td><td>' + marker.surveyingdate +

 '</td></tr>' +
208. '<tr><td>Surveyor:</td><td>' + marker.surveyor + '</td></tr

>' +
209. '<tr><td>Surveying method:</td><td>' + marker.surveyingmeth

od + '</td></tr>' +
210. '<tr>' +
211. '<td>Evaluation zone:</td>' +
212. ' <td>' +
213. ' <table>' +
214. ' <tbody>' +
215. ' <tr><td><a href="http://www.maaamet.ee/hv/

784.pdf" target="_blank"><u>H0784010</u></
a></td><td> 100% </td></tr>' +

216. ' </tbody>' +
217. '</table>' +
218. '</td>' +

62

219. '</tr>' +
220. '</tbody>' +
221. '</table>';
222. var buildingcontentstr =
223. ' <table class="dogisPopupTble">' +
224. '<tbody>' +
225. '<tr> <th style="text-align: center; background-

color: #dffddd;font-family: arial, sans-
serif;" colspan="2"> Building Info </th></tr>' +

226. '<tr><td>County:</td><td>Harju maakond</td></tr>' +
227. '<tr><td>Municipality:</td><td>' + marker.city +

'</td></tr>' +
228. '<tr><td>Address:</td><td>' + marker.title + '</td></tr>'

+
229. '<tr><td>adsoid:</td><td>' + marker.adsoid + '</td></tr>'

+
230. '<tr><td>Building type:</td><td>' + marker.buildingtype +

'</td></tr>' +
231. '<tr><td>Registration Valid Since:</td><td>' +

 marker.validsince + '</td></tr>' +
232. '<tr><td>Lat, long:</td><td>' + marker.lat + ','+

 marker.lng + '</td></tr>' +
233. '</tbody>' +
234. '</table>';
235.
236. infowindow.setContent('');
237. // infowindow.open(map, marker);
238. // Make sure the marker property is cleared if the info

window is closed.
239.
240. infowindow.addListener('closeclick', function () {
241. infowindow.setMarker = null;
242. });
243.
244. var streetViewService = new google.maps.StreetViewService();

245. var radius = 50;
246. // In case the status is OK, which means the pano was

 found, compute the
247. // position of the streetview image, then calculate the

 heading, then get a
248. // panorama from that and set the options
249. function getStreetView(data, status) {
250. infowindow.setContent(buildingcontentstr);
251.
252. if (status == google.maps.StreetViewStatus.OK) {
253. var nearStreetViewLocation = data.location.latL

ng;
254. var heading = google.maps.geometry.spherical.co

mputeHeading(
255. nearStreetViewLocation, marker.position);
256. var streewtviewstr = '<div id="pano"></div>';
257. contentstr = streewtviewstr + contentstr ;
258. document.getElementById("infowin").innerHTML =

contentstr;
259. var panoramaOptions = {
260. position: nearStreetViewLocation,
261. pov: {
262. heading: heading,
263. pitch: 30
264. }
265. };
266. var panorama = new google.maps.StreetViewPanora

ma(
267. document.getElementById('pano'), panoramaOpti

ons);

63

268. } else {
269. var nostreetstr = '<div>' + marker.title + '</d

iv>' +
270. '<div>No Street View Found</div>';
271. document.getElementById("infowin").innerHTML =

nostreetstr + contentstr;
272.
273. }
274. }
275.
276. }
277. // Use streetview service to get the closest streetview

 image within
278. // 50 meters of the markers position
279. streetViewService.getPanoramaByLocation(marker.position, ra

dius, getStreetView);
280. infowindow.open(map, marker);
281.
282.
283. }
284. // This function will loop through the markers array and

 display them all.
285. function showListings() {
286. var bounds = new google.maps.LatLngBounds();
287. // Extend the boundaries of the map for each marker and

 display the marker
288. for (var i = 0; i < markers.length; i++) {
289. markers[i].setMap(map);
290. bounds.extend(markers[i].position);
291. }
292. document.getElementById('infowin').style.display = "block";

293. map.fitBounds(bounds);
294. }
295. // This function will loop through the listings and hide

 them all.
296. function hideListings() {
297. for (var i = 0; i < markers.length; i++) {
298. markers[i].setMap(null);
299. }
300. document.getElementById('infowin').style.display = "none";

301. }
302.
303.
304. </script>
305.
306. <script async defer
307. src="https://maps.googleapis.com/maps/api/js?key=AIzaSyCqhc

TpzfJWTABAc0zDozTtu2dGL4DM6z4&v=3&callback=initMap">
308. </script>
309.
310. </body>
311. </html>

	Author’s declaration of originality
	Abstract
	Annotatsioon
	List of figures
	List of tables
	List of abbreviations and terms
	1. Introduction
	2. Databases History
	3. Background Information
	3.1. Relational Databases (SQL)
	3.2. Relational Database Management System (RDBMS)
	3.2.1. Oracle as an RDBMS
	3.2.2. MSSQL as an RDBMS
	3.2.3. MYSQL as an RDBMS

	3.3. Non-Relational Databases
	3.3.1. Key-Value databases
	3.3.2. Document databases
	3.3.3. Wide Column Store / Column Families
	3.3.4. Graph stores

	4. Case study: Property information map
	4.1. Classification of Estonia administrative units and settlements

	5. Implementation of Property Information Map
	5.1. General Structure of the Implementation
	5.2. Using Google Maps API for Property Information User Interface
	5.2.1. Google Maps API

	5.3. Implementation with Oracle Database
	5.4. Implementation with MongoDB

	6. Analysis and Comparison of Results
	6.1. Terminology, Implementation and Concept differences
	6.2. Analyzing Oracle on Querying Property Information
	6.3. Analyzing MongoDB on Querying Property Information
	6.4. Comparison of Results

	7. Suggestions for Future Work
	8. Conclusion
	References
	Appendix 1 – Source code for Oracle Database connected
	Appendix 2 – Source code for Mongo Database connected

