
DANE & Application Uses of DNSSEC!
Shumon Huque, Duane Wessels!
ICANN 52, Singapore, Singapore!
February 11th, 2015!

Verisign Public!

Application uses of DNSSEC!

•  One of the more exciting prospects for DNSSEC!
•  DNSSEC can be employed to store cryptographic keys in
the DNS, and ..!

•  Allow applications to securely obtain (authenticate) those
keys and use them in application security protocols!

•  Some possible applications: SSH, SSL/TLS, HTTPS, S/
MIME, PGP, SMTP, DKIM, and many others ..!

•  Existing records:!
•  SSHFP, IPSECKEY, DKIM TXT record, …!
•  DANE records: TLSA, OPENPGPKEY!

•  Upcoming:!
•  SMIMEA, IPSECA, …!

2!

Verisign Public!

SSHFP record!

3!

grodd.magpi.net.!86400!IN!SSHFP!(1 1!
 F60AE0994C0B02545D444F7996088E9EA7359CBA)!

• Secure Shell Host Key Fingerprint (RFC 4255)!

• Allows you to validate SSH host keys using DNSSEC!
algorithm!
number!

fingerprint !
type (1= SHA1)!

fingerprint!

In OpenSSH, you can use the client configuration directive
“VerifyHostKeyDNS” to use this. Enabled by default in some newer
operating systems like FreeBSD 10.!

Verisign Public!

IPSECKEY record!

4!

38.2.0.192.in-addr.arpa. 7200 IN IPSECKEY (10 1 2!
 192.0.2.38!
 AQNRU3mG7TVTO2BkR47usntb102uFJtugbo6BSGvgqt4AQ==)!

• RFC 4025: method for storing IPsec keying material in
DNS!

• rdata format: precedence, gateway-type, algorithm,
gateway address, public key!

• Not much uptake of this record!

• Will likely be superseded by newer proposals, like
IPSECA!

Verisign Public!

TLS and the Internet PKI!

•  A very large number of security protocols authenticate
server names with X.509 certificates!
•  TLS, IPsec, HTTPS, SIPS, SMTP, IMAP, XMPP, …!

•  These certificates are issued and signed by the Internet
PKI, composed of a set of globally trusted public
Certification Authorities (CAs)!
!

5!

Verisign Public!

Public CA model issues!

•  Applications need to trust a large number of global
Certification Authorities (CA)!

•  No namespace constraints! Any CA can issue certificates
for any entity on the Internet!

•  Least common denominator security: our collective
security is equal to the weakest one!!

•  Furthermore, many of them issue subordinate CA
certificates to their customers, again with no naming
constraints!

•  Most CAs aren’t capable of issuing certificates with any
but the most basic capabilities (e.g. alternate name forms
or other extensions)!

6!

Verisign Public!

Public CA model issues!

•  “Analysis of the HTTPS Certificate Ecosystem”, UMich,
October 2013, Internet Measurement Conference!
•  http://conferences.sigcomm.org/imc/2013/papers/imc257-

durumericAemb.pdf!
•  Over 1,800 separate CAs are capable of issuing certificates for

anyone! (Root CAs and intermediate CAs issued by them)!

•  “The Shape & Size of Threats: Defining a Networked
System’s Attack Surface”!
•  Eric Osterweil (Verisign), Danny McPherson (Verisign), Lixia

Zhang (UCLA), NPsec 2014 conference!

!

7!

Verisign Public!

Can DNSSEC help?!

•  Can we leverage DNSSEC to address these deficiencies?!
•  DNS has hierarchical, decentralized administration!
•  Certificates and public keys placed in the DNS can be
authenticated with DNSSEC signatures!

•  Name constraints are inherent!
•  Deployed infrastructure is becoming real!
•  Root and many of the TLDs are signed, so most
organizations can sign their zones and have an intact
secure chain of trust to the root!

•  Validation is also becoming more prevalent (see prior
slides in deployment status)!

8!

Verisign Public! 9!

Enter DANE!

DNS-Based Authentication of
Named Entities (DANE) RFC
6698!

Verisign Public!

DANE and the TLSA record!

•  RFC 6698: The DNS-based Authentication of Named
Entities (DANE) Protocol for Transport Layer Security!

•  http://tools.ietf.org/html/rfc6698!
•  Defines a new DNS record type “TLSA”, that can be used
for better & more secure ways to authenticate SSL/TLS
certificates!
•  By specifying constraints on which CA can vouch for a certificate,

or which specific PKIX end-entity certificate is valid!
•  By specifying that a service certificate or a CA can be directly

authenticated in the DNS itself.!

10!

11!

_443._tcp.www.example.com. IN TLSA (!
 0 0 1 d2abde240d7cd3ee6b4b28c54df034b9!
 7983a1d16e8a410e4561cb106618e971)!

port, transport proto & !
server domain name! TLSA rrtype!

certificate association data!

usage!

selector! matching!
type!

TLSA record example!

Verisign Public!

TLSA configuration parameters!

12!

Usage field:!
 0 PKIX-TA: CA Constraint!
 1 PKIX-EE: Service Certificate Constraint!
 2 DANE-TA: Trust Anchor Assertion!
 3 DANE-EE: Domain Issued Certificate!
!
Selector field:!
 0 Match full certificate!
 1 Match only SubjectPublicKeyInfo!
!
Matching type field:!
 0 Exact match on selected content!
 1 SHA-256 hash of selected content!
 2 SHA-512 hash of selected content!
!
!
Certificate Association Data: raw cert data in hex!

Verisign Public!

TLSA configuration parameters!

13!

Usage field:!
 0 PKIX-TA: CA Constraint!
 1 PKIX-EE: Service Certificate Constraint!
 2 DANE-TA: Trust Anchor Assertion!
 3 DANE-EE: Domain Issued Certificate!
!
Selector field:!
 0 Match full certificate!
 1 Match only SubjectPublicKeyInfo!
!
Matching type field:!
 0 Exact match on selected content!
 1 SHA-256 hash of selected content!
 2 SHA-512 hash of selected content!
!
!
Certificate Association Data: raw cert data in hex!

Co-exists with and !
Strengthens Public !
CA system!

Operation without!
Public CAs!

Verisign Public!

Usage types!

14!

0 PKIX-TA: CA Constraint!
 Specify which CA should be trusted to authenticate the!

!certificate for the service. Full PKIX certificate!
!chain validation needs to be performed.!

!
1 PKIX-EE: Service Certificate Constraint!

!Define which specific service certificate (“EE cert”)!
!should be trusted for the service. Full PKIX cert!
!validation needs to be performed.!

!
2 DANE-TA: Trust Anchor Assertion!

!Specify a domain operated CA which should be trusted!
!independently to vouch for the service certificate.!

!
3 DANE-EE: Domain Issued Certificate!

!Define a specific service certificate for the service!
!at this domain name.!

Verisign Public!

Example TLSA record (for WWW)!

15!

_443._tcp.fedoraproject.org. 263 IN TLSA 0 0 1 (!
! ! ! !19400BE5B7A31FB733917700789D2F0A2471C0C9D506!
! ! ! !C0E504C06C16D7CB17C0)!

!
_443._tcp.fedoraproject.org. 263 IN RRSIG TLSA 5 4 300 (!

! ! ! !20141114150617 20141015150617 7725
fedoraproject.org.!

! ! ! !hrk0si7I/BWTz0wEtMcFZNUCj/0o5796k5FVuZx6eXrc!
! ! ! !YOe/ChHA/Shu/WHr3iM1yNGi86+8t4wMq9GA+JZthWZC!
! ! ! !ZmENxf9OTNe/t/LBAc2EDW/fMBJq0JO2b4ZkJHXCEyX0!
! ! ! !CDsIYz8shZ20nPGlrsYqwLdQiCeravWcwcJiPuc=)!

!
!
Usage 0 (“CA Constraint”) – this record says:!
-  For service at fedoraproject.org tcp port 443!
-  only the CA with the specified SHA-256 certificate

fingerprint (19400BE5B…) should be trusted!

Verisign Public!

DANE/TLSA tools and software!

•  TLSA Record Generation!
•  Command line tools: “swede”, “hash-slinger”, “ldns-dane”!
•  Web based tool: https://www.huque.com/bin/gen_tlsa!

•  TLSA validators for web!
•  Some 3rd party validator plugins are available (Firefox, Chrome,

Opera, Safari):!
•  https://www.dnssec-validator.cz/!
•  http://blog.huque.com/2014/02/dnssec-dane-tlsa-browser-

addons.html!
•  Bloodhound Mozilla fork:!
•  https://www.dnssec-tools.org/wiki/index.php/Bloodhound!
!

16!

Verisign Public!

DANE for SMTP!

17!

Verisign Public!

DANE for SMTP!

•  DANE in conjunction with SMTP over TLS, or SMTP +
STARTTLS can be used to more fully secure email
delivery!

•  DANE can authenticate the certificate of the SMTP
submission server that the user’s mail client (MUA)
communicates with!

•  DANE can authenticate TLS connections between SMTP
servers (“MTA”s or Mail Transfer Agents)!

•  This second use case is where DANE solves some
important problems that are unaddressed today!

18!

Verisign Public!

DANE for SMTP!

•  Most connections between SMTP servers today use
encryption opportunistically (i.e. if both sides support and
advertise it, it is used)!

•  Even when encryption is used, it is vulnerable to attack:!
•  Attackers can strip away the TLS capability advertisement and

downgrade the connection to not use TLS!
•  TLS connections are often unauthenticated (e.g. the use of self

signed certificates as well as mismatched certificates is common)!

•  DANE can address both these vulnerabilities!
•  Authenticate the certificate using a DNSSEC signed TLSA record!
•  Use the presence of the TLSA record as an indicator that

encryption must be performed (prevent downgrade)!
•  http://tools.ietf.org/html/draft-ietf-dane-smtp-with-dane!

19!

Verisign Public!

Example TLSA record (for SMTP)!

20!

_25._tcp.mx1.freebsd.org. 2389 IN TLSA 3 0 1 (!
! ! ! !5EC0508C3F337D18509F41BFF9D8AB07FED588A132FA!
! ! ! !12FA1E223BA6B9403ACB)!

!
_25._tcp.mx1.freebsd.org. 2389 IN RRSIG !TLSA 8 5 3600 (!

! ! ! !20141023072418 20141009105807 39939
freebsd.org.!

! ! ! !ll6DEQ7oP2lbEcOeJyPk+I8tYiGz4CzuDiqiMbr4Mzp3!
! ! ! !90UWdej3kdAz4t+1BT0dO3/o0nz0pp3HFsDu+gkwT6YH!
! ! ! !Jg4C6mi3STPciCP1tjbFuW/dv4lPkCUaN7kJt/qwPrR6!
! ! ! !0kQmyvcuUoYgUDPbNYbJNJXai+mFai5WqLS2MEP15ydU!
! ! ! !nt8KympnjHS5mVLVGXW0e7tLY1afQz1VrIeYsGW8YztM!
! ! ! !DYUpCXjWiq+YpCFv7rZ7ICejQR6ot1M35CDsfjk68eu0!
! ! ! !EAjx+HlqaTdGyilcMB+GduFwqkULDPIgiFu/3xb+srJR!
! ! ! !zuR89YpHga9OCnz6nXJgQ6cxvSImZWbKuw==)!

!
This is a domain-issued certificate (usage 3), which can
be authenticated without a trusted CA.!

Verisign Public!

Early large adopters of SMTP + DANE!

•  posteo.de!
•  mailbox.org!
•  umbkw.de!
•  bund.de!
•  denic.de!
•  freebsd.org!
•  unitybox.de!

•  debian.org, debian.net!
•  ietf.org!
•  nlnetlabs.nl!
•  nic.cz!
•  nic.ch!
•  torproject.org!

21!

Quite a few are large email systems in Germany. See a!
larger list at https://www.tlsa.info/!
!

Verisign Public!

SMTP servers that support DANE!

•  Postfix MTA (works today, version 2.11 onwards)!
•  Exim (currently under development)!
!

22!

Quick start for Postfix:!
!
 postconf -e "smtpd_use_tls = yes”!
 postconf -e "smtp_dns_support_level = dnssec”!
 postconf -e "stmp_tls_security_level = dane”!
!

Verisign Public!

XMPP servers!

•  XMPP (Jabber) has seen some uptake of DANE.!
•  To authenticate the c2s and/or s2s portion of the XMPP
protocol!

•  List of XMPP servers with DANE TLSA records:!
•  https://xmpp.net/reports.php#dnssecdane!

23!

Example:!
!
_xmpp-server._tcp.mail.de. 3600!IN!SRV! 10 20 5269 jabber.mail.de.!
!
_5269._tcp.jabber.mail.de. 600 !IN!TLSA !3 1 1 (!
 A0315F0CF61CAC787140833C2C608550476!
 246DDA54122D66BB339D5 0FBB10E3)!
!

Verisign Public!

OpenPGPKEY!

•  OPENPGPKEY record!
•  Used to publish an OpenPGP public key in the DNS!
•  DNSSEC signature provides authentication!
•  Spec under development, but RR code already assigned!

•  https://tools.ietf.org/html/draft-ietf-dane-openpgpkey!

!
!

24!

Verisign Public!

Example OPENPGPKEY record!

25!

sha224(username)._openpgpkey.<domain>!
!
e.g. for shuque@huque.com!
!
1st label: sha224 hash of “shuque” = !
4f7c2705c0f139ede60573f8537a0790fb64df5d4a819af951d259bc!
!
2nd label: “_openpgpkey”!
!
Remaining labels: domain name portion of the email addr:!
Huque.com!
!
Resulting record looks like this:!
!
4f7c2705c0f139ede60573f8537a0790fb64df5d4a819af951d259bc.
_openpgpkey.huque.com.! IN OPENPGPKEY <base64 encoding of
the openpgp key>!
!

Verisign Public!

SMIMEA!

•  Using DNSSEC to associate certificates with domain
names for S/MIME!
•  https://tools.ietf.org/html/draft-ietf-dane-smime!

•  S/MIME is a method of encrypted and signing MIME data
used in email messages!

•  The SMIMEA DNS record proposes to associate S/MIME
certificates with DNS domain names!

•  Verisign DANE/SMIMEA early Mail User Agent Prototype!
•  http://la51.icann.org/en/schedule/wed-dnssec/presentation-

dnssec-dane-smime-15oct14-en!

26!

Verisign Public!

getdns: a brief introduction!
A new application friendly interface to the DNS!

27!

Verisign Public!

Application access to any kind of DNS data!

•  Today’s commonly used DNS application interfaces, like
getaddrinfo(), getnameinfo() are designed to obtain the
most common types of DNS data, e.g. name to IP address
mappings, reverse DNS mappings, etc.!

•  How do applications ask for other types of data, eg. TLSA,
SSHFP records, or even SRV records?!

•  How can we tell if a response was successfully
authenticated with DNSSEC?!

•  Some lower level, harder to use libraries exist (libresolv
etc) that can do some of this, but application developers
deserve something much better!

28!

. (root)!

.edu!

upenn.edu!www.upenn.edu!

referral to .edu!
+ DS, RRSIG!

recursive!
resolver!

endstation!
(uses DNS stub

resolver)!

1!

2!

3!

4! 5!

6!
8!

7!

referral to upenn.edu!
+ DS, RRSIG!

answer 1.2.3.4!
+ RRSIG!

www.upenn.edu!
set DO bit!

root’s pubkey!

(has root’s pubkey)!

edu pubkey!

upenn pubkey!

Stub to Recursive!
Resolver channel!

29!

Securing the
first hop?!

Verisign Public!

DNS first hop protection!

•  Applications normally query a DNS stub resolver!
•  The stub resolver communicates over the network with a
recursive resolver. How do we secure that path?!

•  Complex solutions exist (but rarely used)!
•  e.g. employ a channel security mechanism between the stub and

the validating recursive resolver:!
•  TSIG, SIG(0), IPsec!

•  Run full-service validating resolver on endstation!
•  There may be other solutions, like DNScrypt – not
standards based, only supported by a few resolvers, not
widely used!

•  getdns can solve this problem!

30!

Verisign Public!

getdns: a new DNS library for applications!

•  getdns: A new application-friendly interface to the DNS!

•  Get and use arbitrary data in the DNS easily!
•  Get this data securely, authenticated with DNSSEC if it’s
available!
•  Full iterative resolver mode with validation!
•  Validating stub resolver mode!

•  Designed by application developers. Most previous APIs
have been developed by DNS protocol people with less
concern for the needs of app developers.!

31!

Verisign Public!

getdns!

•  API specification:!
•  http://www.getdnsapi.net/spec.html!

•  Latest revision: January 2015!
•  Creative Commons Attribution 3.0 Unported license!

•  An opensource implementation at http://getdnsapi.net/!
•  A joint project of Verisign Labs and NLNet Labs!
•  First release (0.1.0) in February 2014!
•  Latest release (0.1.6) in January 2015!
•  C library!
•  Bindings in Python, and Node.js (upcoming: java, go, ruby, perl)!
•  BSD 3 License!

32!

Verisign Public!

getdns features!

•  Asynchronous and synchronous modes of operation!
•  Sensible defaults suitable for consumption by most users!
•  But behavior highly configurable for users with advanced
knowledge of the DNS!

•  DNS query results are returned in an easy to parse
“response dictionary” data structure!

•  Members of the data structure can be lists, dictionaries,
integers, and binary strings!

•  Can return DNSSEC status, and can be instructed to only
return DNSSEC authenticated results!

33!

Verisign Public!

getdns functions!

34!

Four main functions defined.!
!
getdns_address() Obtain IPv4 and/or IPv6 addresses!
!
getdns_hostname() Obtain reverse DNS mappings!
!
getdns_service() Obtain SRV record answers!
!
getdns_general() General purpose DNS record query!
!
Read the API specification for full details:!
!
http://www.getdnsapi.net/spec.html!
!

Verisign Public!

getdns response dictionary (partial)!

35!

{!
 "answer_type": GETDNS_NAMETYPE_DNS,!
 "canonical_name": <bindata of "www.internet2.edu.">,!
 "just_address_answers”: [!
 {!
 "address_data": <bindata for 207.75.164.248>,!
 "address_type": <bindata of "IPv4">!
 },!
 {!
 "address_data": <bindata for 2001:48a8:68fe::248>,!
 "address_type": <bindata of "IPv6">!
 }!
],!
 "replies_full":!
 [!
 <bindata of 0x000081a0000100040000000103777777...>,!
 <bindata of 0x000081a0000100040005000d03777777...>!
], …!

Verisign Public!

getdns response dictionary (partial)!

36!

"dnssec_status": GETDNS_DNSSEC_SECURE,!
!
"replies_tree":!
 [!
 {!
 "additional": [],!
 "answer":!
 [!
 {!
 "class": GETDNS_RRCLASS_IN,!
 "name": <bindata for www.internet2.edu.>,!
 "rdata":!
 {!
 "cname": <bindata for webprod2.internet2.edu.>,!
 "rdata_raw": <bindata for webprod2.internet2.edu.>!
 },!
 "ttl": 120,!
 "type": GETDNS_RRTYPE_CNAME!
 },!
 […]!

Verisign Public!

getdns: example code: hostname lookup!

37!

Example python code to query a domain name and!
return all associated IPv4 and IPv6 addresses.!
!
hostname = sys.argv[1]!
!
ctx = getdns.Context()!
extensions = {"return_both_v4_and_v6”:getdns.GETDNS_EXTENSION_TRUE}!
!
results = ctx.address(name=hostname, extensions=extensions)!
status = results['status']!
!
if status == getdns.GETDNS_RESPSTATUS_GOOD:!
 for addr in results['just_address_answers']:!
 print addr['address_data']!
else:!
 print "%s: getdns.address() error: %d" % (hostname, status)!
!
!
$./program.py www.internet2.edu!
207.75.164.248!
2001:48a8:68fe::248!

Verisign Public!

getdns: example code: TLSA record lookup!

38!

Example python code to lookup an authenticated TLSA!
record for a domain name, transport, & service port.!
!
qname = “_443._tcp.fedoraproject.org”!
qtype = getdns.GETDNS_RRTYPE_TLSA!
!
ctx = getdns.Context()!
extensions = {!
 "dnssec_return_only_secure”:getdns.GETDNS_EXTENSION_TRUE !
}!
!
results = ctx.general(name=qname, request_type=qtype, !
 extensions=extensions)!
status = results['status']!
!
if status == getdns.GETDNS_RESPSTATUS_GOOD:!
 # here we’d normally parse and do something useful with the!
 # result data. For now just pretty print the dict.!
 pprint.pprint(results)!
else:!
 print "%s: getdns.address() error: %d" % (hostname, status)!
!

Verisign Public!

Questions or comments?!

39!

© 2014 VeriSign, Inc. All rights reserved. VERISIGN and other trademarks, service marks, and designs are registered or unregistered trademarks of
VeriSign, Inc. and its subsidiaries in the United States and in foreign countries. All other trademarks are property of their respective owners.!

