TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Eyytip Direk 156396

COMPARISON OF RELATIONAL AND NON-
RELATIONAL DATABASES ON THE
EXAMPLE OF PROPERTY INFORMATION
MAP

Master’s thesis

Supervisor: Vladimir Viies

Co-supervisor : Lembit Jiirimagi

Tallinn 2017

1

Author’s declaration of originality

I hereby certify that | am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Eyyitip Direk

Abstract

Nowadays almost every information can be reached through internet. Applications,
internet, smart devices are everywhere and they are simplifying our lives. Data is crucial
for these applications so are the Databases, with the increasing usage of internet of
things even it will be much more crucial. Based on this demands, our perspective to
databases have also changed through years. Many years ago when we started using
databases we mostly care about the size of the data. Mainly this memory concern has
driven us to develop relational database and its normalization. Even though we still care
about the size today, we have much more memory space than we used to have. As users,
we always want to be informed much faster and reliable data and with the growing
popularity of social networks, users query a huge amount of data, since there is a trade-
off between query speed and the data stored size in the database, it has driven us to find
different solutions than regular SQL and the way we store the data in databases. In the
last decade this demands has steered the wheel of the database structures to NOSQL and
rather than having a strict dependencies of data, data relationships is required to be more
flexible and lightweight.

One of the most prominent applications that we use in our daily life are map
applications which guides, informs and even based on traffic jam they can suggest us
less congested routes to our home. Data is crucial for these applications so are the
Databases. We may not be even aware of that in our daily lives because as users of
those applications we mostly interact with the user interface and don’t know much
about how we are delivered data through. As Users of those applications, we always
desire and care about more reliable, faster and more informative data.

The main purpose of this thesis isto research and experiment the differences between
relational and non-relational databases on the map application of property information..
This paper sets out to explore the particular types of SQL and NOSQL databases. The
research topic has wide variety of different databases comparison. Mostly two types of
those databases are focused on this paper. The empirical analysis focuses on the
structure of databases used and implemented for the property information map.

The Applications developed uses modern ASP.net web pages, Google Maps API,
Oracle SQL developer, IS 10 Express, Oracle database express edition 11g and

MongoDB 3.4.4 which the last 2 ones are the members of relational and non-relational
databases.

As a conclusion, it will be discovered both implementation of the property information
map and the differences of databases which are used to feed information for the map.
Keywords: SQL(Structured Query Language), NOSQL(Non-structured Query
Language), Database models, relational database, non-relational database, Google Maps

Api, Oracle, MongoDB, 11S(Internet Information Service)

This thesis is written in English and is 63 pages long, including 8 chapters, 24 figures
and 1 table.

Annotatsioon

Relatsiooniliste ja mitterelatsiooniliste andmebaaside vordlus
kinnisvara kaardirakenduse niite

Internetist voib tidnapdeval kitte saada peaaegu iga teabe. Koikjal on rakendused,
internet, nutiseadmed ja need lihtsustavad meie elu. Andmed, sealhulgas andmebaasid,
on nende rakenduste jaoks véga olulised ning iiha suureneva interneti kasutamisega
muutuvad veelgi olulisemateks. Sellest tulenevalt on aastate jooksul muutunud ka
ootused andmebaasidele. Aastaid tagasi, kui hakkasime kasutama andmebaase, oli meie
jaoks oluline andmete maht. Peamiselt antud maélumahu probleem viis edasi
relatsioonandmebaaside ja nende normaliseerimise arendamiseni. Isegi kui me ka
tanapédeval endiselt selle parast muretseme, on meil palju rohkem méluruumi kui varem.
Kasutajatena soovime me alati palju kiiremalt ja usaldusvédirsemaid andmeid ning iiha
suureneva sotsiaalmeedia kasutamise tottu tehakse tohutul hulgal andmepéringuid,
tasakaalu otsimine andmebaasi talletatud andmete ja péringu kiiruse vahel on sundinud
meid otsima teisi lahendusi kui tavaline SQL ning viise, kuidas séilitada andmeid
andmebaasides. Viimasel kiimnendil on vdetud suund andmebaaside NOSQL
struktureerimisele ning andmete range soltuvuse asemel ndutakse seostes rohkem
paindlikkust ja kergust.

Uhed populaarseimad igapievaselt kastutatavatest rakendustest on kaardirakendused,
mis juhendavad, teatavad ja isegi pohinevad litklusummikutel ning oskavad soovitada
meile vahemhdivatud marsruuti koju. Nimetatud rakendustele on olulised nii andmed
kui ka andmebaasid. Oma igapédevaelus ei pruugi me olla sellest isegi teadlikud, kuna
kasutajatena suhtleme me enamasti kasutajaliidesega ja ei tea, kuidas andmed meieni
edastatakse. Nende rakenduste kasutajatena soovime me aga alati veel
usaldusvédrsemaid, kiiremaid ja informatiivsemaid andmeid.

Antud 10put66 pohieesmirk on uurida ja testida kinnisvarainfo kaardirakenduste
relatsioonandmebaaside ja mitterelatsioonandmebaaside erinevusi. T60 eesmirk on
uurida konkreetseid SQL ja NOSQL andmebaaside tiilipe. Uurimisteema sisaldab palju
erinevaid andmebaaside vdrdluseid. Antud t60s on keskendutud pohiliselt kahele
andmebaasi tiilibile. Empiiriline analiiiis keskendub andmebaaside struktuurile, mida
kasutatakse ja rakendatakse kinnisvarainfol pohineval kaardil.

Arendatud rakendused kasutavad kaasaegset ASP.net veebilehte, Google Maps Api,
Oracle Sqgl arendust, 1IS 10 Express, Oracle database express edition 11g ja Mongodb

3.4.4, milledest kaks viimast kuuluvad relatsioonandmebaaside ja
mitterelatsioonandmebaaside hulka.

Kokkuvotteks leitakse, kuidas teostada kinnisvarainfo kaarti ja millised on kaardile
teabe sisestamiseks kasutatavate andmebaaside erinevused.

Mirksonad: SQL(Structured Query Language), NOSQL(Non-structured Query
Language, struktuur), Database models, relational database, non-relational database,
Google Maps Api, Oracle, Mongodb, I1S (Internet Information Service)

Loputdo on kirjutatud inglise keeles ning sisaldab teksti 63 lehekiiljel, 8 peatiikki, 24
joonist, 1 tabelit.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Figure 16 :
Figure 17 :

Figure 18:
Figure 19:
Figure 20:

List of figures

RDBMS Popularity RANKINGS.ccoveuiiieiiiiiieieiiieee e sereee e ssiree e e e 20
Document based databases sample structure.........ccccceeeeeeecciveeee e, 23
Wide column databases sample Sstructure.cccccveeeeeciieeeccceeee e, 24
Graph store database sample structure........ccccceee oo, 25
NOSQL Databases popularity rankings pointed out in yellow. 26
Estonia Administrative units and settlements.cccccevviiiiiiiinieinicieee 28
TalliNN AISTIICES...eeieiiieeiie e 28
Estonia Land Board Administrative and settlement unit structure. 29
General Structure and components of Property Information Web Page. 31
GOOEIE MAPS API KEY...uvviieeieeeieeeteeeeee et e e eeerrree e e e e e e e e eaarreeeee e 33
E-R diagram of Information Map Database.ccccccceeeeeiieciiiieeee e, 35
Property Information Database Model and Relations.ccccceeeeeeeeinnnnneee. 36
Property Information Database Model and Relations.cccccceeeeeeennnnnenee. 37
Property Information Map implemented in Oracle..cccccevvveeeeeeeencnnnnnen. 38

Property Information Map with Google Street View implemented in Oracle.

Property Information Map Implemented in MongoDB.cccccceeeeeennnes 41

Property Information Map Implemented in MongoDB with Google Street

JOINEA TABIES. ... e 43
MongoDB data query and Representation of a document in a collection. .. 44

Execution plan for the QUErY.coo o 45

Figure 21: Query Result of Necessary Information for the Map......cccccevvvieeiiniiiennnns 46

Figure 22: Size of Tables LiSt......ccuiiiiiiiiee e e e 46

Figure 23: Size of Collection in MONGODB.cuiiiiiiiiiiiiiee et seee e 47

Figure 24: Execution Plan for Collection in MongoDB.cooccvieeiiiiiee e 48
List of tables

Table 1: SQL vs NOSQL TErMINOIOZIES ...vvvveeieeeieieiirieeeeeeeeeeccrreeeeeeeeeeerrrreeeee e e e s anneees 43

List of abbreviations and terms

RDBMS Relational Database Management System
DBMS Database Management System
SQL Structured Query Language
NoSQL Non-Relational or Not Only Sql
JSON Java Script Object Notation

BSON Binary JSON

CSS Cascading Style Sheet

HTML Hyper Text Markup Language
DCL Data Control Language

DML Data Manipulation Language

DDL Data Definition Language

TCL Transaction Control Language

API Application Programming Interface
ER Entity Relationship

ADSOID Address Object ID

Ul User Interface

CRUD Create, Read, Update, Delete

Table of Contents

Author’s declaration of originalityccocoiiiiiiiiiiii 2
ADSIFACT ...ttt bbbt ettt besaeens 3
N] (0] £= 1 (00 o SRRSO 5
LASE OF FIQUIES ...ttt et et e ae e e saaeaeesaesreennens 7
LiST OF TADIES ...ttt e sre e 8
List of abbreviations and termS..........cooeiieiririeeeee s 9
R | oY oo 0T 1 o o SRRSO 12
2. Databases HiSTOIYc.ccieiiieiiiieieeeeeete ettt et s reenae s 13
3. Background INformationcccooieiiiieiicieceeeee e 15
3.1. Relational Databases (SQL).....ccceeriririeieiierieriereee ettt 15
3.2. Relational Database Management System (RDBMS)cccccceeveveeneeee. 16
321, Oracleasan RDBIMS ...ttt 19
3.22. MSSQL asan RDBMS.........cooeiiiiieieisieieiseseee e 19
3.2.3. MYSQL asan RDBMS ...t 20

3.3. Non-Relational Databases.........cccecevirieieienienieseseseeeeieeee e 21
3.3.1. Key-Value databasesccovveieeierieienieseeieeee e 22
3.3.2. DOCUMENT AAtADASESecveevereeeiieiieieee et 22
3.3.3. Wide Column Store / Column FamilieS........ccccevvevvevieveneninenenenens 23
IR €1 2= 1o 5] (0] 1SS 24

4. Case study: Property information Map......ccccceeveeiieieesiieesee e 26
4.1. Classification of Estonia administrative units and settlements................ 27

5. Implementation of Property Information Mapcccccovevvienieiiienieeceesie e, 30
5.1. General Structure of the Implementation..........ccccceeveeeveeveveese e, 30
5.2. Using Google Maps API for Property Information User Interface......... 32
521, G00QIe MaPS AP ...ttt 33

5.3. Implementation with Oracle Database...........cccceevueevieerieeiieeniieeesie e 33

10

5.4. Implementation with MONQODB..........cccociiiiiiinieeee e 40

6. Analysis and Comparison 0f RESUILScccceevvieievieie e 42
6.1. Terminology, Implementation and Concept differencescccccecueeueeee. 42
6.2. Analyzing Oracle on Querying Property Information............c.ccccccveneee. 45
6.3. Analyzing MongoDB on Querying Property Information............c........... 46
6.4. Comparison Of RESUILScccevieiiiiiese e 48

7. Suggestions fOr FULUIE WOIKooeiieireeee et 49

ST ©7o o [o] [F] o] o RS RUUSRRRRSRRIN 49

RETEIENCES. ...ttt st be sttt e et e s b s besbeebeeseas 51

Appendix 1 — Source code for Oracle Database connectedcccecevvevererennennens 52

Appendix 2 — Source code for Mongo Database connected..........c.ccceeveevevreereennee. 58

11

1. Introduction

Our lives are flooded with all kind of information. Owing to databases we interact with
information through internet or web applications, easily and seamlessly on a daily basis.
When we look at the database definitions more or less we would see something similar
to these definitions below.

“A database is an organized collection of information treated as a unit. The purpose of a
database is to collect, store, and retrieve related information for use by database
applications. “ [1]

“A database is designed, built, and populated with data for a specific purpose. It has an
intended group of users and some preconceived applications in which these users are
interested.” [2]

As it can be understood from definitions, storing data is not enough to be a database.
Databases shouldn’t only store but also should be able to manipulate, respond and
interact with the users who query them. Since we are in an era which extremely requires
to instant access, store, update or delete the data we provide, databases play extremely
important role in our interaction with Internet, smart device applications and with the
growing popularity of 10T, basically everything we are surrounded and use in our daily
life. This interaction between the user and database are done through the DBMSs which
allows multiple users to interact with data stored by database. Moreover, DBMSs
manage all the processes like where to and how to store data. While it allows to multiple
users to modify the data stored by the database, DBMS ensures the data consistency at
the same time. Otherwise, the data provided to users, couldn’t respond the demands and
it would be nothing but failure. Since these requirements, databases have evolved
through the years. Maybe not the first but the most influential database model is
relational-database model which comes with the term of relational database
management systems and ensures the data integrity with the ACID characteristics. In
the Last decade , with the increasing amount of data demands over the web, technology
companies has been driven to search for different solutions to supply more reliable
,consistent ,fast , maintainable and secure data. Thus today it is getting more popular to
use non-relational databases. As its name suggests, without having a relation it targets to
have a faster response time than relational databases and at the same time intends to be
very lightweight and consistent. Even though this paper concerns more about the

12

querying data, knowing the general database models and databases history would give a

better overview for the this thesis’ case study.

2. Databases History

if we go back to first ages of human civilization, just after the invention of writing, we
could easily see people using the clay tablets or carvings on walls to be able to record
daily data specially by farmers. After people changed their lifestyle from nomadic to
more settled life. We needed to keep records of the trades and taxation. Basically, we
needed to keep track of our account. This meant not only recording data but also
deleting, updating and retrieving records. In the end, this lead to the development of
double entry book keeping which emerged in the 13th and 14th centuries. Indexes were
used to ease the process of retrieving data.

If we come little bit closer to near past we would encounter first stages of modern times
databases ,which examples are ship manifests, card catalogs and product inventories,
libraries, governmental records and statistics. The Reporting was another issue that
requires fast and impeccable data management which was made manually, and this was
quite cumbersome, time consuming, and possible to have error during that process.
Although mechanical calculators were used by the mid nineteenth century to fasten the
process, it was far from the desired level of ease and processing times of reporting.
Computers allowed us to automate our databases. Early computer databases were
constructed with flat file model a single consecutive list of records but when it comes to
search, this was an inefficient way to solution. Over time, we have needed to search and
maintain large volumes of records, which have to be faster, reliable and safe.

That requires to retrieve and reach the data in a random order rather than in consecutive.
Undoubtedly, this was also flaw of early stage computers storage disks which stores
data on magnetic tape.

After IBM introduced hard disk drives in 1956 which allows user to access data
randomly, In 1960s IBM has used a hierarchical model for their information
management systems. This was constituted by tree structural systems which every node
has pointer to its child nodes it has been used successfully by NASA for the lunar

lander. After some time of that a more flexible database model was developed by

13

Charles bachman, which used the same tree structure but every node might have more
than one parent nodes yet when the database get complicated it was hard to manage all

the pointers between nodes.

In 1970s Ted Codd developed relational database model which was proposing to
organize the data into simple tables with related information. There were no pointers to
maintain, relations were maintained by having matching data fields in each table. It
made it a lot easier to access, merge and change data. Several companies used it as a
base for commercial products. In 1975 IBM produced an experimental relational
databases named system R. it used structured query language developed by Don
Chamberlain and Raymond boyce to search and modify data.

In 1977, Oracle was introduced as a first commercially available relational database
compatible with SQL. Since then many companies and individuals have contributed the

evolution of relational databases and structured query languages.

Parallel to SQL and relational databases, there has been another way of implementing
databases but it wasn’t as popular as relational-databases until big data era. Today, we
are all connected any social networks and services with our smart phones, tablets and
near future with internet of things. Introducing of this services into our life bring
another necessity about the way of recording data which gained to NOSQL popularity.
“There are a number of reasons for the rise in interest on NOSQL. The first is speed and
the poor fit of traditional query languages to technologies such as in memory databases.
Secondly there is the form of the data which people want to store, analyze and retrieve.
Tweets from Twitter are data that do not easily fit a relational or object oriented
structure. Instead column based approaches were a column is the smallest unit of
storage or a document based approach where data is denormalized can be applied” [.
The idea of No-SQL is on the contrary of the SQL ,it doesn’t require strict rules and it
is very flexible and scalable and besides dominant web and social service companies
like Google, Facebook, Yahoo, it also targets the startup-companies, enterprise
companies and open-source developers which requires to be very flexible in aspect of
database models. As this thesis topic concerns about the relational and non-relational
databases, the next chapter it will be more focused on the relational and non-relational

databases’ structures and the way how they store and reach data.

14

3. Background Information

The features and characteristics of database systems vary. These feature differences like
how they store, access and manipulate the data makes the differences in the non-
functional requirements like accessibility, performance, maintainability, consistency i.e.
In this chapter, it is intended to give some background information on general

differences of different databases pointing out relational and non-relational databases’

types.

3.1. Relational Databases (SQL)

As it is mentioned in history part, relational databases exist since 1970s and E. F. Codd
defined a relational model based on mathematical set theory.

A relational database is a database that conforms to the relational model. The relational
model has the following major aspects:

Structures

Well-defined objects store or access the data of a database.

Operations

Clearly defined actions enable applications to manipulate the data and structures of a
database.

Integrity rules

Integrity rules govern operations on the data and structures of a database.

A relational database stores data in a set of simple relations. A relation is a set of tuples.
A tuple is an unordered set of attribute values.

A table is a two-dimensional representation of a relation in the form of rows (tuples)
and columns (attributes). Each row in a table has the same set of columns. A relational
database is a database that stores data in relations (tables). For example, a relational
database could store information about company employees in an employee table, a
department table, and a salary table.

15

https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-C76D1B18-B273-4163-A12A-F88AC06E8057
https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-F81FA4BC-AFAF-4A1B-BDFA-0BDF42512B7A
https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-C7F27053-7E3C-4F7A-945A-656598050C70
https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-DA8F7E11-B6AF-4ED3-B2A9-B5741E9AE2D4

Relational Database Elements
Table

Represents the collection of data in consecutive rows and those tables row mostly

connected to each other with foreign keys

Primary and Unique Keys

Primary and unique keys uniquely identifies each row of the table main difference
between two keys primary key is enforced to be set default not null which means if
there is a record to be inserted into a table it can’t have an empty value on primary key
column.

Foreign Keys

Foreign keys can be considered as a reference from one table to another table row and
depends on the relation of tables it can constraint the insert, delete or update operations.
Views

Basically, Views can represent subset of one or many tables virtually. The main reason
to use it is accessibility and speed of querying in case of multiple joined tables view.
Functions

As it is in the all programming languages they can return scalar or table values.
Procedures

Same as functions yet instead of returning value it generally modifies data.

Triggers

They function same as procedures but only under certain circumstances like while
inserting, deleting or updating the data in a table. Generally they are used for

maintaining the data consistency

3.2. Relational Database Management System (RDBMS)

Basically, RDBMS is a product or system which presents data as collection of rows and
columns .Besides that it requires using SQL as a query language which allows user to
retrieve, delete, manipulate, create and all kind of transactions to implement. An
RDBMS Is responsible for 2 the following types of operations:

Logical operations

16

These type operations specify what content is required. For example, a patient requests
some information regarding his medical condition in a hospital or a doctor as the user of
DBMS, he can keep record of his or her patients.

Physical operations

In this type operations, the RDBMS determines how things should be done, For instance
how to access data or how to modify or store data .For example, after an application
queries a table, the database may use an index to fetch the requested rows, brings the
data into memory, and may perform many operations before it returns the final result to

the user.

The most common RDBMSs are Oracle, MySql, PostgreSgl, MsSql. All these database
management systems support relational model as represented by SQL language.

SQL is a set-based declarative language that provides an interface to an RDBMS such
as Oracle Database. In contrast to procedural languages such as C, which
describe how things should be done, SQL is nonprocedural and describes what should
be done [3].

SQL is the ANSI standard language for relational databases. All operations on the data
in an Oracle, MySq|l, PostgreSgl, MsSql databases are performed using SQL statements.
For example, you use SQL to create tables and query and modify data in tables.

Users specify the result that they want (for example, the names of employees), not how

to derive it.

Examples of SQL statements;

Select employee_name ,employee_address ,employee_salary from employees;
INSERT INTO employees

(employee_id ,employee_name ,employee_address ,employee_salary)

VALUES (12434, €‘john doe’,’Camden town str. 19°, 5000);

SQL statements have 4 main groups. The first one is called DDL (data definition
language) and the other is DML (data manipulation language) which includes normal
select statements. DCL helps control and access of database objects. The last one is

TCL ensuring data integrity by managing transactions.

17

DDL

Main DDL statements are CREATE, ALTER, or DROP which really defines or totally
deletes an object or type or tables structure.

DML

Main DML statements are SELECT, INSERT, DELETE, UPDATE, ALTER which
query or change the contents.

DCL

Main DCL statements are GRANT, INVOKE which allow users to control their rights
on database object like table, procedure and functions i.e.

TCL

Main TCL statements are COMMIT, ROLLBACK, BEGIN, which are generally used

for ensuring data integrity.

The database must ensure and have the integrity which most of the time, the case must
be so that multiple users can work concurrently without corrupting one another's data.
In the heart of the integrity and consistency, there is a term which is called transaction
which is a logical, atomic unit of work that contains one or more SQL statements. An
RDBMS must be able to group SQL statements so that they are either all committed,
which means they are applied to the database, or all rolled back, which means they are
undone.

To be able to maintain this integrity the transactions have 4 important characteristics
that is simply called ACID consists of the first characters of the terms atomicity,
consistency, isolation and durability properties.

Atomicity

Transactions are all-or-nothing. Either all operations go through, or none of them get
done.

Consistency

Transactions lead database from one consistent state to another.

Isolation

Transactions cannot see intermediate (not committed) results of each other.

Durability

DBMS must ensure that after committing a transaction all its changes are saved (they

can't get lost, for instance, because of power failure).

18

Even though all RDMBSs requires those all characteristics, they have got different
features and they might serve to different targeted users

3.2.1. Oracle as an RDBMS

Oracle was the first commercially available to use database. It has been implemented in
C and C++ programming languages. It was the first RDBMS supports SQL. Besides
being an RDBMS, “Oracle implements object-oriented features such as user-defined
types, inheritance, and polymorphism is called an object-relational database
management system (ORDBMS). Oracle Database has extended the relational model to
an object-relational model, making it possible to store complex business models in a
relational database” [1]

Another aspect of what makes one database different from the others is the way how
they store and manage the data. As a database server, which manages to respond
multiple users requests, Oracle consists of 2 primary architecture components Oracle
Database and Oracle Instance ;

The Oracle Instance mostly composed of the memory part and it is a means to access
Oracle Database, while the Oracle Database includes all the physical files on the server.
While Oracle instance provides access to multiple users it has to manage all background
processes and functionalities which has to comply with ACID principles. A database
can be considered in both physical and logical perspective , In logical level Oracle
database hierarchically consists of Data blocks ,which corresponds to specific size of
memory , an Extent , which contiguous data blocks and A segment consists of Extents

allocated for a user object. Over top all, Table-spaces is a container for a segment [4].

PL/SOL

Another feature of Oracle, it supports PL/SQL which is a procedural extension of
standard SQL. With the PL/SQL it is possible to use variables, loops, conditions, error

catching mechanisms.

3.2.2. MSSQL as an RDBMS

As it is in Oracle, MSSQL is another SQL-based relational database management
systems which developed by Microsoft Corporation. It is developed based on C++

programming language.

19

https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-B5A50116-D8BD-431E-93E6-4C6516297756
https://docs.oracle.com/database/121/CNCPT/glossary.htm#GUID-B5A50116-D8BD-431E-93E6-4C6516297756

Same as in all RDBMSs, MSSQL represents data by a table and it has the same
elements as the other RDBMSs provides, like trigger, functions, procedures views i.e.

What makes different MSSQL from others is its extension language to SQL which is
called as TSQL and it can correspond to ORACLE’s PL/SQL. It has totally different
syntaxes and its own defined variables which intends to improve querying and CRUD

operations

3.2.3. MYSQL as an RDBMS

MySQL is another popular RDBMS, which is developed in C and C++ programming
languages, renowned with being open-source and first released in 1995 later than its
peers. Yet being an open-source platform, it has gained popularity. Company later
owned by Oracle corp. Main disadvantage of the MySQL is poor performance scaling in
contrast with the Oracle and MSSQL. In spite of this disadvantage, MySQL is very

popular as an RDBMS because of being an Open-Source Database platform (Figure 1).

131 systems in ranking, May 2017

Rank Score

May Apr May DBMS Database Model May Apr May
2017 2017 2016 2017 2017 2016
1. 1 1. Oracle Ed Relational DBMS 1354.31 -47.68 -107.71
2. 2 2. MySQLEd Relational DBEMS 1340.03 -24.59 -31.80
3. 3 3. Microsoft SQL Server [ud Relational DBMS 1213.80 +9.03 +70.98
4. 4 4. PostgreSQL 4 Relational DBMS 365.91 +4.14 +58.30
5. 5 5. DB2kd Relational DBMS 188.84 +2.18 +2.88
6. 6 6. Microsoft Access Relational DBMS 129.87 +1.69 -1.70
7. 7 7. SQLite Relational DBMS 116.07 +2.27 +8.81
8. 8 8. Teradata Relational DBMS 76.32 -0.23 +2.58
9. 9 s. SAP Adaptive Server Relational DBMS 67.75 +0.29 -3.73
10. 10. #n1i1. FileMaker Relational DBMS 56.48 -0.70 +9.77
11. 11, #~13. MariaDB [ad Relational DBMS 50.98 +2.26 +17.01
12. 12 12. SAP HANA k2 Relational DBMS 49.05 +0.90 +7.68
13. 13. Jp10. Hive lad Relational DBMS 43.47 +1.82 -4.04
14. 14 t4. Informix Relational DBMS 28.23 +1.44 -2.35
15. 15. Av16. Microsoft Azure SQL Database Relational DBMS 21.55 +0.45 +1.87
16. 16. #n17. Vertica Relational DBMS 20.69 +0.19 +1.40
17. 17. #An18. Netezza Relational DBMS 19.79 +0.19 +0.53

Figure 1: RDBMS Popularity Rankings.

(Source: https://db-engines.com/en/ranking/relational+dbms)

20

https://db-engines.com/en/ranking/relational+dbms

3.3. Non-Relational Databases

It is a new trend in database world tough, in reality it is not a totally new thing. Such
databases have existed since the late 1960s, but did not obtain the "NoSQL"™ moniker
until a surge of popularity in the early twenty-first century [5], the term of “NoSQL”
was in fact the first time used by Carlo Strozzi in 1998 as the name of file-
based database he was developing. Ironically it was a relational database just one
without a SQL interface. As such it is not actually a part of the whole NoSQL trend we
see today. The term re-surfaced in 2009 when Eric Evans used it to name the current
surge in non-relational databases [6].

When compared with Relational Databases, NoSQL databases don’t consists of table
column and row like structures .instead of them they have got more flexible structures
to store data. NoSQL can refer to any of these 3 terms; “not SQL”, “not only SQL” or
“non-relational”.

As the technology advanced, RDBMS have increasingly failed to meet the performance,
scalability, and flexibility needs that next-generation, data-intensive applications
require, NoSQL databases have been adopted by mainstream enterprises. NoSQL is
particularly useful for storing unstructured data, which is growing far more rapidly than
structured data and does not fit the relational schemas of RDBMS. Unlike RDBMS,
NOSQL databases are designed to easily scale out as and when they grow. Most
NOSQL systems have removed the multi-platform support and some extra unnecessary
features of RDBMS, making them much more lightweight and efficient than their
RDMS counterparts. The NOSQL data model does not guarantee ACID properties
(Atomicity, Consistency, Isolation and Durability) but instead it guarantees BASE
properties (Basically Available, Soft state, Eventual consistency).It is in compliance
with the CAP (Consistency, Availability, Partition tolerance) theorem [7].

NoSQL TYPES

NoSQL databases differ from each other by data model or another way to say how they
store the data. Mainly, they can be categorized into 4 different types;

21

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%20Page

3.3.1. Key-Value databases

Key-value databases have the most simplistic approach between types of NoSQL. Data
consists of 2 parts as the name suggests; Key and Value pairs. Keys are unique
identifiers as it is primary key in RDBMSs. This key and value pairs are inspired from
hash tables. Even though, the client can manipulate the value of key generally research
is limited to one way from key to value otherwise exact-match is required. Data stored
can be any type of binary object (text, video, JSON document, etc.) and are accessed via
a key, without concerning what's inside; it's the responsibility of the application to
understand what was stored. Since key-value stores always use primary-key access, they
generally have great performance and can be easily scaled [8].

Main popular key-value databases are Riak, Redis , Berkeley DB, upscaledb (especially
suited for embedded use), Amazon DynamoDB (not open-source), Project VVoldemort

and Couchbase.

3.3.2. Document databases

Documents are the main concept in document databases. The database operates on
documents, which can be in different formats like XML, BSON, JSON (Figure 2) and
many others. These documents can contain many different datatypes and even can be
nested but this totally depends on designer’s choice. The documents stored are similar to
each other but do not have to be exactly the same. This provides flexibility for the

CRUD operations.

22

http://basho.com/riak/
http://redis.io/
http://www.oracle.com/technetwork/database/berkeleydb/index.html
http://upscaledb.com/
http://www.couchbase.com/

Employee Collection (Employee is the root entity) # Client Collection (Client is the root entity)
[

{ {
"ID": @, "ID": 1,
"first_name": "Eyyip", "first_name": “Edgar”,
"last_name": "Direk”, "last_name": "Davis",
"Department”: ["accounts” ;[
{
"id": @, {
"Department_Name": "IT", "id": 3,
"Department_Supervisor": "Sergii "accourt_type": "Checking”,
Spivakov”, "accourt_balance™: “4200.08",
}, "currency™: "YEN"
rrsexu: "MalE”’ }
“BirthDate":%28.04.1991" {
Title:“Developer® "id": 4,
“HoursPerkeck™ :48 "accoumt_type™: "Imvestment™,
“Status*: “Working" "accourt_balance™: "3508.08",
"currency™: "YEN"
} B
] {
"id": 5,
"accourt_type": "Savings",
"accourt_balance™: "1508.88",
"currency™: "YEN"
}
]
}

Figure 2: Document based databases sample structure.

They are similar to key-value stores, but in this case, a value is a single document that
stores all data related to a specific key. Key is a string but value can contain
MongoDB, CouchDB , Terrastore, OrientDB, RavenDB are the well-known prominent

document based databases.

3.3.3. Wide Column Store / Column Families

Column-family databases store data vertically in column families as rows that can have
many columns related with a row key. It may seem similar to RDBMS, but names,
which correspond to attributes in RDBMSs and formats of columns can vary from row

to row across the table. The approach to store and process data by column instead of

23

https://www.mongodb.org/
http://couchdb.apache.org/
https://code.google.com/p/terrastore/
http://www.orientechnologies.com/orientdb/
http://ravendb.net/

row (Figure 3) has its origin in analytics and business intelligence where column-stores
operating in a shared-nothing massively parallel processing architecture can be used to

build high-performance applications [9].

Column Family
Row
Row KeyX Column2 ColumnN

name1:valuel name2:value2 nameN:valueN

Row

Column9 ColumnN

name9:value9 nameN:valueN

name1:valuel

Figure 3: Wide column databases sample structure.

(Source: https://www.thoughtworks.com/insights/blog/nosql-databases-overview)

Cassandrais one of the popular column-family databases; there are others, such

as HBase, Hypertable, and Amazon DynamoDB.

3.3.4. Graph stores

A graph database structure is built upon graph theory to store, map, and query
relationships. Every graph has its own nodes, properties and edges. Data is stored on
nodes edges refer to the relationships. It is not an extension of key-value pairs and it’s
more efficient for storing interconnected data and handling relational querying. Thus
naturally they are more suitable for dependency analysis problem solving and some of
the social networking scenarios [10].

24

http://www.datastax.com/
https://hbase.apache.org/
http://hypertable.org/

BigCo

employee_of
employee_of role=research
role=developer employee_of hired=0ct 08
hired=Mar 06 role=architect
hired=Feb 04
friend
Carol P Dawn
project since=2005
Anna member=cobalt
. friend
project e
member=atlas since=1999
friend
since=2011
friend
Barbara since=1959 Elizabeth

share=[books,movies, tweets]

Figure 4: Graph store database sample structure.

(Source: https://www.thoughtworks.com/insights/blog/nosql-databases-overview)

There are many graph databases available, such as Neo4J, Infinite Graph, OrientDB,
or FlockDB.
Since it is given an overview of NoSQL databases of different types, it can be viewed

the ranks of NoSQL databases popularity (Figure 5).

25

http://www.neo4j.org/
http://www.objectivity.com/infinitegraph
http://www.orientechnologies.com/orientdb/
https://github.com/twitter/flockdb

327 systems in ranking, May 2017

Rank Score

May Apr May DBMS Database Model May Apr May
2017 2017 2016 2017 2017 2016
1. 1. 1. Oracle ks Relational DBMS 1354.31 -47.68 -107.71
2. 2. 2. MySQL k=l Relational DBMS 1340.03 -24.59 -31.80
3. 3. 3. Microsoft SQL Server [as Relational DBMS 1213.80 +9.03 +70.98
e 4. A4S PostgreSQL k& Relational DBMS 365.91 +4.14 +58.30
5. 5. $ 4. MongoDB [Document store 331.58 +6.16 +11.36
6. 6. 6. DB2 Ed Relational DBMS 188.84 +2.18 +2.88
7. 7. A8 Microsoft Access Relational DBMS 129.87 +1.69 -1.70
8. 8. ¥ 7 Cassandra L2 Wide column store 123.11 -3.07 -11.39
9, 9, 9, Redis iz Key-value store 117.45 +3.09 +9.21
10. 10 10. SQLite Relational DBMS 116.07 +2.27 +8.81
11, 11 11. Elasticsearch &3 Search engine 108.82 +3.15 +22.51
12, 12 12. Teradata Relational DBMS 76.32 -0.23 +2.58
13. 13 13. SAP Adaptive Server Relational DBMS 67.75 +0.29 -3.73
14, 14 14, Solr Search engine 63.77 -0.60 -1.85
15. 15 15. HBase Wide column store 59.50 +1.04 +7.67
16. AN17. An18. Splunk Search engine 56.69 +1.19 +12.38
17. Qe 16. 17. FileMaker Relational DBMS 56.48 -0.70 +9.77
18. 18. o 20. MariaDB a2 Relational DBMS 50.98 +2.26 +17.01
19. 19. 19. SAP HANA (&= Relational DBMS 49.05 +0.90 +7.68
20. 20. W 16. Hive s Relational DBMS 43.47 +1.82 -4.04
21. 21. 21. Neo4j k= Graph DBMS 36.15 +1.23 +3.53

Figure 5: NOSQL Databases popularity rankings pointed out in yellow.

(Source: https://db-engines.com/en/ranking)

4. Case study: Property information map

First of all, since this thesis intends to compare two databases on an example of
Property information map, it is important to comprehend what property information
maps are used for. The existing web applications and websites mostly targets at real
estate agencies, land registration units and aims to provide the users geological,
geographical or historical data about the properties.

Generally this data are recorded by governmental units and provided users on demand.
As internet and technology has spread, this kind of formal maps has been moved into
the digital environments. Even though there may not be many examples in Europe, in
USA many counties have its own property map websites. While the whole buildings in
a city or a district taken into account, this means a huge amount of data to be managed
and every units like cadastral, parcel, addresses and locations must be stated and
preserved clearly to keep data records in order. General name of this systems are called

Geographical Information Systems, GIS is a very broad term and they require to

26

manage all geographical data including roads, agricultural land areas, climate change
information, navigation, earthquake information, pipeline routes, tourism information,
deforestation information, land registry and many other areas. Due to being a very
complex and broad applications, GISs requires different type of Database structure.
Generally called GeoSpatial databases, which is more suitable and effective on GIS
applications.

However, this thesis case study is more focused on property information rather than all
geographical information. Nevertheless, Sample Data source being used in this research
are supplied from Estonian Land Board Portal, which besides providing property
information, it provides wide variety of land information such as Road Administration,
GeoCoding Service, Real Estate statistics and so on. For this research, among these
services, public service of the address data system and land registry query has been used
in implementation. Especially for the RDBMSs, the structure of data how we use in real
life affects the way how we implement our Data Model in relational databases.
Considering the fact that every country has different administrative units and different
settlement units which conducts the property information, as Estonian land registration
is used for this research, it is essential to know how Estonian land registration structures
the property’s data.

4.1. Classification of Estonia administrative units and
settlements

The territory of Estonia is divided into counties, rural municipalities, and towns. There
are 15 counties, as it can be seen in the Figure 6 below and each County has its own

cities and rural municipalities as subunits.

27

https://www.eesti.ee/eng/contacts/maavalitsused_1

SQERESS classification of Estonian administrative units and settlements 2017v1
Top Hierarchical view Linear view

Show code Show text
S —

L L

To open the next level of classification click on +, to move back click on -

0037 Harju county
0039 Hiiu county
0044 |da-Viru county
0049 Jbégeva county
0051 Jérva county
0057 Laane county
0059 Léé&ne-Viru county
0065 Pdlva county
0067 P&rnu county
0070 Rapla county
0074 Saare county
0078 Tartu county
0082 Valga county
0084 Viljandi county
0086 Woru county

45

I S S S S S S A I 4

Statistics Estonia / Tatari 51, 10134 Tallinn / Tel +372 625 9300/ Fax +372 625 9370 / e-mail stat@stat.ee

Figure 6: Estonia Administrative units and settlements.

Apart from that, Capital of Estonia; Tallinn has 8 different districts linked to City

administration (Figure 7).

TSRS classification of Estonian administrative units and settlements 2017v1
Top Hierarchical view Linear view

Show code Show text
L L

To open the next level of classification click on +, to move back click on -

- 0037 Harju county
- 0037.4 Harju county: cities
- 0784 Tallinn

0176 Haabersti city district
0298 Kesklinna city district
0339 Kristiine city district
0387 Lasnamée city district
0482 Mustamée city district
0524 N&mme city district
0596 Pirita city district
0614 Pdhja-Tallinna city district

Statistics Estonia / Tatari 51, 10134 Tallinn / Tel +372 625 9300 / Fax +372 625 9370 / e-mail stat@stat.ce

Figure 7: Tallinn districts.

Moreover, the structures of data provided by Estonia Land Board Geoportal are
available at 3 levels: counties, municipalities and settlements and each entity has

attributes as described in the Figure 8 below.

28

Table: Counties Table: Municipalities Table: Settlements

Autrbute Autrbute Autrbute

MNIMI

County name VNIMI Municipality nhame ANIMI Settlements name

MKOOD County ID (EHAK) VKOOD Municipality ID (EHAK) NIMI Settlement name with type

MNIMI County name TYYP* Settlement type
MKOOD County ID (EHAK) AKOOD Settlement ID (EHAK)
VNIMI Municipality name
VKOOD Municipality ID (EHAK)
MNIMI County name
MKOOD County ID (EHAK)

Figure 8: Estonia Land Board Administrative and settlement unit structure.

All these divisions are defined in Territory of Estonia Administrative Division Act

which has been accepted since 1995, chapter 1 clause 6 regarding settlement units states

the rules as below;

§ 6. Settlement units

1.
2.

In real

Settlement units are settlements and urban regions.

A rural municipality is divided into settlements which are villages, small towns,
towns and cities without municipal status.

A city which is an administrative unit is also a settlement within the same
boundaries.

A city may be divided into urban regions.

The types and names of and division lines between settlement units are
determined on the basis of applications from rural municipality and city
councils, on the bases of and pursuant to the procedure specified by the
Government of the Republic.

State operations, including the management of statistics, the organization of
address systems and the maintenance of registers and cadastres, are based on

settlement units. [11]

life the rules that we determine, shapes the way of how we store data in a

relational Databases. Hence, in relational databases all this perspective should be taken

into account.

29

In conclusion, From Databases perspective, the requirements of property information
maps can be a good opportunity and challenge to compare different databases. In
previous chapters, Different NoSQL and Relational Databases is compared
theoretically. Among them, two most popular and well-structured ones; Oracle and
MongoDB are chosen to be compared practically. Before providing this comparison, the

platforms used to implement must be understood well.

5. Implementation of Property Information Map

As mentioned in previous chapters, the structure of data to be presented must be
designed depending on what exactly being represented on the map. Taking that into
account, Oracle Database relational data model and the MongoDB collection structures
are created so as to cover all this aspects. Asides from Database part, this particular web
application uses HTML, CSS, Javascript technology with the Google Maps Javascript
API for the front-end development, IIS as a web server, ASP.NET framework using
Razor Markup for back-end development and finally MongoDB and Oracle 11g
databases as database servers. Prior to Implementation, in this project, MongoDB 3.4
and Oracle 11g installed on a machine running an Intel i5 CPU 450M @2.40 GHz
processor, RAM 4GB.

5.1. General Structure of the Implementation

As it was noted in the introduction part of this chapter, there are many components of
this application. To be able to understand how it works, those components should be
separated to get a better understanding. First of all, as all web applications or web pages
use for their view, Javascript, HTML, CSS constitutes the most important part of the
front-end development. These web technologies were used and integrated with the
Google Maps Javascript APl (Figure X) which shall be discussed further in next
subheadings of this chapter. To mention briefly, about ASP.NET and IS web server,
Internet Information Services (11S) 7 and later provide a request-processing architecture
which includes:

e The Windows Process Activation Service (WAS), which enables sites to use

protocols other than HTTP and HTTPS.

30

https://www.cdw.com/shop/products/Toshiba-Qosmio-X775-Q7270-Core-i5-2410M-2.3-GHz-17.3in-TFT/2477701.aspx

e A Web server engine that can be customized by adding or removing modules.

e Integrated request-processing pipelines from 11S and ASP.NET.
Basically IIS functions for listening requests made to the server managing processes,
and reading configuration files. These components include protocol listeners, such as
HTTP.sys, and services, such as World Wide Web Publishing Service (WWW service)
and Windows Process Activation Service (WAS) [12].
ASP.NET is a unified Web development model that includes the services necessary for
you to build enterprise-class Web applications with a minimum of coding. ASP.NET is
part of the .NET Framework, and when coding ASP.NET applications you have access
to classes in the .NET Framework. You can code your applications in any language
compatible with the common language runtime (CLR), including Microsoft Visual
Basic and C#. These languages enable you to develop ASP.NET applications that
benefit from the common language runtime, type safety, inheritance, and so on [13].
In this project, ASP.NET Razor syntax was used in implementation. Razor syntax
allows developers to write server side code into the client code and server checks if
there is any server code in the web application or web page, it runs server code firstly

then it sends the web page to browser.

Property Info Map Web Application

HTML S ASPNET
CSS Web Server Framework

JavaScript + ORACLE
Google Maps Api

Figure 9: General Structure and components of Property Information Web Page.

Apart from Database part, different platforms and web technologies could have been
chosen for this dissertation, but because of the personal choice and better experience in

aforementioned technologies, these platforms were used in development.

31

5.2. Using Google Maps API for Property Information User
Interface

There are some other map applications like Yandex or Bing Maps though, Google maps
Is the most popular application that we all use in our daily lives to find our way to home
,or less congested roads to travel faster or nearest shopping centers, pharmacies,
restaurants and every kind of places that we can imagine. Since their launch in 2005,
Google Maps and Google Earth have had an enormous impact on the way people think,
learn, and work with geographic information. With easy access to spatial and cultural
information, Google Maps/Earth has provided users with the means to understand their
world and their communities of interest. Moreover, the customizable map features and
dynamic presentation tools found in Google Maps and Google Earth make each one an
attractive option for someone wanting to teach geographic information or make
customized maps. For academic researchers, Google Mapping applications are also
appealing for their powerful ability to share and host projects, create customized KML
files, and to easily communicate their own research findings in a geographic context
[14].

As it can be experienced in our daily life, Google API is being used by many different
application services. Using the API, numerous people have created useful and
interesting "mashups"”, combining the Google Maps interface with geographic
information from other data centers. A few examples are:

Chicago Crime (http://www.chicagocrime.org/) - uses Google Maps to visually locate
places where crimes have occurred in the Chicago area.

Housing Maps (http://www.housingmaps.com/)- combines Google Maps with classified
ads from Craigslist to display location of properties for rent or sale.

Incident Log (http://www.incidentlog.com/) - combines Google Maps with crime and
incident data from around the United States.

Cell Phone Reception and Towers (http://www.cellreception.com/) - combines Google
Maps with locations of cell phone towers [15].

As it can be seen in referenced examples above, Google API provides many features for
your specific target to show maps in your websites or applications. In the light of this

32

http://www.chicagocrime.org/
http://www.housingmaps.com/
http://www.incidentlog.com/
http://www.cellreception.com/

knowledge, it is wise to take a closer look how Google API provides this services and

how its features work.

5.2.1. Google Maps API
Google Maps API provides wide variety of tools and methods to create specific targeted

websites or software applications. These methods and tools are based on geo-locational
coordinates, in other way to say, if someone wants to point out a location on the map, it
requires knowing the geo-locational coordinates of that locations which consists of
latitude and the longitude of that specific location. Besides knowing that, Google Maps
API can only be used after getting an APl KEY (Figure 10) which allows you to
monitor your application's APl usage in the Google API Console. To be able to get an
APl key, user must register his project on Google APl Console, which is an
environment provides variety of different APIs based on users’ needs. After acquiring

the key, it is available to use Google maps in your application or websites.

«script async defer
sre="https: //maps.googleapis. con/maps/api/is key=AlzaSyCqhcTpzf INTABACRZD0z Ttu2dGLADMGz48v=3kcallback=inithap">
(fseripty

Figure 10: Google Maps API Key.

To show a simple marker on the map, you have to specify latitude and longitude of that
location. Depending on users’ desire, it can be demonstrated many different information
in different styles by using JavaScript and HTML. Turning to Property information
maps it i0s crucial to know what data will be represented on the map and generally the
data provided is strictly structured in land registry units of governments. Hierarchically,

every property belongs to one sub unit of a city or a municipality.

5.3. Implementation with Oracle Database

In the first place, as Oracle being an RDBMS, to be able to create our database model it

is important to design and create ER diagrams.it is common and most-chosen and well-

33

known way to determine the data model. The first step of ER model is to define entities
and their relationships with each other. After this step, relational data model gets easier
to construct. The entity-relationship (E-R) data model was developed to facilitate
database design by allowing specification of an enterprise schema that represents the
overall logical structure of a database. The E-R model is very useful in mapping the
meanings and interactions of real-world enterprises onto a conceptual schema. Because
of this usefulness, many database-design tools draw on concepts from the E-R model.
[13] Mainly, there are three concepts or terms that must be comprehended. First, each
entity is a distinguishable object from the other entity’s types. Second, attributes, which
carries the data on entities and entity is represented by these attributes. Third, as it is
mentioned and the name of ER suggests, relations which define associations between
two entities. After briefly mentioning ER model, we can start defining our entities for
property information map database. As it is addressed in chapter 4.1, Estonia Land
Board has defined its main entities as settlements, municipalities and counties. For the
reason that this thesis topic is more focused on property information in a specific area
rather than the whole geographical information of all lands, entities defined more
specific to its own types. Specially, instead of settlement units, there are three entities
taking place of settlement units. Building is the main object which represents the each
property. Parcels are larger area and may consist of many buildings and the city district
which consists of many parcels. In Figure 11, roughly designed entity relationship

diagram can be seen to address entities, their relations and some of the attributes.

34

CITYDISTRICT y

D> @ >

—
@londedusd

BUILDING .

Address
- AdsOid

Figure 11: E-R diagram of Information Map Database.

Apart from the main entities there are high level entities described for future extension
of the project as it can be applied to most of the countries. Over all, Country as an object
covers all other entities, one level below that cities are defined and under cities there are
counties as subunits. After defining entities, relationships and some of the attributes, as
a next step before the relational model, constraints should be defined, which are mostly
real life conditions that shapes our relational model.

Constraints of relations generally define the relationship types between entities. Since
property map’s ER diagram quite straight-forward and hierarchical, all the relationship
types between entities are one to many relationships, if we start from the top level for
example every countries has one or more counties and every county has at least one and

more cities and every city has one or more districts and it continues so on so forth.

35

Normally, the structure used by Estonia Land Board includes municipalities which some
of them do not comply with this hierarchical data model, the reason why it is not used in
this model is municipalities’ information is not required to be represented in property
information map intended to be created and also some of the Estonia local
administrative units that mentioned in chapter 4.1, do not comply with the general
hierarchy because there are some cities and other units without municipal status. Instead
of municipality entities, more straight approach is taken to keep data consistent. After
completing ER diagram and knowing necessary constraints, it can be started to create
relational model based on ER diagram. Starting from Building entity, it has ADSOID,
which is a unique id given to every building with VERSIONID and, since it uniquely
identifies every building it can be considered as the primary key of Building table and to
maintain the relationship with the parcel as a foreign key PARCELID references to
parcel table. The next entity relation is between parcel and city district as every city
district consists of many parcels, the direction of foreign key DISTRICTID references

to city district table (Figure 12).

EYYUPDIREK.BUILDING v ——
P 3:22:3 ;;:;;;;Fhé:osna P * PARCELIDENTIFIER VARCHARZ (15 BYTE)
' ADDRESS VARCHAR2 (1000 BYTE)
ATTRIBUTE NUMBER (10) REGISTRATIONDATE DATE :
BUILDING TYPE VARCHAR2 (30 BYTE)
B) CHANGINGDATE DATE
Sl VARCHAR2 (100 BYTE) INTENDEDUSE1 VARCHAR2 (100 BYTE)
:':::iz':scliﬁ E:IE - INTENDEDUSE2 VARCHAR2 (100 BYTE)
OBJECTTYPECODE VARCHARZ (3 BYTE) | T;ETDEDUSES |“lazl';é;'::*lé1lc‘c'ﬁ‘TE'
LATITUDE NUMBER (10,8) \
LONGITUDE NUMBER (10,8) WIARTLLT LR AL B L1 SIS
F * PARCELID VARCHAR2 (15 BYTE) AL RS - LI S
NATURALGRASSLAND NUMEER (10)
& PK_BUILDING (ADSOID) FOREST NUMBER (10)
3 FK_PARCEL (PARCELID) COURTYARD NUMBER (10)
OTHERAREA NUMBER (10)
REGISTERPART VARCHARZ (30 BYTE)
LANDREGISTRYAREA VARCHARZ (100 BYTE)
EYYUPDIREK.CITYDISTRICT SURVEYINGDATE DATE
P * DISTRICTID NUMBER (10) SURVEYOR VARCHAR2 (100 BYTE)
DISTRICTNAME VARCHARZ (30 BYTE) SURVEYINGMETHOD VARCHAR2 (200 BYTE)
F ot CITYID NUMBER (10) ™ |<| EVALUATIONZONE VARCHAR2 (10 BYTE)
LATITUDE NUMEER (10.8)
& CITYDISTRICT_PK (DISTRICTID) T REE e
%ClTYDlSTR\CT_FK(CITY\D) F * DISTRICTID NUMBER (10)
L3 I 5= PARCEL_PK (PARCELIDENTIFIER)
\

Figure 12: Property Information Database Model and Relations.

36

On the higher level, naturally every city district belongs to a city and one city consists
of many city districts so that CITYID as a foreign key points to the city table. Same
structure applies for the city table to county table and they are associated on

COUNTYID as a foreign key, which can be seen in Figure 13.

EYYUPDIREK.COUNTY

P " ISOCOUNTYID NUMBER (10)
COUNTYNAME VARCHARZ2 (20 BYTE
HASC VARCHA 5 BYTE)
FIPS V YTE)
NUTS VA BYTE)
AREA NUMBER ({

CAPITAL VARCHARZ (20 BYTE)
F * COUNTRYID NUMBER (20)

&= COUNTY_PK (ISOCOUNTYID)
"“j FK_COUNTYCOUNTRY (COUNTRYID)

& COUNTY_PK (ISOCOUNTYID)

Y
EYYUPDIREK.CITY EYYUPDIREK.COUNTRY
P * CITYID NUMBER (10) P " C_ID NUMBER (20)
CITYNAME VARCHAR2 (30 BYTE) " CC_FIPS 2
F * COUNTYID NUMBER (10) " CC_ISO VARCHARZ (3 BYTE)
J VARCHA 1 BYTE)
& CITY_PK(CITYID) U] e e L
- " COUNTRY_NAME VARCHARZ (70 BYTE)
E2 CITYCOUNTY_FK (COUNTYID) -
@ COUNTRY_PK (C_ID)
& CITY_PK(CITYID)
& COUNTRY_PK (C_ID)

Figure 13: Property Information Database Model and Relations.

After creating database structure, the data belongs to buildings in Mustdmae district was
inserted into the tables. Then as a next step, Interface of the web page was set by using
HTML, Javascript and Google API. HTML design roughly has two main parts. First
one is the division where general parcel information shown and the other is the google
maps focused on the point where most of the buildings that planned to be shown on the
map. Following the Ul design, the connection between Oracle database and Ul requires
to be implemented by using ORACLE Data Provider for .NET 4 Managed Driver.
Under the project solution, Managed Driver DLL was added as a reference to be able to

use connection methods to Oracle database from ASP.NET web page project. As a

37

backend development language C# razor syntax used which allows to embed server
based code into web pages. In the follow-up phase of the project, query string was
created to retrieve data from Oracle database. Retrieving the Data from Database, for
every building there was set a marker to point the building out on that location. Each
marker has its own latitude and longitude information taken from database and has its
own information window pops up when it is clicked on and represents information
about the building. When it is clicked, related parcel information is being represented at

the same time on the left pane (Figure 14).

e 2 ~
District buildings info map Map:| Setéiine b 9 > \}
2 LS
Akadeemia tee 42 & { S . — !
Building Info
Parcel Info - :
- County: Harju maakond L L
County: Harju maakond Happ yf|vo i - v i Tall
q unicipality: allinn ’ 3
Municipality: Tallinn Batuudikeskus OU pally i ’ !
= — A Address: Akadeemia tee 42 ’ L <
Settlement unit: Mustamae linnaosa A \ 5
adsoid: EE00647291 <
Identifier: 78405:501:0076 ~ \
N : Building type: elukondlik hoone
Registration date: 08/04/2005
. Registration Valid Since: 18.10.2014 07:18:00 h
Changing date: 24/10/2014 p
2 ’ Lat, long 59.3992,24.66231 "\
Intended use 1: Elamumaa 100% 9 - = =
Intended use 2: - - a “; a 3
Intended use 3: - - ' 1) 3 "
Area: 1770 m2 ’ = 9
3 ; % < i L -
Other area: ’ . : ’ ’ L ’ ’ el
Land registry Tartu Maakohtu b ’ A p % L L 4 “‘ g 3
area: kinnistusosakond < g o - Q & L " ‘ = 13- -
. Akadeemia e’
Surveying date: 19.09.2001 00:00:00 Gymleco Spordiklubi *’ i ‘!! < LWE Y +
Surveyor: OU Harrival < «g‘

- : “! : ® -
Surveying mdddistatud, transformeeritud GO' _9|€ b _Q — _QM,MN) _Q Y Map data ©2017 Google | Terms of Use | Report amap error °

mathnd:

Figure 14: Property Information Map implemented in Oracle..

Another useful feature of Google Maps API is the street view (Figure 15). By using that
feature users can step inside the locations nearby the buildings being represented and it
shows the landmarks around the buildings and the physical information can be matched
with the information provided on the map. Google Street View needs 4 elements SIZE,
HEADING, FOV, PITCH to show around a specific location size specifies the output
size of the image in pixels.

SIZE is specified as {width}X{height} - for example, size=600x400 returns an image
600 pixels wide, and 400 high.

HEADING indicates the compass heading of the camera. Accepted values are
from 0 to 360 (both values indicating North, with 90 indicating East, and 180 South). If

38

no heading is specified, a value will be calculated that directs the camera towards the
specified location, from the point at which the closest photograph was taken.

FOV (default is 90) determines the horizontal field of view of the image. The field of
view is expressed in degrees, with a maximum allowed value of 120. When dealing with
a fixed-size viewport, as with a Street View image of a set size, field of view in essence
represents zoom, with smaller numbers indicating a higher level of zoom.

PITCH (default is 0) specifies the up or down angle of the camera relative to the Street
View vehicle. This is often, but not always, flat horizontal. Positive values angle the
camera up (with 90 degrees indicating straight up); negative values angle the camera
down (with -90 indicating straight down) [16].

Intended use 1: Elamumaa 100% ~

Map Satellite
Intended use 2:
Intended use 3: - i) Building Info
Area: 2430 County: Harju maakond
Other area: Municipality: Tallinn
Land registry Tartu Maakohtu [Address: E. Vilde tee 98
area: kinnistusosakond |y
adsoid: EE00638639
Surveying date: 01.02.2001 00:00:00 X
= Building type: elukondlik hoone
Surveyor: OU Kommunaalprojekt .
5 - Registration Valid Since: 18.10.2014 02:58:00
urveyin i y
metho{t 9 mdddistatud, transformeeritud Lat, long: 59.40671,24.67544
4]
Evaluation zone: H0784010 100% [C]
E. Vilde tee
Tallinn, Harju County
@ &
a
+

r:.\.7~|- GO le Dahirn e
Terms of Use _Report a problem g Map data ©2017 Google _Terms of Use __Report a map error

Figure 15: Property Information Map with Google Street View implemented in Oracle.

In the end, Implementation with the Oracle Database completed successfully and as it is
shown figures in the Figure 15, the web application reflects the data from Oracle

Database.

39

5.4. Implementation with MongoDB

Installation of MongoDB was the first step of this phase. MongoDB installation has 3
components to be installed, Mongo, Mongod, Mongos. Mongo is an interactive
JavaScript shell interface to MongoDB, which provides a powerful interface for systems
administrators as well as a way for developers to test queries and operations directly
with the database. Mongo also provides a fully functional JavaScript environment for
use with a MongoDB.

Mongod is the primary daemon process for the MongoDB system. It handles data
requests, manages data access, and performs background management operations.
Mongos for “MongoDB Shard,” is a routing service for MongoDB shard configurations
that processes queries from the application layer, and determines the location of this
data in the sharded cluster, in order to complete these operations. From the perspective
of the application, a mongos instance behaves identically to any other MongoDB
instance [17].

After completing all necessary installations the environment is ready to use MongoDB.
Implementing in one Database makes easier to implement on the other, since the data
model is constructed. Even though MongoDB is not a relational database the same data
was used to implement with MongoDB. One of the main advantages of MongoDB is
that it is possible to bulk insert into data with importing JSON files into it. By inserting
the collection, Document is automatically created and it makes the developers job much
easier then RDBMS do. The details about the implementation differences will be
discussed further in the next chapter of this research. Turning back to MongoDB
implementation, in the first place, The Data inserted in Oracle database was exported
into JSON document in such a way that the structure of collections determined by the
exported data. In another words, Data was shaped in Oracle Database to create
documents structure. After inserting the data, the same HTML and CSS design as in
Oracle was used for Ul. Even though the same design was used, the packages and
drivers which are used to connect Ul are totally different so that it required installing
MongoDB driver from Nuget Package manager, which provides packages to developers
in Microsoft Developer Platforms. As a next step, installed driver was added as a
reference to web page project without these references certain types of libraries and

methods cannot be used specially connection string created to connect the database and

40

https://docs.mongodb.com/manual/reference/glossary/#term-sharded-cluster

web server. To be able to retrieve data in the backend, C# Razor syntax was used, same
as in Oracle application

The way MongoDB returns results to queries are different from Oracle because of that,
The results returned after querying must be processed differently. MongoDB returns to
queries batch by batch which means after querying for the first time MongoDB do not
return whole records in the MongoDB database it only returns specific number of
documents as a response. Because of that reason, in C# code there is an asynchronous
method to handle each document coming from Database server and insert into the

markers.

i - o B= o) 12 TDa EAT e -
J. Sutiste tee 45 Mo | Sasame ﬁm| hﬁnﬂm q‘lia‘ G i L
Parcel Info "“ Any ,g ki E)i_*g!_ i . ey
A i i “l B e Ens N Tt
County: Harju maakond ‘ T |) A 2as ﬂm?‘i*— L]
Municipality: ~ Tallinn e nlﬂ D L T v SIS U
" & - L B
’ Aty oo B RO A "m‘-‘ L i A 1
Settlement unit: Mustamae linnaosa il) ’n | i N T m"-— L M e ML A
= b | = = F T LR LS
Identifier: 78405:501:4280 n_ﬂl;h . = o = =R ﬁlg.‘ﬁi"\ i"l
Registration date: 27/03/2002 = ~Ané_nﬁ } Building Info n, Sham |]
b) } _d - ; |
Changing date: ~ 24/10/2014 R l = g County: Hanumaakond CWLL T
Intended use 1: Elamumaa 100% n 1. M M amo Vunicipalty: Jallinn "kﬁn 5
i b [! ; |
T - . Af"‘—“’l“b‘ Address: J. Sutiste tee 45 :i-!‘ ¥ ‘.\. B M
: ~ h =W adsoid: EE00638637 L R 3
Intended use 3;: -) _._L— W 'll'.—ls o - I ._ﬂ_" | Y
TV 4343 R‘nh |7 . Building type: elukondlik hoone 1= "I;.i A)
s ‘..‘;r '].l fl"— Registration Valid Since: 18/10/2014 Dogy ™" " q“
— h P ™ BE o ong: 50.39598.24.67734 matiher A n
Landregisty Tartu Maakohtu Y I W fa | o T
area: kinnistusosakond Th |5 ghm r& IF&;&""‘“- o, ;;—I‘—h:‘_-‘wa-i"_‘-\ I ")l
Surveying date: 25/10/2001 l sy L n‘h P“hhl T '1m..: m ;
Surveyor: Endel Leppik lﬂ 1 ﬁg__ﬂ___ i lﬂl.n l l A,I
- - | o
Surveying moodistatud, transformeeritud K,l < Iﬂh - Temikaiikool A
method: | i “'
Evaluation zone: H0784010 100% =] q-
= Go gle eree 7, l Map data ©2017 Google Terms of Use Report a miap error

Figure 16 : Property Information Map Implemented in MongoDB.

Following all backend development process, the web page is ready to run and it creates
the Ul as it is the same in Oracle example, then it points out every building which
locations of taken from MongoDB and the web page runs successfully showing the
related building and parcel information when clicked on the markers can be seen in the

figure above (Figure 16).

41

District buildings info map

Show info Hide info

16 Akadeemia tee
Tallinn, Harju County

i = PN

HOE.LaEA
. Map Satellite

i
County:
st s - =
'. | Municipality:
q Address:

olla™ h -
R 3 adne,
i&T!‘laum:nng Info = :Eh.,. a‘l:ll%?%i

a0 B

Harju maakond Pﬂ'm ﬁnﬂﬂ
Tallinn !«I‘ @ m m
Akadeemia tee 16 m:; Il X

Iﬂ adsoid: EE00639470 hhhhi i
m?elr’r:\soste Reportaproblem hgi‘ Building type: elukondlik hoone < n._
Akadeemia tee 16 ?; Registration Valid Since: 18/10/2014 m’i
Parcalinto ’a;c Lat, long: 59.39835,24.66775 rm%@n q
County: Harju maakond h IP a]. «
Municipality: Tallinn - ﬂP I m
Settlement unit: Mustamae linnaosa ri“l. l‘]-l.l_h
Identifier: 78405:501:3220 "_ "?I*“ li}h l sopruse P l
Registration date: 04/09/2001 PO AR T e T Mandais 62017 Cooe Tolhor B mema;'nﬂf'

Figure 17 : Property Information Map Implemented in MongoDB with Google Street View

To be able to differentiate MongoDB implementation from Oracle Implementation,
design of left pane and the markers icons was changed (Figure 17). Google street view

location on the left pane moved to the upper section.

6. Analysis and Comparison of Results

Analysis of data deducted from research can be interpreted in many different ways and
the comparison between these 2 databases can be done from many different aspects.
Therefore, prior to comparing the research results, it can be a good starting point to
compare Oracle and MongoDB in terms of database concepts and programming
syntaxes as a member of RDBMSs and NoSQL databases.

6.1. Terminology, Implementation and Concept differences

During the implementation and research of the project, it turned out that even though
both MongoDB and Oracle are two databases, as a terminology and the way they refer
to the objects of databases are defined different, yet they can be mapped and correspond
to counterparts.

42

SQL Terms/Concepts MongoDB Terms/Concepts
Database Database

Table Collection

Row Document or BSON document
Column Field

Index Index

Table Joins $lookup, embedded documents
Specify any unique column or In MongoDB, the primary key is
column combination as primary automatically set to the _id field.
key.

Table 1: SQL vs NoSQL Terminologies

As it can be seen in the Table 1 above, MongoDB doesn’t support joins. There are not
any tables, columns or rows like structures. In spite of supporting non-structured or
half-structured data, MongoDB uses primary key to uniquely identify each document in
the collection and indexes are available to use. To be able to join two collections, there
Is a specific function called lookup, it can match the fields but it doesn’t coerce to have
a relation between collections. In this project, there is only one collection was created to
store the data, which contains necessary information composed by 5 tables in Oracle
RDBMS (Figure 18).

select parcelid,building.Address,buildingtype,building.adscid,validsince

,building.latitude
(building.longitude
,Cityname, countyname,districtname, registrationdate
,changingdate
,intendedusel, intendeduse2, intendeduse3, parcel.area,otherarea
,landregistryarea, surveyingdate, surveyor, surveyingmethod, evaluationzone
from building ,citydistrict,parcel ,city , county

where parcel.districtid=citydistrict.districtid

and parcel.parcelidentifier=building.parcelid

and city.cityid=citydistrict.cityid

and county.isocountyid=city.countyid and parcelid='78405:501:1910"

) -]E)%}xxyResﬂtl X
) @) & sqL | All Rows Fetched: 1in 0,009 seconds

{} PARCELID { ADDRESS {i BUILDINGTYPE {t ADSOID |} VALIDSINCE

§78405:501:1910 J. Siitiste tee 20a mitteelukondlik hoone ME02773627 18/10/2014

Figure 18: Joined Tables.

43

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#pipe._S_lookup
https://docs.mongodb.com/manual/reference/glossary/#term-id

The same data acquired by MongoDB in Mongo shell is more lightweight and being a
single collection doesn’t need to join and it can be reached just by single querying

method.

B C\Windows\system32\cmd.exe - mongo

> db.buildinginfo.find(0ObjectId("591baed8827e9804Ff61e6b7")) . .pretty()
{
“_id” : ObjectId("591baed882T7e9804FfB1eBb7™),
“"ADDRESS™ : " J. Sutiste tee 20a",
"BUILDINGTYPE" : "mitteelukondlik hoone’,
“"ADSOID” : "MEB27T3B2T7",
“"UALIDSINCE™ : "18/10/2014",
“"LATITUDE™ : "59.39791",
“"LONGITUDE™ : 24 .638461",
“"PARCELID” : "78405:501:13810",
"CITY” : {
"CITYID" : T8,
"CITYNAME™ : "TALLINN™

3.
"COUNTY™ : {
“COUNTYID™ : 37,
“COUNTYNAME™ : "Harju maakond”

3.

“"DISTRICT" : {
“"DISTRICTNAME™ : “"Mustamae linnaosa’,
"DISTRICTID" : 482

3.

"REGISTRATIONDATE™ : "16/11/1999",

"CHANGINGDATE™” : "24/10/2014",

“INTENDEDUSE1"™ : “"Tootmismaa 100%",

“"INTENDEDUSEZ™ : "-",

"INTENDEDUSE3" : -7,

"AREA™ : "T9",

"OTHERAREA™ : ™7,

“LANDREGISTRYAREA™ : "Harju Maakohtu Tallinna kinnistusjaoskond™,
"SURUEYINGDATE"” : "15/04/19339",

“SURUEYOR™ : "Rakendusgeodeesia ja Ehitusgeoloogia Inseneriburoco Ou™,
“SURUVEYINGMETHOD” : “konverteeritud, transformeeritud”,
"EUVALUATIONZONE™ : "HOTs84024"

Figure 19: MongoDB data query and Representation of a document in a collection.
Since having one collection, lookup functions have no use. In MongoDB every
collection has 16 Mb limit, if the required data exceeds that size then user have to create
a new collection, which will be the case that joins might be necessary between
collections. Although not used in the MongoDB implementation because of importing
the same data acquired from Oracle Database, if a user desires to create a collection
simply writing name of collection and inserting in it is enough to create a new collection
without describing the collections’ features because of being a non-structured, shapeless
BSON object and every document in the collection doesn’t have to be in the same
structure as the other documents in the same collection, which means, users do not have
to determine what kind of document and in which order to insert into collection.
Besides many other simplifying approaches, there is a CRUD like operation which is
called UPSERT. It derives from combination of insert and update. In this operation,

44

MongoDB checks the collection if the data which is requested to be updated is
available, it updates, if it is not, it inserts the new data into the collection.

6.2. Analyzing Oracle on Querying Property Information

As it is mentioned in previous chapter, Oracle being a relational database, to gather the
whole information about the property, it has to reach every table to get necessary data of
Property information map. Owing to the fact that normalization rules applied, on the
one hand, reducing data redundancy and simplifying the database design, but on the
other hand, relational databases increases the required number of access to different
tables. For instance: In the database model shown in chapter 5.3. In order to get city
district information for a building, it is needed to be referenced to parcel first and then
necessary information can be accessed through matching parcel’s DISTRICTID. Taking
all these aspects into account, it is important to see execution plan of the queried

information shown in Figure 20 below.

{} PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%(

| 0 | SELECT STATEMENT | | 11 357 | 70
| 1 | NESTED LOOPS | | 1| 357 | 70
| 2 | NESTED LOOPS | | 1| 233 | 4
| 31 NESTED LOOPBS | | 1| 208 | 4
| 4 | NESTED LOOPS | | 1| 188 | 3
| S| TABLE ACCESS BY INDEX ROWID| PARCEL | 11 162 | 2
I* 6 | INDEX UNIQUE SCAN | 5Y5_C008009 | 1| | 1
| 71 TABLE ACCESS BY INDEX ROWID| CITYDISTRICT | 14 | 364 | 1
I* 8 | INDEX UNIQUE SCAN | CITYDISTRICI_PFK | 1| | 0
| 9 1 TABLE ACCESS BY INDEX ROWID | CITY | 30 | €00 | 1
I* 10 | INDEX UNIQUE SCAN | CITY_PK | 11 | 0
I 11 | TABLE ACCESS BY INDEX ROWID | COUNTY | 15 | 375 | 0
I* 12 | INDEX UNIQUE SCAN | COUNTY_PK | 1| | 0

Figure 20: Execution plan for the Query.

What is Cost? The Oracle Optimizer is a cost-based optimizer. The execution plan
selected for a SQL statement is just one of the many alternative execution plans
considered by the Optimizer. The Optimizer selects the execution plan with the lowest

cost, where cost represents the estimated resource usage for that plan. The lower the

45

cost the more efficient the plan is expected to be. The optimizer’s cost model accounts

for the 10, CPU, and network resources that will be used by the query [18].

&) B sou | AIRows Fetched: 11001in 3,681 seconds

{iPARCELID |{} COUNTYNAME [{} CITYNAME |{} DISTRICTNAME |{} REGISTRATIONDATE |{} CHANGINGDATE |{} INTENDEDUSE1 |4
109961|79282:767:4311 |Harju maakond|Tallinn Mustamie linnaosa|30/10/2006 20/12/2007 |sctxaehjxbwicdya
109975/78497:456: 3287 Harju maakond|Tallinn [Mustamée linnaoaa|l9/05/2004 09/05/1990 jubripbapezenrjm|d
10998 2/78953:599: 4372 Harju maakond|Tallinn [Mustamie linnacsa|l7/03/2011 24/06/1991 |itymcylidvfledh|g
10999 4/79216:578: 2159 |Harju maakond|Tallinn [Mustamie linnacsa|12/12/2011 20/03/2009 pbzlugihlylnslh|d
110007|79178:644:1214 |Harju maakond|Tallinn Mustamde linnaosa|ll/04/2013 14/07/1992 |cqwEgblyynyparp|d s
110015(78745:973:4775 Harju maakond|Tallinn [Mustamée linnaoaa|03/06/1996 25/04/1995 |pynwmkzzusstago kv

‘ I | }

Figure 21: Query Result of Necessary Information for the Map.

There are 11001 records in total, which belongs to each building, gathered by joining
the tables and it takes 3,681 seconds to retrieve and the size of the whole data in all

tables is around 4 MB (Figure 21).

{, OWNER |{} TABLE_NAME |i} SIZEMB
1 [EYYUPDIREK COUNTRY 0,00010013580322265625
2 |EYYUPDIREK |CITYDISTRICT 0,000347137451171875
3|[EYYUPDIREK|CITY 0,00057220458984375
4 [EYYUPDIREK COUNTY 0,000743865966796875
5 |[EYYUPDIREK |BUILDING 1,54223155975341796875
6 [EYYUPDIREK [PARCEL 2,419719696044921875
7 |EYYUPDIREK |TOTAL 3,963714599609375

Figure 22: Size of Tables List.

6.3. Analyzing MongoDB on Querying Property Information

In chapter 6.1 where stating the characteristic and implementation differences, it is
mentioned that being non-structured or half-structured gives quite convenience in terms
of development and flexibility. Nevertheless, this flexibility might cost more space in

46

the memory. As seen in the Figure 23 below, the total size of 11001 data equals to
4620288 byte which is approximately 5.5 Mb.

B C\Windows\system32\cmd.exe - mongo — ' e ii;?-J

> db.buildinginfo.totalSize()
4620288

> db.buildinginfo.totalSize() =
4620288 =

Figure 23: Size of Collection in MongoDB.

Having no relations, generally, MongoDB requires to access only one collection, same
case as in this project and to be able to return how collections are being reached, simply
explain command has to be run on the collection. The MongoDB query optimizer
processes queries and chooses the most efficient query plan for a query given the
available indexes. The query system then uses this query plan each time the query runs.
The query optimizer only caches the plans for those query shapes that can have more
than one viable plan. For each query, the query planner searches the query plan cache
for an entry that fits the query shape. If there are no matching entries, the query planner
generates candidate plans for evaluation over a trial period. The query planner chooses a
winning plan, creates a cache entry containing the winning plan, and uses it to generate
the result documents. If a matching entry exists, the query planner generates a plan
based on that entry and evaluates its performance through a replanning mechanism. This
mechanism makes a pass/fail decision based on the plan performance and either keeps
or evicts the cache entry. On eviction, the query planner selects a new plan using the
normal planning process and caches it. The query planner executes the plan and returns
the result documents for the query [19].

After running command, query planner was listed to show details as below (Figure 24).
Following the list, it suggests that 11001 records were reached with a collection scan,

which took 71 milliseconds.

47

https://docs.mongodb.com/manual/reference/glossary/#term-query-shape

B Sec C:\Windows\system32\cmd.exe - mengo

> db.buildinginfo.find().explain{“executionStats™)
{
"queryPlanner” : {
“plannerVUersion” : 1,
“namespace” : "test.buildinginfo”,
"indexFiltersSet” : false,
"parsedQuery” : {

}

.inningPlan" s
“"stage” : "COLLSCAN",
“direction” : "forward”

}

'ejectedPlans" [1

3

xecutionStats” : {
"executionSuccess™ : true,
“"nReturned” : 11001,
"executionTimeMillis™ : 71,
"totalKeysExamined” : @,
“totalDocsExamined™ : 11001,
“executionStages” : {
“stage”™ : "COLLSCAN™,
"nReturned” : 11001,
“executionTimeMillisEstimate” : 10,

Figure 24: Execution Plan for Collection in MongoDB.

6.4. Comparison of Results

Following the analysis, the query results, which retrieved the same data, of two
databases can be compared. According to the analysis made previous subheadings of
this chapter, both databases gave different results in terms of size and the performance.
However, these results can change, based on the servers workload, which databases run
on it and the execution plans™ results are more like estimations rather than a real value in
terms of costs and time. To be able to more accurate while comparing, the execution
plans were run several times with queries. The figures representing, more reflects the
average value. Apparently, there is not a big difference from memory size perspective
but interestingly, in MongoDB the required data to be represented on the map is larger
than the Oracle database. However, considering tables and relations Oracle database
was expected to be larger in size. Even so that, since the data inserted with is relatively
small in size and it may not be suggesting a general assumption. In Oracle database the

48

size of data was approximately 4 Mb and it is 1.5 Mb less than MongoDB’s collection
size. Nevertheless, MongoDB was much faster to return query results and the result
execution plan suggested estimation time is 71 milliseconds which is much smaller than
3 seconds that Oracle responded for the full scanned tables. For a single query, based on
altitude and latitude data, MongoDB responded in 30 milliseconds while Oracle
Database corresponds in 1.4 seconds and during executions made through Property
Information Map application even though the difference was not so tangible, because of
once data accessed for the next time server keeps the data in memory, the response time

seemed to be slightly in favor of MongoDB.

7. Suggestions for Future Work

This thesis aimed to implement a property information map application by using 2
different databases, since the framework of this thesis is rather limited, the current
project should be extended in such a way that used databases can be compared from
different aspects. Thus, as a future work, this project can be extended both theoretically
and practically. In other words, the data size has to be increased which will entail the
increasing hardware requirements as well. After doing so, the interaction between users
and the application can be improved so that users should be able to update, delete or
create new information regarding properties. Moreover, following these steps, there can
be created more complicated data models which will be a better case to compare 2
databases under different circumstances. Property map’s features can be improved by
adding historical data which will show the changes about the property over time.
Considering the whole properties in a country, this project’s scale is rather small and if
all properties’ information is added into these databases then under that conditions the
project and the results can provide better understanding. It should be always taken into
account that this project is only focused on the property information rather than the

whole geographical land information.
8. Conclusion

The research yielded that being members of relational and non-relational databases
Oracle and MongoDB have certain advantages over each other. Specially, MongoDB is

much more flexible and implementation in MongoDB requires less effort and querying

49

response time faster than Oracle, Yet, it cannot be completely concluded that MongoDB
is superior of Oracle based on only this research. Also, reviewed literature suggests that
if the queries had been made on the similar structure for instance MongoDB having
more than one collection and relations between those collections the difference would
have been much less from the performance aspect [20]. Furthermore, for this research,
databases were used only for querying and there was no any CRUD operation
implemented. Considering all this aspects, to sum up, it can be said that for Property
Information Map which intends to give only information but not to be edited by users,
can provide better performance and flexibility if it is implemented in MongoDB.
Practically, the project which was implemented is more suitable for MongoDB rather
than Oracle because of easy implementation, data structure, faster response time and
being non-relational provides certain level of convenience. On the other hand, if the
project created such a way which requires more complex transactions and strictly
defined rules then it would be a better solution to use Oracle Database. DBMSs have
many different aspects and database is a very broad concept. Comparing Databases
from one aspect could lead a misjudgement. Based on requirements, designer or the
developer of the system must pick the right DBMS. Even sometimes some applications
can function better if both of relational and non-relational databases are used together.
Even the MongoDB and Oracle developers are very well aware of their strong and weak
sides such that MongoDB states that While most modern applications require a flexible,
scalable system like MongoDB, there are use cases for which a relational database like
Oracle would be better suited. Applications that require complex, multi-row transactions
(e.g., a double-entry bookkeeping system) would be good examples. MongoDB is also
not a drop-in replacement for legacy applications built around the relational data model
and SQL.A concrete example would be the booking engine behind a travel reservation
system, which typically involves complex transactions. While the core booking engine
might run on Oracle, those parts of the app that engage with users — serving up content,
integrating with social networks, managing sessions — would be better placed in
MongoDB [21].

Furthermore , Oracle as a corporation developed its own NoSQL database in 2011 and
the concepts of sharding and replication provides great flexibility and scalability when
workload over a server need to be distributed on multiple servers which creates costly
efficient solution for the existing but need to be overhauled database systems. Also,

social web sites lead to spread the usage of MongoDB, which data doesn’t have any

50

structure mostly and non-relational databases quickly adopted by many social websites’
corporations. To sum up, this thesis doesn’t give an overall view from all aspects of 2
databases and property information map tough, it certainly provides some understanding
on both an instruction on how to implement and the differences of NOSQL and SQL

databases on the example of Property Information Maps.

References

[1] Oracle Corp., "Oracle Help centre," 2017. [Online]. Available:
http://docs.oracle.com/cd/E25178 01/server.1111/e25789/intro.htm. [Accessed
12 03 2017].

[2] S.B.N.Ramez Elmasri, Fundamentals of database systems / .—6th ed., Boston,
Massachusets: Addison-Wesley, 2011.

[3] Oracle Databases, "Introduction to Oracle Database," 10 04 2017. [Online].
Available:
https://docs.oracle.com/cd/E11882_01/server.112/e40540/intro.htm#CNCPTO01.

[4] Oracle Corp., "Oracle Help Centre," 2017. [Online]. Available:

[https://docs.Oracle.com/database/121/CNCPT/intro.htm#CNCPT88784.
[Accessed 12 3 2017].

[5] N. Leavitt, "Will NoSQL Databases Live Up to Their Promise?," CiSE, vol. 0018, no.
9162, pp. 12-14, 2010.

[6] S.G.S.N. Edward, Practical MongoDB: Architecting, Developing, and
Administering MongoDB, Apress, 2015.

[7] A.P.P. Ameya Nayak, "Type of NOSQL Databases and its Comparison with
Relational Databases," International Journal of Applied Information Systems
(lJAIS), vol. 5, no. ISSN : 2249-0868, pp. 16-19, March 2013.

[8] P.Sadalage, NoSQL Databases: An Overview, ThoughtWorks, Inc.
https://www.thoughtworks.com/insights/blog/nosql-databases-overview, 2014.

[9] C. Strauch, NoSQL Databases, Hochschule der Medien, Stuttgart, 2012.

[10] Y. Gurevich, Comparative Survey of NoSQL/ NewSQL DB Systems (Master's
Dissertation), The Open University of Israel Computer Science Division, 2015.

[11] Riigi Teataja, "Territory of Estonia Administrative Division Act," Riigikogu, Tallinn,
2013.

[12] R. Templin, "Introduction to IS Architectures," 16 11 2007. [Online]. Available:
https://docs.microsoft.com/en-us/iis/get-started/introduction-to-iis/introduction-
to-iis-architecture. [Accessed 15 1 2017].

[13] H. F. K. S. Abraham Silberschatz, Database system concepts, McGraw-Hill, 2011.

[14] A. N. Eva Dodsworth, "Academic Uses of Google Earth and Google Maps in a
Library Setting," Information Technology and Libraries, vol. 31, no. 2, p. 102,

51

2012.
[15] J. M. J. F. Nicholas C. Zakas, Proffesional Ajax, Wiley, 2005, p. 184.

[16] Google, "Google Developers," [Online]. Available:
https://developers.google.com/maps/documentation/streetview/intro. [Accessed
152 2017].

[17] MongoDB, "MongoDB Documentation," [Online]. Available:
https://docs.mongodb.com/manual/reference/program/mongo/. [Accessed 2 02
2017].

[18] White paper Oracle, "The Oracle Optimizer Explain the Explain Plan," april 2017.
[Online]. Available: http://www.oracle.com/technetwork/database/bi-
datawarehousing/twp-explain-the-explain-plan-052011-393674.pdf. [Accessed 5
May 2017].

[19] MongoDB Inc., "MongoDB Documentation," 2017. [Online]. Available:
https://docs.mongodb.com/manual/core/query-plans/. [Accessed 20 3 2017].

[20] L. S. S. Humasak T. A. Simanjuntak, "Query Response Time Comparison NOSQLDB
MONGODB with SQLDB Oracle," ResearchGate, vol. 13, no. 1, pp. 95-105, 2015.

[21] "MongoDB and Oracle Compared," MongoDB Inc., [Online]. Available:
https://www.mongodb.com/compare/mongodb-oracle. [Accessed 10 5 2017].

[22] L. S. Sterling, The Art of Agent-Oriented Modeling, London: The MIT Press, 2009.

Appendix 1 — Source code for Oracle Database connected

@using WebMatrix.Data
@using Oracle.ManagedDataAccess.Client;
@using Oracle.ManagedDataAccess.EntityFramework;

@f

Page.Title = "Home Page";

var db = Database.Open("BuildingInfo");

9. var selectQueryString = "select building.Address,buildingtype,
building.adsoid,validsince,replace(building.latitude,"',"',".")
as latitude";

P OVWooNOOTUVE WNER

11. selectQueryString += ",replace(building.longitude,',’,"'.")
as longitude ,parcelid";
120 selectQueryString += ",countyname,cityname,citydistrict.districtname,

to_char(registrationdate, 'DD/MM/YYYY') as registrationdate,
to_char(changingdate, 'DD/MM/YYYY') as changingdate";

13. selectQueryString += ",intendedusel,intendeduse2,intendeduse3,
parcel.area,otherarea ";

52

14.

15.

16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.

selectQueryString += ",landregistryarea,surveyingdate,surveyor,
surveyingmethod,evaluationzone";
selectQueryString += " from building ,citydistrict,parcel ,city , county

selectQueryString += " where parcel.districtid=citydistrict.districtid ";

selectQueryString += "
selectQueryString +=
selectQueryString +=

and parcel.parcelidentifier=building.parcelid ";
and city.cityid=citydistrict.cityid ";

and county.isocountyid=city.countyid ;

<html>
<head>
<l--<script src="JavaScript.js"></script>-->
<link rel="stylesheet" type="text/css" href="MapStyle.css">
</head>
<body>
<div class="container">
<div class="options-box">
<h1>District buildings info map </hl>
<div>
<input id="show-listings" type="button" value="Show info">
<input id="hide-listings" type="button" value="Hide info">
</div>
<div id="infowin">

</div>

</div>
<div id="map"></div>
</div>

<script>

var map;
// Create a new blank array for all the listing markers.
var markers = [];
function initMap() {
// Constructor creates a new map -
only center and zoom are required.
map = new google.maps.Map(document.getElementById('map"), {
center: { lat: 59.396956, lng: 24.670968 },
zoom: 15,

s

var largeInfowindow = new google.maps.InfoWindow();
var tr = 0; var locations = [];
@foreach (var row in db.Query(selectQueryString))
{
<Text>
locations.push({
title: "@row.address",
location: {
lat: parseFloat("@row.latitude"),
lng: parseFloat("@row.longitude")
¥
city:"@row.cityname”,
district: "@row.districtname",
parcelid: "@row.parcelid"”,
registrationdate: "@row.registrationdate”,
changingdate: "@row.changingdate",
intendedusel: "@row.intendedusel"”,
intendeduse2: "@row.intendeduse2",

53

76. intendeduse3: "@row.intendeduse3",

77. area: "@row.area",

78. otherarea: "@row.otherarea",

79. landregistryarea: "@row.landregistryarea",

80. surveyingdate: "@row.surveyingdate",

81. surveyor:"@row.surveyor",

82. surveyingmethod: "@row. surveyingmethod",

83. evaluationzone:"@row.evaluationzone”,

84. buildingtype: "@row.buildingtype",

85. adsoid: "@row.adsoid",

86. validsince: "@row.validsince"

87. 19)

88. </Text>

89. }

90.

91. // The following group uses the location array to create an array
of markers on initialize.

92. for (var i = @; i < locations.length; i++) {

93. // Get the position from the location array.

94. var position = locations[i].location;

95. var title = locations[i].title;

96. var year = locations[i].year;

97. var x = locations[i].location.lat;

98. var y = locations[i].location.lng;

99. var city=locations[i].city;

100. var district = locations[i].district;

101. var image = "/Images/Home.PNG";

102. var parcelid = locations[i].parcelid;

103. var registrationdate = locations[i].registrationdate;

104. var changingdate = locations[i].changingdate;

105. var intendedusel = locations[i].intendedusel;

106. var intendeduse2 = locations[i].intendeduse2;

107. var intendeduse3 = locations[i].intendeduse3;

108. var area = locations[i].area;

109. var otherarea = locations[i].otherarea;

110. var landregistryarea = locations[i].landregistryarea;

111. var surveyingdate = locations[i].surveyingdate;

112. var surveyor = locations[i].surveyor;

113. var surveyingmethod = locations[i].surveyingmethod;

114. var evaluationzone = locations[i].evaluationzone;

115. var buildingtype = locations[i].buildingtype;

116. var adsoid = locations[i].adsoid;

117. var validsince = locations[i].validsince

118.

119.

120.

121.

122.

123. // Create a marker per location, and put into markers a
rray.

124. var marker = new google.maps.Marker({

125. map: map,

126. icon: image,

127. position: position,

128. title: title,

129. animation: google.maps.Animation.DROP,

130. id: i,

131. lng: vy,

132. lat: x,

133. city:city,

134. district: district,

135. parcelid: parcelid,

136. registrationdate: registrationdate,

137. changingdate:changingdate,

138. intendedusel: intendedusel,

139. intendeduse2: intendeduse2,

54

140. intendeduse3: intendeduse3,

141. area: area,

142. otherarea: otherarea,

143. landregistryarea:landregistryarea,

144. surveyingdate:surveyingdate,

145. surveyor:surveyor,

146. surveyingmethod:surveyingmethod,

147. evaluationzone: evaluationzone,

148. buildingtype: buildingtype,

149. adsoid: adsoid,

150. validsince:validsince

151.

152.

153. s

154. // Push the marker to our array of markers.

155. markers.push(marker);

156. // Create an onclick event to open an infowindow at eac
h marker.

157. marker.addListener('click', function () {

158. populateInfoWindow(this, largeInfowindow);

159. H;

160. }

161. document.getElementById('show-
listings').addEventListener('click', showListings);

162. document.getElementById('hide-
listings').addEventListener('click', hideListings);

163. }

164. // This function populates the infowindow when the marker is

165. clicked. We'll only allow

166. // one infowindow which will open at the marker that is clicked
, and populate based

167. // on that markers position.

168. function populateInfoWindow(marker, infowindow) {

169. // Check to make sure the infowindow is not already opened
on this marker.

170. if (infowindow.marker != marker) {

171. infowindow.marker = marker;

172. var contentstr = '<div>' +

173. '<h1 id="firstHeading" class="firstHeading">"' + mar
ker.title + '</h1>' +

174. '</div>" +

175. ' <table class="dogisPopupTble">"' +

176. '<tbody>" +

177. '<tr> <th style="text-align: center; background-

color: #dffddd;font-family: arial, sans-
serif;" colspan="2"> Parcel Info </th></tr>"' +

178.
179.
'+
180.
td></tr>" +
181.
tr>" +
182.

date + '</td></tr>'
183.

</td></tr>' +
184.

td></tr>" +
185.

"</td></tr> "t +
186.

</td></tr>' +
187.
188.

/tr>' +

'<tr><td>County:</td><td>Harju maakond</td></tr>" +

'<tr><td>Municipality:</td><td>'+ marker.city + '</td></tr>

'<tr><td>Settlement unit:</td><td>' + marker.district + '</

'<tr><td>Identifier:</td><td>"' + marker.parcelid + '</td></

'<tr><td>Registration date:</td><td>' + marker.registration

+

'<tr><td>Changing date:</td><td>"' + marker.changingdate +

'<tr><td>Intended use 1:</td><td>'+marker.intendedusel +'</

'<tr><td>Intended use 2:</td><td>' + marker.intendeduse2 +

'

<tr><td>Intended use 3:</td><td>' + marker.intendeduse3 +

'<tr><td>Area:</td><td>"' + marker.area + '</td></tr>"' +
'<tr><td>0ther area:</td><td>' + marker.otherarea + '</td><

55

189. '<tr><td>Land registry area:</td><td>' + marker.landregistr
yarea + '</td></tr>"' +

190. '<tr><td>Surveying date:</td><td>' + marker.surveyingdate +
</td></tr>" +

191. '<tr><td>Surveyor:</td><td>' + marker.surveyor + '</td></tr
>' o+

192. '<tr><td>Surveying method:</td><td>' + marker.surveyingmeth
od + '</td></tr>" +

193. <tr>' +

194. '<td>Evaluation zone:</td>' +

195. 'ctd>' o+

196. ' <table>' +

197. ' <tbody>' +

198. ' <tr><td><a href="http://www.maaamet.ee/hv/

784 .pdf" target="_blank"><u>H0784010</u></
a></td><td> 100% </td></tr>' +

199. ' </tbody>' +

200. '</table>' +

201. </td>' o+

202. </tr>' o+

203. '</tbody>" +

204. '</table>';

205. var buildingcontentstr =

206. ' <table class="dogisPopupTble">"' +

207. '<tbody>' +

208. '<tr> <th style="text-align: center; background-

color: #dffddd;font-family: arial, sans-
serif;" colspan="2"> Building Info </th></tr>' +

209. '<tr><td>County:</td><td>Harju maakond</td></tr>" +

210. '<tr><td>Municipality:</td><td>' + marker.city + '</td></t
r>' +

211. '<tr><td>Address:</td><td>' + marker.title + '</td></tr>'
+

212. '<tr><td>adsoid:</td><td>" + marker.adsoid + '</td></tr>'
+

213. '<tr><td>Building type:</td><td>' + marker.buildingtype +
</rd></tr>" +

214. '<tr><td>Registration Valid Since:</td><td>' + marker.vali
dsince + '</td></tr>' +

215. '<tr><td>Lat, long:</td><td>' + marker.lat + ','+ marker.1l
ng + '</td></tr>' +

216. '</tbody>" +

217. '</table>';

218.

219. infowindow.setContent("'");

220. // infowindow.open(map, marker);

221. // Make sure the marker property is cleared if the info
window is closed.

222.

223. infowindow.addListener('closeclick', function () {

224, infowindow.setMarker = null;

225. s

226.

227. var streetViewService = new google.maps.StreetViewService();

228. var radius = 50;

229. // In case the status is OK, which means the pano was

found, compute the
230. // position of the streetview image, then calculate
the heading, then get a

231. // panorama from that and set the options

232. function getStreetView(data, status) {

233. infowindow.setContent(buildingcontentstr);

234.

235. if (status == google.maps.StreetViewStatus.OK) {

56

236.

237.

238.
239.
240.
241.

242.
243.
244,
245.
246.
247.
248.
249.

250.

251.
252.

253.
254.

255.
256.
257.
258.
259.
260.

261.
262.

263.
264.
265.
266.
267.

268.
269.
270.

271.
272.
273.
274.
275.

276.
277.
278.

279.
280.
281.
282.
283.

284.
285.
286.
287.

var nearStreetViewLocation = data.location.latlLng;
var heading = google.maps.geometry.spherical.computeHeading(

nearStreetViewLocation, marker.position);
var streewtviewstr = '<div id="pano"></div>"';
contentstr = contentstr + streewtviewstr;
document.getElementById("infowin").innerHTML =

contentstr;
var panoramaOptions = {
position: nearStreetViewLocation,
pov: {
heading: heading,
pitch: 30
}
s
var panorama = new google.maps.StreetViewPanora
ma (
document.getElementById('pano'), panoramaOpti
ons);
} else {
var nostreetstr = '<div>' + marker.title + '</d
iv>!

'<div>No Street View Found</div>';
document.getElementById("infowin").innerHTML =

contentstr + nostreetstr;

}

// Use streetview service to get the closest streetview ima

ge within

// 50 meters of the markers position
streetViewService.getPanoramaByLocation(marker.position, ra

dius, getStreetView);

infowindow.open(map, marker);

}

// This function will loop through the markers array and
display them all.
function showListings() {
var bounds = new google.maps.LatLngBounds();
// Extend the boundaries of the map for each marker and
display the marker
for (var i = @; i < markers.length; i++) {
markers[i].setMap(map);
bounds.extend(markers[i].position);

}
document.getElementById('infowin').style.display = "block";

map.fitBounds(bounds);
// This function will loop through the listings and hide them all
function hidelListings() {

for (var i = @; i < markers.length; i++) {
markers[i].setMap(null);

}
document.getElementById('infowin').style.display = "none";
}
</script>

57

288.

289. <script async defer

290. src="https://maps.googleapis.com/maps/api/js?key=AIzaSyCqhc
TpzfIWTABAcOzDozTtu2dGLADM6z4&v=3&callback=initMap">

291. </script>

292.

293. </body>

294. </html>

Appendix 2 — Source code for Mongo Database connected

1. @using WebMatrix.Data;

2. @using MongoDB.Driver;

3. @using MongoDB.Driver.Core;

4. @using MongoDB.Driver.GeoJsonObjectModel;

5. @using MongoDB.Bson;

6. @using System;

7. @using System.Net.Http;

8. (@using System.Net;

9. (@using System.Threading.Tasks;

10. @using System.IO;

11.

12. @

13.

14. Page.Title = "Home Page";

15. public async Task Mainasync(string[] args) {

16. var connectionstring = "mongodb://localhost:27017";

17. var client = new MongoClient(connectionstring);

18. var db = client.GetDatabase("test");

19. var col = db.GetCollection<BsonDocument>("buildingInfo");

20.

21. using (var cursor = await col.Find(new BsonDocument()).ToCursorAsync()
)

22. {

23.

24, while (await cursor.MoveNextAsync())

25. {

26. var tr = 0; var locations = [];

27. @foreach (var item in col.Find(_=>true).ToListAsync().Result)

28. {

29. <Text>

30. locations.push({

Filo title: "@item["ADDRESS"].AsString",

32. location: {

33. lat: parseFloat("@item["LATITUDE"].AsString"),

34. lng: parseFloat("@item["LONGITUDE"].AsString")

35. 1,

36. city: "@item["CITY"].AsString",

37. district: "@item["DISTRICTNAME"].AsString",

38. parcelid: "@item["PARCELID"].AsString",

39. registrationdate:"@item["REGISTRATIONDATE"].AsString",

40. changingdate: "@item["CHANGINGDATE"].AsString",

41. intendedusel: "@item["INTENDEDUSE1"].AsString",

42. intendeduse2: "@item["INTENDEDUSE2"].AsString",

43. intendeduse3: "@item["INTENDEDUSE3"].AsString",

44. area: "@item["AREA"].AsString",

45. otherarea: "@item["OTHERAREA"].AsString",

46. landregistryarea: "@item["LANDREGISTRYAREA"].AsString",

47. surveyingdate: "@item["SURVEYINGDATE"].AsString",

58

48.
49.
50.
51.
52.
53.
54.
55.
56.
57 o
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.

le1.

102.
103.
104.
105.
106.
107.
108.
109.

110.

surveyor:"@item["SURVEYOR"].AsString",
surveyingmethod: "@item["SURVEYINGMETHOD"].AsString",
evaluationzone:"@item["EVALUATIONZONE"].AsString",
buildingtype:"@item["BUILDINGTYPE"].AsString",
adsoid: "@item["ADSOID"].AsString",
validsince:"@item["VALIDSINCE"].AsString"

i)

</Text>
}

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta charset="utf-8">
<html>

<head>
<!l--<script src="JavaScript.js"></script>-->
<link rel="stylesheet" type="text/css" href="MapStyle.css">

</head>
<body>
<div class="container">
<div class="options-box">
<h1>District buildings info map </hl>
<div>
<input id="show-listings" type="button" value="Show info">
<input id="hide-listings" type="button" value="Hide info">
</div>
<div id="infowin">

</div>

</div>
<div id="map"></div>
</div>

<script>

var map;
// Create a new blank array for all the listing markers.
var markers = [];
function initMap() {
// Constructor creates a new map -
only center and zoom are required.
map = new google.maps.Map(document.getElementById('map"), {

center: { lat: 59.396956, lng: 24.670968 },
zoom: 15,

})s
var largeInfowindow = new google.maps.InfoWindow();
// The following group uses the location array to create an

array of markers on initialize.
for (var i = @; i < locations.length; i++) {

59

111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.

142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.

// Get the position from the location array.

var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var
var

position = locations[i].location;

title = locations[i].title;

year = locations[i].year;

x = locations[i].location.lat;

y = locations[i].location.lng;
city=locations[i].city;

district = locations[i].district;

image = "/Images/Home.PNG";

parcelid = locations[i].parcelid;
registrationdate = locations[i].registrationdate;
changingdate = locations[i].changingdate;
intendedusel = locations[i].intendedusel;
intendeduse2 = locations[i].intendeduse2;
intendeduse3 = locations[i].intendeduse3;

area = locations[i].area;

otherarea = locations[i].otherarea;
landregistryarea = locations[i].landregistryarea;
surveyingdate = locations[i].surveyingdate;
surveyor = locations[i].surveyor;
surveyingmethod = locations[i].surveyingmethod;
evaluationzone = locations[i].evaluationzone;
buildingtype = locations[i].buildingtype;
adsoid = locations[i].adsoid;

validsince = locations[i].validsince

// Create a marker per location, and put into markers
array.

var

s

marker = new google.maps.Marker({

map: map,

icon: image,

position: position,

title: title,

animation: google.maps.Animation.DROP,
id: i,

lng: vy,
lat: x,
city:city,

district: district,

parcelid: parcelid,
registrationdate: registrationdate,
changingdate:changingdate,
intendedusel: intendedusel,
intendeduse2: intendeduse2,
intendeduse3: intendeduse3,

area: area,

otherarea: otherarea,
landregistryarea:landregistryarea,
surveyingdate:surveyingdate,
surveyor:surveyor,
surveyingmethod:surveyingmethod,
evaluationzone: evaluationzone,
buildingtype: buildingtype,
adsoid: adsoid,
validsince:validsince

// Push the marker to our array of markers.

markers.push(marker);

// Create an onclick event to open an infowindow at
each marker.

60

175. marker.addListener('click', function () {

176. populateInfoWindow(this, largeInfowindow);

177. H;

178. }

179. document.getElementById('showlistings').addEventListener('click', showL
istings);

180. document.getElementById('hide-
listings').addEventListener('click', hideListings);

181. }

182. // This function populates the infowindow when the marker is

clicked. We'll only allow

183. // one infowindow which will open at the marker that is clicked
, and populate based

184. // on that markers position.

185. function populateInfoWindow(marker, infowindow) {

186. // Check to make sure the infowindow is not already opened
on this marker.

187. if (infowindow.marker != marker) {

188. infowindow.marker = marker;

189. var contentstr = '<div>' +

190. '<hl id="firstHeading" class="firstHeading">"' + marker.title + '</h1>"'
+

191. '</div>" +

192. ' <table class="dogisPopupTble">"' +

193. '<tbody>' +

194. '<tr> <th style="text-align: center; background-color: #dffddd;font-
family: arial, sans-serif;" colspan="2"> Parcel Info </th></tr>"' +

195. '<tr><td>County:</td><td>Harju maakond</td></tr>"' +

196. '<tr><td>Municipality:</td><td>'+ marker.city + '</td></tr>
'+

197. '<tr><td>Settlement unit:</td><td>' + marker.district + '</
td></tr>" +

198. '<tr><td>Identifier:</td><td>' + marker.parcelid + '</td></
tr>' +

199. '<tr><td>Registration date:</td><td>"' + marker.registration
date + '</td></tr>" +

200. '<tr><td>Changing date:</td><td>"' + marker.changingdate + '
</td></tr>" +

201. '<tr><td>Intended use 1:</td><td>'+marker.intendedusel +'</
td></tr>" +

202. '<tr><td>Intended use 2:</td><td>' + marker.intendeduse2 +
"</rd></tr>" +

203. '<tr><td>Intended use 3:</td><td>"' + marker.intendeduse3 + '
</td></tr>" +

204. '<tr><td>Area:</td><td>" + marker.area + '</td></tr>' +

205. '<tr><td>0Other area:</td><td>' + marker.otherarea + '</td><
/tr>' +

206. '<tr><td>Land registry area:</td><td>' + marker.landregistr
yarea + '</td></tr>"' +

207. '<tr><td>Surveying date:</td><td>' + marker.surveyingdate +

"</td></tr>" 4+

208. '<tr><td>Surveyor:</td><td>' + marker.surveyor + '</td></tr
>' o+

209. '<tr><td>Surveying method:</td><td>' + marker.surveyingmeth
od + '</td></tr>" +

210. <tr>' o+

211. '<td>Evaluation zone:</td>' +

212. ctd>' o+

213, ' <table>' +

214, ' <tbody>' +

215. ' <tr><td><a href="http://www.maaamet.ee/hv/

784 .pdf" target="_blank"><u>H0784010</u></
a></td><td> 100% </td></tr>' +

216. ' </tbody>' +
217. '</table>' +
218. </td>' o+

61

219. </tr>' o+

220. '</tbody>" +

221. '</table>';

222. var buildingcontentstr =

223. ' <table class="dogisPopupTble">"' +

224. '<tbody>' +

225 '<tr> <th style="text-align: center; background-

color: #dffddd;font-family: arial, sans-
serif;" colspan="2"> Building Info </th></tr>' +

226. '<tr><td>County:</td><td>Harju maakond</td></tr>"' +

227. '<tr><td>Municipality:</td><td>"' + marker.city +
"</rd></tr>" +

228. '<tr><td>Address:</td><td>"' + marker.title + '</td></tr>’
+

229. '<tr><td>adsoid:</td><td>" + marker.adsoid + '</td></tr>’
+

230. '<tr><td>Building type:</td><td>' + marker.buildingtype +
"</rd></tr>" +

231. '<tr><td>Registration Valid Since:</td><td>' +

marker.validsince + '</td></tr>" +
232. '<tr><td>Lat, long:</td><td>' + marker.lat + ','+
marker.lng + '</td></tr>' +

233. '</tbody>" +

234. '</table>';

235.

236. infowindow.setContent("'");

237. // infowindow.open(map, marker);

238. // Make sure the marker property is cleared if the info
window is closed.

BOR

240. infowindow.addListener('closeclick', function () {

241. infowindow.setMarker = null;

242. H;

243,

244, var streetViewService = new google.maps.StreetViewService();

245, var radius = 50;

246. // In case the status is OK, which means the pano was

found, compute the
247. // position of the streetview image, then calculate the
heading, then get a

248. // panorama from that and set the options

249. function getStreetView(data, status) {

250. infowindow.setContent(buildingcontentstr);

251.

252. if (status == google.maps.StreetViewStatus.OK) {

258 ¢ var nearStreetViewLocation = data.location.latL
ng;

254, var heading = google.maps.geometry.spherical.co
mputeHeading(

255 nearStreetViewLocation, marker.position);

256. var streewtviewstr = '<div id="pano"></div>"';

257. contentstr = streewtviewstr + contentstr ;

258. document.getElementById("infowin").innerHTML =
contentstr;

259. var panoramaOptions = {

260. position: nearStreetViewlLocation,

261. pov: {

262. heading: heading,

263. pitch: 30

264. }

265. };

266. var panorama = new google.maps.StreetViewPanora
ma (

267. document.getElementById('pano'), panoramaOpti
ons);

62

268. } else {

269. var nostreetstr = '<div>' + marker.title + '</d
iv>"' o+

270. '<div>No Street View Found</div>';

271. document.getElementById("infowin").innerHTML =
nostreetstr + contentstr;

272.

273. }

274. }

275.

276. }

277. // Use streetview service to get the closest streetview

image within

278. // 50 meters of the markers position

279. streetViewService.getPanoramaByLocation(marker.position, ra
dius, getStreetView);

280. infowindow.open(map, marker);

281.

282.

283. }

284. // This function will loop through the markers array and

display them all.

285. function showListings() {

286. var bounds = new google.maps.LatLngBounds();

287. // Extend the boundaries of the map for each marker and

display the marker

288. for (var i = @; i < markers.length; i++) {

289. markers[i].setMap(map);

290. bounds.extend(markers[i].position);

291. }

292. document.getElementById('infowin').style.display = "block";

293. map.fitBounds(bounds);

294, }

295. // This function will loop through the listings and hide

them all.

296. function hidelListings() {

297. for (var i = @; i < markers.length; i++) {

298. markers[i].setMap(null);

299. }

300. document.getElementById('infowin').style.display = "none";

301. }

302.

303.

304. </script>

305.

306. <script async defer

307. src="https://maps.googleapis.com/maps/api/js?key=AIzaSyCqhc
TpzfIWTABACOzDozTtu2dGL4DM6z4&v=3&callback=initMap">

308. </script>

309.

310. </body>

311. </html>

63

	Author’s declaration of originality
	Abstract
	Annotatsioon
	List of figures
	List of tables
	List of abbreviations and terms
	1. Introduction
	2. Databases History
	3. Background Information
	3.1. Relational Databases (SQL)
	3.2. Relational Database Management System (RDBMS)
	3.2.1. Oracle as an RDBMS
	3.2.2. MSSQL as an RDBMS
	3.2.3. MYSQL as an RDBMS

	3.3. Non-Relational Databases
	3.3.1. Key-Value databases
	3.3.2. Document databases
	3.3.3. Wide Column Store / Column Families
	3.3.4. Graph stores

	4. Case study: Property information map
	4.1. Classification of Estonia administrative units and settlements

	5. Implementation of Property Information Map
	5.1. General Structure of the Implementation
	5.2. Using Google Maps API for Property Information User Interface
	5.2.1. Google Maps API

	5.3. Implementation with Oracle Database
	5.4. Implementation with MongoDB

	6. Analysis and Comparison of Results
	6.1. Terminology, Implementation and Concept differences
	6.2. Analyzing Oracle on Querying Property Information
	6.3. Analyzing MongoDB on Querying Property Information
	6.4. Comparison of Results

	7. Suggestions for Future Work
	8. Conclusion
	References
	Appendix 1 – Source code for Oracle Database connected
	Appendix 2 – Source code for Mongo Database connected

