
TALLINN UNIVERSITY OF TECHNOLOGY
Department of Computer Systems

Study Centre for Computer Systems

Comparison of programming
languages

Authors: René Pihlak 178247IASM
Tanel Peet 178248IASM
Risto Heinsar 178446IASM
Tarmo Prillop 178206IASM

Tallinn 2018

Introduction

For this project, we have selected the following languages: C, C++, Rust and Go. The basis on
the selection was to have languages that belong to the same family, being similar in nature to
one and the other, however have various improvements and alterations made to them. The
work intends to compare C language to the languages that have been developed with the
intention to improve on it. In this case, C++ can be considered the object oriented version of C.
Rust and Go in term are improved versions of C with safety and modern features built into them
such as memory-safe operations, multithreading support etc.

Each of the languages compared will be graded in eight categories from ‘A’ to ‘E’, ‘A’ being the
highest grade we can give and ‘E’ the lowest. The grades are based on our research to these
languages and the findings presented in the work. The comparisons are made only between the
languages targeted by this work, relative to each other. For the comparisons to have any kind of
meaning, it does not consider any of the other languages available for developers, as this would
possibly marginalize the differences between our research subjects and not objectively highlight
differences. The full table can be seen in Appendix: Grades for select programming languages.

1

C

Efficiency
Being a compiled language, it will take some time to first compile the code, however once
compiled the code itself runs efficiently, especially if is well optimized. Another issue with
compiled code is that, that testing code revisions requires additional time for re-compilation of
the modified files.

Well written and optimized C code is hard to beat in performance. To improve on C code even
further, it is possible to use inline assembly [21].

A downside of efficiency in C is that in the original standard there was no multithreading
support. In the beginning there were third party implementations of this available. As of C11
standard, the language has added native multithreading support to address this shortcoming
[12].

Simplicity
There are very few different constructs in C language, which makes learning them easy and
fast. It can be considered to consist only of the essentials. The original design by K&R intended
the language to be simple and beautiful to read and write, however the language itself does not
prohibit for a developer to write extremely obfuscated code. Due to C considering whitespace as
optional, only used for improving the readability of the code, the developers have gone as far as
to holding competitions for obfuscating C code [27].

Orthogonality
C cannot be considered an orthogonal language, as there are language quirks that that differ
between data types. E.g. when comparing data types, you can use ‘==’ to compare numbers,
but not strings [12]. Similar argument can be brought when comparing dynamic and static
arrays, as dynamic arrays need to be freed manually, but we need not worry about statically
declared arrays.

Definiteness
Even though C can be considered a basic language, it contains a few constructs that are
context-dependent. One of those would be the while and do while loops, which both contain the
keyword while, but the placement and additional keyword “do” will achieve a different behavior
of the conditional checking [12]. A second example of context-dependent semantics would be
the asterisk ‘*’ symbol, which can mean refer to three different operations: multiplication,
dereferencing a pointer or a data type. A similar idea is followed by the inverse operation of
dereferencing, using the ampersand ‘&’ symbol. When used before the variable name, it asks
for the address of a variable, however it can also mean a bitwise logical operation AND. Finally
C is standardized by ISO (latest revision is ISO/IEC 9899:2018).

2

Reliability
The language does not provide almost any safety at all. Any kind of errors will allow for attacks
against the software and program crashes, errors, corruption etc. It is hard to write safe to use
code in C. Often times, wrapper functions are written to help the developers write safer code.
Many other languages were also developed for the same reason.

Program verification
There is no native mechanic in C to write unit tests or do formal verification, but there are plenty
of ways to implement formal verification using third party tools. C compiler also provides data
type correctness correctness, however it can be considered partial since the developer can use
type casting to suppress the compiler warnings.

Abstraction facilities
The C can be considered a very primitive language in terms of abstraction, as most what can be
done is either handled by void pointers to data, function pointers, unions and structures. It is
also possible to have function pointers as part of structures [12].

Portability
The portability in the C language is two-fold. Even though the C language is very close to
machine language, compilers exist for almost any architecture imaginable. However the code
needs to be compiled separately for different architectures and operating systems. This allows
for decent portability, but only as long as standard libraries are in use. Once system libraries
need to be used, it needs to be rewritten for each system. This is very prevalent when graphical,
sound or audio libraries are in use. Another portability issue with the C language are struct
bit-fields, which need to be rewritten depending on whether the system is using little or big
endian.

One of the key portability benefits in C language is that it’s a subset of C++ language. This
means that any C++ compiler will be able to compile C code. So even if they didn’t design the
compiler for C code, it comes as a byproduct of the C++ specification. This of course may
change with newer versions of C and C++ being developed, as older unsafe features are being
continuously deprecated from both languages, one of them being the gets() function which is
replaced with gets_s() [12].

3

C++

Efficiency
Being a compiled language, the one-time compilation process time must be accounted for.
However more importantly, when comparing code execution, C++ is typically performing nearly
as well as C. The overhead is minimal and for most cases, negligible [15].

Simplicity
Even though C++ is based on C, the developers of this language felt that C was lacking in
features. By adding loads of new features, including the object oriented approach, the language
grew to a point where it is really hard to comprehend for an unexperienced developer.

Orthogonality
C++ is non-orthogonal language as it has non-orthogonality types (e.g. classes, strings, arrays
enumerators), expressions (e.g. prefix and postfix decrement, postfix and postfix increment) and
flow controls (e.g. conditional branches, virtual functions). [16]

Definiteness
C++ is similar to C, but there are some differences such as “const int * const ptr;”. Regarding
data types the definiteness isn’t really the best, only signed char and unsigned char are
guaranteed to hold specific value range, for other primitive data types the value range is
dependent on the architecture of target system (i.e integers, int, can have different value ranges
in different targets).[28] Regarding documentation everything about C++ is very well defined, the
knowledge about every semantic aspect is well know and the standard library is documented
with good detail. C++ is also standardized by ISO, latest stable revision of the standard being
ISO/IEC 14882:2017 .

Reliability
All of the problems that C language has carry over to C++, as C is a subset of C++. However
C++ does introduce concepts like lists, which provide ways for a programmer to handle data
with less issues. Handling input is also simpler in C++, as cin and cout will take care of picking
the right formats.

Program verification
Since C++ is more strongly typed than C, C++ makes it easier to catch type casting errors.
Following good design practices, with regards to modern C++ (C++11 and onwards), can
greatly reduce common type issues (usage of auto keyword for variable type definition), but in
general the verification of the program is difficult with

4

Abstraction facilities
C++ has much more abstraction facilities compared to C. C++ incorporates a notion of
templates, thus making it possible to write code in more abstract level so that the type of
specific implementation is (close to) irrelevant. Template metaprogramming takes the
abstraction capabilities of C++ above other languages compared here.

Portability
In general, the portability can be considered similar, if not equal to C. The most common
compiler, GCC, typically supports both out of the box. GCC in itself is available on almost any
platform imaginable. Writing portable code needs some considerations as the primitive default
datatypes can vary between platforms, even the standard specifies them by saying that they
occupy “at least” a definite number of bytes. [29] Portable C++ code thus has to consider all the
possible architectures or use the std::numeric_limits package definitions of the minimum size of
data types and apply sufficient corrections during compilation.

5

Rust

Efficiency
Rust, being a compiled language, means that translating the written code to machine code
takes time, though correctly compiler machine code will most probably run faster than code that
is interpreted and ran on some virtual machine.

Simplicity
Rust is not a simple language by any means. Even the basic concepts are different compared to
C/C++ derived languages so learning curve is very steep, for example simple variable
ownership that is designed to be thread safe. The number of language features on the other
hand isn’t as big as in C++ meaning that obtaining the knowledge on the language features is
somewhat more manageable.[3]

Orthogonality
Rust is quite orthogonal as many keywords can be combined in different ways.[3] But it can not
be compared with the orthogonality offered by Go language. [13, 14] Orthogonality in Rust can
be demonstrated by the feature that every piece of language can nest inside another, for
example we can have a whole module (equivalent to namespace in C++) inside some if
statement.[20]

Definiteness
Rust is definite in a sense that it is designed to be a systems programming language (like C).In
the sense of consistency Rust is not the greatest language out there. For example there are
multiple different operationions that are performed by the same operator : ..expr can either
mean right-exclusive range literal or struct literal updating; Self and self keywords differ in
meaning, where the first refers to type aliasing mechanism and the latter method subject,
current instance (similar to this keyword in C++). All this results in a code where the definition of
how some operation is done isn’t obvious immediately but the context and exact listing must be
taken into account. In addition there doesn’t seem to be available strict semantics of the
language (or the memory model used) which is interesting as the language is called and thought
to be safe.

Reliability
The type system and memory management of Rust is far superior compared to C and C++.
Essentially the language itself prevents you from segmentation faults (access violations). Also
the same implementation is designed to handle race condition issues in multithreading. In
conclusion Rust can be seen as a language when after writing the code one can be fairly certain
that the program will not have data and memory management issues that C and C++ have.
Although it must be mentioned that the unsafe keyword, present in the Rust language, allows to

6

bypass the checks in a similar way that type casting is done by C and C++ but the specific
keyword allows easier identification of problematic and error-prone code areas.[17]

Program verification
As mentioned before the type and memory handling systems in Rust are very rigorous. Meaning
that verification of the software can be limited to checking the functional aspects of the code.
This is much easier compared to C and C++ as Rust has built-in capabilities of automated
testing (unit-testing).[18] .

Abstraction facilities
Rust supports abstraction facilities like traits, iterators etc. Rust creators promote that the
language has “zero-cost” abstractions. Diving deeper and comparing traits with abstract classes
of C++ one can see that the support is quite limited. Regarding data type related abstraction
Rust supports generic data types that is comparable to the template options and auto keyword
provided by C++.[19]

Portability
Rust can be compiled and run on variety of platforms. Rust has grouped supported platforms
into tiers: Tier 1 (guaranteed to work), Tier 2 (guaranteed to build) and Tier 3 (code base has
support, but not build and tested automatically). [11] As Rust can be still considered as a young
language, that is gaining popularity, the variety of platforms where it can be used will definitely
rise.

7

Go

Efficiency
The go language is a compiled language, so the process here is the same as with C. However
as the language provides memory handling and safety for the developer, it boasts about twice
the memory usage and slower overall speed, algorithm dependent [6]. The language is
designed natively to be efficient in multithreading and networking with the purpose of developing
server side software [7].

Simplicity
Compared to C, Go boasts better support for IDEs by removing the symbol table, which made C
hard to handle. It’s simpler to develop various tools and debuggers [7]. They’ve also simplified
variable declarations by moving the type after the variable name(s) and allowing to declare
variables without implicitly specifying the variable type. Go introduces a garbage collector to
lessen the load on bookkeeping by the developer. They have also removed code elements
which were designed for lexers, but unfriendly for human operators.

Orthogonality
Orthogonality plays important role in designing Go language and it’s libraries. It is inspired by
Unix Philosophy, keeping in mind the principles that code units should kept simple,
concentrating on doing one task well and having standard way to communicate. [9]

Definiteness
The Go language design philosophy has been reducing complexity from the beginning,
removing many of the repetitive ways of doing the same things in C and other language [7]. A
good example of this would be to remove all of the loop types except for loop, which now
handles all possible cases [22]. Only thing that remains context dependent is the asterisk
symbol, which is still used for both pointer operations and multiplication.

Reliability
One of the main purposes of Go is to improve on the unsafe practices in C. By introducing
memory and type safety there are a lot less caveats where the programmer might
unintentionally introduce bugs [7].

Program verification
Go makes program verification very easy. It can be built and tested quickly, is statically typed, is
simple, concise, but expressive, has clear paths of error and recovery, has well maintained and
extensive standard library [10]. Go language also has built in testing facilities, which allows for
very simple unit testing. It also provides means for runtime analysis, creating options for simple
performance profiling [23].

8

Abstraction facilities
Go is designed to be a simple language for new programmers and therefore does not have
loads of abstractions[7]. The abstraction capability for Go is similar in nature to C language,
while some of the constructs have been reworked. Function pointers in C have been updated for
better readability [25], but are still usable. Structures are also slightly more powerful, however
Go does not consider itself as an object-oriented language, thus they are not as powerful as
classes in other object oriented languages. They are lacking in hierarchy, however now it is
possible to have methods inside of classes. In C it was possible to have function pointers inside
of classes, Go’s implementation of methods is more powerful. The language developers
themselves consider Go not to have classes, but structures instead [26].

Portability
Although Go compiles code into executable for a specific platform, it is made very easy and
hassle-free to choose the target platform(s) [8]. This is limited in nature however to more
powerful systems, as the language was designed by google to help replace C++ in creating
server software for their ever-growing operations [7]. This means that, even though it can be
considered an all-purpose language, compiling for embedded systems and various other
lower-performing hardware can be problematic due to the added safety features and garbage
collector, which are taking up resources. This isn’t however impossible, as there are plenty of
projects out there, such as Go, Robot, Go, which are designed to help use the language on
embedded systems [24]. That all said, being a newer language, Go cannot compete with the
evergreen C and C++ languages and their compatibility with older systems.

9

List of references

[1] Molotnikov, Z., Schorp, K., Arvantinos, V., Schätz, B., Future Programming Paradigms in
the Automotive Industry. [Online].
Available: https://www.vda.de/dam/vda/publications/2016/FAT/FAT-Schriftenreihe_287.pdf
.Accessed on: Nov. 1, 2018

[2] Trejo, D., After All These Years, the World is Still Powered by C Programming. [Online].
Available:
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
.Accessed on: Nov. 1, 2018

[3] Mollevik, I., Olsson, S. Vikdahl, M., Weijand, S., Westin, J. Seminar: The Rust
Programming Language. [Online].
Available: https://www8.cs.umu.se/kurser/5DV086/VT18/resources/seminar/rust.pdf .Accessed
on: Nov. 1, 2018

[4] A vision for portability in Rust. [Online].
Available: http://aturon.github.io/2018/02/06/portability-vision/ .Accessed on: Nov. 1, 2018

[5] Baranowski, M., He, S., Rakamar, Z. Verifying Rust Programs with SMACK.
Proceedings of the 16th International Symposium on Automated Technology for Verification and
Analysis (ATVA), 2018

[6] Go versus C gcc fastest programs. [Online]
Available: https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/go-gcc.html
.Accessed on: Nov. 1, 2018

[7] The Go Programming Language. Frequently Asked Questions (FAQ). [Online]
Available: https://golang.org/doc/faq .Accessed on: Nov. 1, 2018

[8] The Go Programming Language. Package build. [Online]
Available: https://golang.org/pkg/go/build .Accessed on: Nov. 1, 2018

[9] Schlesinger, A. Orthogonality in Go. [Online]
Available: https://arschles.svbtle.com/orthogonality-in-go .Accessed on: Nov. 1, 2018

[10] Kol, T. How to write bulletproof code in Go: a workflow for servers that can’t fail. [Online]
Available:
https://medium.freecodecamp.org/how-to-write-bulletproof-code-in-go-a-workflow-for-servers-th
at-cant-fail-10a14a765f22 .
Accessed on: Nov. 1, 2018

10

https://www.vda.de/dam/vda/publications/2016/FAT/FAT-Schriftenreihe_287.pdf
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
https://www8.cs.umu.se/kurser/5DV086/VT18/resources/seminar/rust.pdf
http://aturon.github.io/2018/02/06/portability-vision/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/go-gcc.html
https://golang.org/doc/faq
https://golang.org/pkg/go/build
https://arschles.svbtle.com/orthogonality-in-go
https://medium.freecodecamp.org/how-to-write-bulletproof-code-in-go-a-workflow-for-servers-that-cant-fail-10a14a765f22
https://medium.freecodecamp.org/how-to-write-bulletproof-code-in-go-a-workflow-for-servers-that-cant-fail-10a14a765f22

[11] Rust Forge. Rust Platform Support. [Online]
Available: https://forge.rust-lang.org/platform-support.htm .Accessed on: Nov. 1, 2018

[12] ISO/IEC 9899:2011 Information technology - Programming languages - C, 2011

[13] Go and Rust. [Online]
Available: https://www.davidb.org/post/go-and-rust/ .Accessed on: Nov. 1, 2018

[14] Mollevik, I., Olsson, S. Vikdahl, M., Weijand, S., Westin, J. Seminar: The Rust
Programming Language. [Online].
Available: https://www8.cs.umu.se/kurser/5DV086/VT18/resources/seminar/rust.pdf .Accessed
on: Nov. 1, 2018

[15] C++ g++ versus C gcc fastest programs. [Online]
Available: https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/cpp.html
.Accessed on: Nov. 1, 2018

[16] Yang, Feng-Jen, The orthogonality in C++, J. Comput. Sci. Coll., Consortium for
Computing Sciences in Colleges, 2008

[17] The Rust Programming Language. Unsafe Rust. [Online]
Available: https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html#unsafe-rust
.Accessed on: Nov. 1, 2018

[18] The Rust Programming Language. Writing Automated Tests. [Online]
Available: https://doc.rust-lang.org/book/second-edition/ch11-00-testing.html .Accessed on:
Nov. 1, 2018

[19] The Rust Programming Language. Generic Data Types. [Online]
Available: https://doc.rust-lang.org/book/second-edition/ch10-01-syntax.html . Accessed on:
Nov. 1, 2018

[20] Blandy, J., Orendorff, J., Programming Rust: Fast, Safe Systems Development, O’Reilly
Media, 2017

[21] Coppen, W., S., Optimizing C/C++ with Inline Assembly Programming. [Online]
Available: http://www.drdobbs.com/optimizing-cc-with-inline-assembly-progr/184401967
.Accessed on: Nov. 1, 2018

[22] The Go Programming Language. The Go Programming Language Specification. [Online]
Available: https://golang.org/ref/spec .Accessed on: Nov. 1, 2018

11

https://forge.rust-lang.org/platform-support.htm
https://www.davidb.org/post/go-and-rust/
https://www8.cs.umu.se/kurser/5DV086/VT18/resources/seminar/rust.pdf
https://benchmarksgame-team.pages.debian.net/benchmarksgame/faster/cpp.html
https://doc.rust-lang.org/book/second-edition/ch19-01-unsafe-rust.html#unsafe-rust
https://doc.rust-lang.org/book/second-edition/ch11-00-testing.html
https://doc.rust-lang.org/book/second-edition/ch10-01-syntax.html
http://www.drdobbs.com/optimizing-cc-with-inline-assembly-progr/184401967
https://golang.org/ref/spec

[23] The Go Programming Language. Package testing. [Online]
Available: https://golang.org/pkg/testing/ .Accessed on: Nov. 1, 2018

[24] Gobot - Golang framework for robotics, drones and the Internet of Things (IoT). [Online]
Available: https://gobot.io/ .Accessed on: Nov. 1, 2018

[25] The Go Blog. Go's Declaration Syntax. [Online]
Available: https://blog.golang.org/gos-declaration-syntax Accessed on: Nov. 1, 2018

[26] Golang tutorial series. Part 26: Structs Instead of Classes - OOP in Go. [Online]
Available: https://golangbot.com/structs-instead-of-classes/ .Accessed on: Nov. 1, 2018

[27] The International Obfuscated C Code Contest. [Online]
Available: https://www.ioccc.org/ . Accessed on: Nov. 1, 2018

[28] Stroustrup, Bjarne, The C++ Programming Language, Fourth Edition, Addison-Wesley
Professional, 2013

[29] Cppreference. Fundamental types. [Online]
Available: https://en.cppreference.com/w/cpp/language/types . Accessed on: Nov. 1, 2018

12

https://golang.org/pkg/testing/
https://gobot.io/
https://golangbot.com/structs-instead-of-classes/
https://www.ioccc.org/
https://en.cppreference.com/w/cpp/language/types

Appendix: Grades for select programming languages

 C C++ Rust Go

Efficiency A B B E

Simplicity A C E B

Orthogonality D D B C

Definiteness B B D A

Reliability E D C A

Program
verification

E D B A

Abstraction
facilities

E A C C

Portability A A B B

13

