
Manual Decompilation Exercises

The Binary Auditor™

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

2

Manual Decompilation

Manual decompilation is the art of converting back a fragment of an analysed binary to a high
level language (usually C/C++) or pseudo code by hand. Your goal is to recover the C/C++
code or pseudo code that generated the following assembler code.

Let us take as an example the following code:

mov ebx, offset src
push n
push c
push ebx
push offset dest
call _memccpy
add esp, 10h

We can decompile it the following way:

memcpy(dest,src,c,n);

Your goal is to provide a commented pseudo code or better a manually decompiled version of
the following exercises in the same way we just decompiled the above given code snippet.

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

3

 1 Manual Decompilation – Exercise 1

Your goal is to analyse the following compiler-generated assembly language code and to
understand how it works.

 ...
 mov edx, Var1
 mov ecx, Var2
 mov eax, edx
 imul ecx
 mov edx, eax
 imul edx, eax
 mov Var3, ecx
 ...

You must retrieve the proper C/C++ code or pseudo code of this commented code.

Your solution has to contain either a full commented C/C++ code or a detailed pseudo code
describing the function of the above snippet.

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

4

 2 Manual Decompilation – Exercise 2

Your goal is to analyse the following compiler-generated assembly language code and
understand how it works. It contains a very simple loop.

 ...
 mov dword ptr [esi], 1
 xor edx, edx
 mov [ebx], edx
 jmp short loc_4012F1
loc_4012E8:
 mov ecx, [esi]
 imul ecx, [esi]
 mov [esi], ecx
 inc dword ptr [ebx]
loc_4012F1:
 cmp dword ptr [ebx], 8
 jl short loc_4012E8
 ...

You must retrieve the proper C/C++ code or pseudo code of this commented procedure.

Your solution has to contain either a full commented C/C++ code or a detailed pseudo code
describing the function of the above snippet.

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

5

 3 Manual Decompilation – Exercise 3

Your goal is to analyse the following compiler-generated assembly language code and
understand how it works. It contains two conditional branches.

 push sPassword ; line of code
 call _strlen

 pop ecx
 mov esi, eax

 mov ebx, offset sMyPassword; ; line of code
 push ebx
 call _strlen
 pop ecx

 cmp esi, eax ; small block of code
 jz short loc_4012B2
 xor eax, eax
 jmp short end_proc

loc_4012B2:
 push esi

 push ebx ; line of code
 push sPassword
 call _strcmp
 add esp, 8

 test eax, eax ; small block of code
 jnz short loc_4012CC
 mov eax, 1
 jmp short end_proc

loc_4012CC:
 xor eax, eax

end_proc: ; end of function
 pop esi
 pop ebx
 pop ebp
 retn

You must retrieve the proper C/C++ code or pseudo code of this commented procedure. You
need to explain which instruction(s) should be changed (patched) to make the function return
a positive result in most common cases. Try to change as less bytes as possible!

Your solution has to contain either a full commented C/C++ code or a detailed pseudo code
describing the function of the above snippet.

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

6

 4 Manual Decompilation – Exercise 4

You already know how to reverse basic code snippets.

Let us take the following code:

push ebp
mov ebp, esp
add esp, -80h
push ebx
mov eax, V2
mov ebx, eax
mov ecx, V3
imul ebx, ecx
mov V4, ebx
mov edx, V1
add edx, eax
sub edx, ecx
mov V1, edx
add ebx, edx
mov V3, ebx

We can analyse it the following way:

push ebp --> Stack frame creation, no code
mov ebp, esp
add esp, -80h --> this tell us our stack frame is 128 bytes

push ebx --> save ebx contents
mov eax, V2 --> take V2 value
mov ebx, eax --> duplicate V2 value
mov ecx, V3 --> take V3 value
imul ebx, ecx --> calculate V2 * V3 in ebx
mov V4, ebx --> “V4 = V2 * V3”, ebx holds V4 then

mov edx, V1 --> take V1 value
add edx, eax --> calculate (V1+V2) in edx
sub edx, ecx --> calculate (V1+V2) - V3
mov V1, edx --> “V1 = (V1+V2) - V3”
add ebx, edx --> calculate (V2*V3) + V1
mov V3, ebx --> “V3= V4+V1”

In other words: the above lines of assembler can be manually decompiled in:

{
 unsigned char buffer[128];

 V4 = V2*V3;
 V1 = V1+V2-V3;
 V3 = V4+V1;
 ...

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

7

 5 Manual Decompilation – Exercise 5

Your goal is to analyse the following procedure and recover the C/C++ code or pseudo code
that generated it.

proc near

arg_0 = dword ptr 8
arg_4 = dword ptr 0Ch
arg_8 = dword ptr 10h

 push ebp
 mov ebp, esp
 push ebx
 push esi
 mov ecx, [ebp+arg_8]
 mov esi, [ebp+arg_0]
 mov eax, [ebp+arg_4]
 mov edx, esi
 test ecx, ecx
 jnz short loc_40125A
 xor eax, eax
 jmp short loc_401265
loc_401254:
 mov bl, [eax]
 inc eax
 mov [edx], bl
 inc edx
loc_40125A:
 mov ebx, ecx
 add ecx, -1
 test ebx, ebx
 jnz short loc_401254
 mov eax, esi
loc_401265:
 pop esi
 pop ebx
 pop ebp
 retn
endp

You must retrieve the proper C/C++ code or pseudo code of of this commented procedure.

Your solution has to contain either a full commented C/C++ code or a detailed pseudo code
describing the function of the above snippet.

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

8

 6 Manual Decompilation – Exercise 6

Your goal is to analyse the following procedure and recover the C/C++ code or pseudo code
that generated it.

proc near

V1 = dword ptr 8
V2 = dword ptr 0Ch
V3 = dword ptr 10h
V4 = dword ptr 14h

 push ebp
 mov ebp, esp
 push esi
 push edi
 mov edi, [ebp+V4]
 mov esi, [ebp+V3]
 mov edx, [ebp+V2]
 mov eax, [ebp+V1]
 test edi, edi
 jnz short loc_40122C
 xor eax, eax
 jmp short loc_401237
loc_401219:
 mov ecx, esi
 cmp cl, [edx]
 jz short loc_401227
 mov cl, [edx]
 mov [eax], cl
 inc edx
 inc eax
 jmp short loc_40122C
loc_401227:
 mov [eax], cl
 inc eax
 jmp short loc_401237
loc_40122C:
 mov ecx, edi
 add edi, -1
 test ecx, ecx
 jnz short loc_401219
 xor eax, eax
loc_401237:
 pop edi
 pop esi
 pop ebp
 retn
endp

You must retrieve the proper C/C++ code or pseudo code of this commented procedure.

Your solution has to contain either a full commented C/C++ code or a detailed pseudo code
describing the function of the above snippet.

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

9

 7 Manual Decompilation – Exercise 7

The initial numbers provided on the left of the code snippet represent the relative value of
your Stack pointer within the function. It can help you recognizing the (slightly) different
usage of function's parameters (hint: 3 parameters are passed to this function).

proc near
000 push ebx
004 push esi
008 xor ebx, ebx
008 mov [eax], ebx
008 mov ebx, ecx
008 dec ebx
008 test ebx, ebx
008 jl short loc_408135
008 inc ebx
loc_40810E:
008 mov ecx, [eax]
008 shl ecx, 4
008 movzx esi, byte ptr [edx]
008 add ecx, esi
008 mov [eax], ecx
008 mov ecx, [eax]
008 and ecx, 0F0000000h
008 test ecx, ecx
008 jz short loc_40812D
008 mov esi, ecx
008 shr esi, 18h
008 xor [eax], esi
loc_40812D:
008 not ecx
008 and [eax], ecx
008 inc edx
008 dec ebx
008 jnz short loc_40810E
loc_408135:
008 pop esi
004 pop ebx
000 retn
sub_408100 endp

You must retrieve the proper code or produce a pseudo code of this slightly commented
procedure.

Your solution has to contain either a full commented High-Level Language code or a detailed
pseudo code describing the function of the above snippet. You should also recognize the
algorithm and name it accordingly. It pertains to the basics of cryptography field.

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

10

 8 Manual Decompilation – Exercise 8

Your goal is to analyse the following procedure and recover the code or pseudo code that
generated it. As prior exercise, you can see the relative stack pointer on the leftmost of each
instruction.

sub_408138 proc near
000 push ebx
004 push esi
008 mov esi, edx
008 dec esi
008 test esi, esi
008 jl short loc_40816F
008 inc esi
loc_408142:
008 xor edx, edx
008 mov dl, [eax]
008 xor ebx, ebx
008 mov bl, cl
008 add edx, ebx
008 test edx, edx
008 jge short loc_40815B
008 mov ebx, 100h
008 sub ebx, edx
008 mov edx, ebx
008 jmp short loc_408169
loc_40815B:
008 cmp edx, 100h
008 jle short loc_408169
008 sub edx, 100h
loc_408169:
008 mov [eax], dl
008 inc eax
008 dec esi
008 jnz short loc_408142
loc_40816F:
008 pop esi
004 pop ebx
000 retn
sub_408138 endp

You must retrieve the proper High-Level Language code or produce a pseudo code of this
commented procedure.

Your solution has to contain either a full commented High-Level Language code or a detailed
pseudo code describing the function of the above snippet. You should also recognize the
algorithm and name it accordingly. It pertains to the basics of cryptography field.

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

11

 9 Manual Decompilation – Live Code Analysis Exercise

You should reverse the following procedure extracted from a simulated protection system and
analyse it. You should convert any meaningful number or constant by using either MSDN or
values from Windows header files. The leftmost number represent the relative position of
your stack pointer within the procedure.

procedure0 proc near
000 push 0
004 push procedure1
008 call EnumWindows
000 retn
procedure0 endp

procedure1 proc near

ClassName = byte ptr -204h
String = byte ptr -104h
hwnd = dword ptr -4
V1 = dword ptr 8

000 push ebp
004 mov ebp, esp
004 add esp, -204h
208 push ebx
20C push esi
210 push edi
214 mov edi, [ebp+V1]
214 push 100h
218 lea eax, [ebp+String]
218 push eax
21C push edi
220 call GetWindowTextA

214 mov [ebp+eax+String], 0
214 push 100h
218 lea eax, [ebp+ClassName]
218 push eax
21C push edi
220 call GetClassNameA

214 mov [ebp+eax+ClassName], 0
214 mov esi, 3
214 mov ebx, offset Address1

Label1:
214 lea eax, [ebp+ClassName]
214 call tolower

214 mov edx, [ebx]
214 call Sysutils::StrPos(char *,char *)

214 test eax, eax
214 jnz short Label2

214 lea eax, [ebp+String]
214 call tolower

214 mov edx, [ebx]
214 call Sysutils::StrPos(char *,char *)

214 test eax, eax
214 jz short Label3

(C) 2009 by Binary-Auditing.com, Binary Auditing™ and the Binary Auditor™

12

Label2:
214 push 0
218 push offset aSyslistview32
21C push 0
220 push edi
224 call FindWindowExA

214 mov [ebp+hwnd], eax
214 push 0
218 push 0
21C push 1009h
220 mov eax, [ebp+hwnd]
220 push eax
224 call SendMessageA

214 push 0
218 push 0
21C push 0Fh
220 mov eax, [ebp+hwnd]
220 push eax
224 call SendMessageA

214 push 0
218 push 0
21C push 02h
220 push edi
224 call SendMessageA

214 push 0
218 push 0
21C push 10h
220 push edi
224 call SendMessageA

Label3:
214 add ebx, 4
214 dec esi
214 jnz short Label1

214 mov al, 1
214 pop edi
210 pop esi
20C pop ebx
208 mov esp, ebp
004 pop ebp
000 retn 8

procedure1 endp

aSyslistview32 db 'SysListView32'
Address1:
dd offset aRegmon ; "REGMON"
dd offset aFilemon ; "FILEMON"
dd offset aRegmonex ; "REGMONEX"

Your solution has to contain either a full commented High-Level Language code or a detailed
pseudo code describing the above function. You must provide a detailed explanation of what
this procedure does and how it does that, as well as its usage within a copy protection system.

