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Application uses of DNSSEC!

•  One of the more exciting prospects for DNSSEC!
•  DNSSEC can be employed to store cryptographic keys in 
the DNS, and ..!

•  Allow applications to securely obtain (authenticate) those 
keys and use them in application security protocols!

•  Some possible applications: SSH, SSL/TLS, HTTPS, S/
MIME, PGP, SMTP, DKIM, and many others ..!

•  Existing records:!
•  SSHFP, IPSECKEY, DKIM TXT record, …!
•  DANE records: TLSA, OPENPGPKEY!

•  Upcoming:!
•  SMIMEA, IPSECA, …!
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SSHFP record!

3!

grodd.magpi.net.!86400!IN!SSHFP!(1 1!
      F60AE0994C0B02545D444F7996088E9EA7359CBA)!

• Secure Shell Host Key Fingerprint (RFC 4255)!

• Allows you to validate SSH host keys using DNSSEC!
algorithm!
number!

fingerprint !
type (1= SHA1)!

fingerprint!

In OpenSSH, you can use the client configuration directive 
“VerifyHostKeyDNS” to use this. Enabled by default in some newer 
operating systems like FreeBSD 10.!
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IPSECKEY record!
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38.2.0.192.in-addr.arpa. 7200 IN  IPSECKEY ( 10 1 2!
     192.0.2.38!
     AQNRU3mG7TVTO2BkR47usntb102uFJtugbo6BSGvgqt4AQ== )!

• RFC 4025: method for storing IPsec keying material in 
DNS!

• rdata format: precedence, gateway-type, algorithm, 
gateway address, public key!

• Not much uptake of this record!

• Will likely be superseded by newer proposals, like 
IPSECA!
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TLS and the Internet PKI!

•  A very large number of security protocols authenticate 
server names with X.509 certificates!
•  TLS, IPsec, HTTPS, SIPS, SMTP, IMAP, XMPP, …!

•  These certificates are issued and signed by the Internet 
PKI, composed of a set of globally trusted public 
Certification Authorities (CAs)!
!
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Public CA model issues!

•  Applications need to trust a large number of global 
Certification Authorities (CA)!

•  No namespace constraints! Any CA can issue certificates 
for any entity on the Internet!

•  Least common denominator security: our collective 
security is equal to the weakest one!!

•  Furthermore, many of them issue subordinate CA 
certificates to their customers, again with no naming 
constraints!

•  Most CAs aren’t capable of issuing certificates with any 
but the most basic capabilities (e.g. alternate name forms 
or other extensions)!
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Public CA model issues!

•  “Analysis of the HTTPS Certificate Ecosystem”, UMich, 
October 2013, Internet Measurement Conference!
•  http://conferences.sigcomm.org/imc/2013/papers/imc257-

durumericAemb.pdf!
•  Over 1,800 separate CAs are capable of issuing certificates for 

anyone! (Root CAs and intermediate CAs issued by them)!

•  “The Shape & Size of Threats: Defining a Networked 
System’s Attack Surface”!
•  Eric Osterweil (Verisign), Danny McPherson (Verisign), Lixia 

Zhang (UCLA), NPsec 2014 conference!

!
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Can DNSSEC help?!

•  Can we leverage DNSSEC to address these deficiencies?!
•  DNS has hierarchical, decentralized administration!
•  Certificates and public keys placed in the DNS can be 
authenticated with DNSSEC signatures!

•  Name constraints are inherent!
•  Deployed infrastructure is becoming real!
•  Root and many of the TLDs are signed, so most 
organizations can sign their zones and have an intact 
secure chain of trust to the root!

•  Validation is also becoming more prevalent (see prior 
slides in deployment status)!
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Enter DANE!

DNS-Based Authentication of 
Named Entities (DANE) RFC 
6698!
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DANE and the TLSA record!

•  RFC 6698: The DNS-based Authentication of Named 
Entities (DANE) Protocol for Transport Layer Security!

•  http://tools.ietf.org/html/rfc6698!
•  Defines a new DNS record type “TLSA”, that can be used 
for better & more secure ways to authenticate SSL/TLS 
certificates!
•  By specifying constraints on which CA can vouch for a certificate, 

or which specific PKIX end-entity certificate is valid!
•  By specifying that a service certificate or a CA can be directly 

authenticated in the DNS itself.!
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_443._tcp.www.example.com. IN TLSA (!
      0 0 1 d2abde240d7cd3ee6b4b28c54df034b9!
            7983a1d16e8a410e4561cb106618e971 )!

port, transport proto & !
server domain name! TLSA rrtype!

certificate association data!

usage!

selector! matching!
type!

TLSA record example!
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TLSA configuration parameters!
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Usage field:!
    0   PKIX-TA: CA Constraint!
    1   PKIX-EE: Service Certificate Constraint!
    2   DANE-TA: Trust Anchor Assertion!
    3   DANE-EE: Domain Issued Certificate!
!
Selector field:!
    0   Match full certificate!
    1   Match only SubjectPublicKeyInfo!
!
Matching type field:!
    0   Exact match on selected content!
    1   SHA-256 hash of selected content!
    2   SHA-512 hash of selected content!
!
!
Certificate Association Data: raw cert data in hex!
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TLSA configuration parameters!

13!

Usage field:!
    0   PKIX-TA: CA Constraint!
    1   PKIX-EE: Service Certificate Constraint!
    2   DANE-TA: Trust Anchor Assertion!
    3   DANE-EE: Domain Issued Certificate!
!
Selector field:!
    0   Match full certificate!
    1   Match only SubjectPublicKeyInfo!
!
Matching type field:!
    0   Exact match on selected content!
    1   SHA-256 hash of selected content!
    2   SHA-512 hash of selected content!
!
!
Certificate Association Data: raw cert data in hex!

Co-exists with and !
Strengthens Public !
CA system!

Operation without!
Public CAs!
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Usage types!
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0  PKIX-TA: CA Constraint!
   Specify which CA should be trusted to authenticate the!

!certificate for the service. Full PKIX certificate!
!chain validation needs to be performed.!

!
1  PKIX-EE: Service Certificate Constraint!

!Define which specific service certificate (“EE cert”)!
!should be trusted for the service. Full PKIX cert!
!validation needs to be performed.!

!
2  DANE-TA: Trust Anchor Assertion!

!Specify a domain operated CA which should be trusted!
!independently to vouch for the service certificate.!

!
3  DANE-EE: Domain Issued Certificate!

!Define a specific service certificate for the service!
!at this domain name.!
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Example TLSA record (for WWW)!
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_443._tcp.fedoraproject.org. 263 IN TLSA 0 0 1 (!
! ! ! !19400BE5B7A31FB733917700789D2F0A2471C0C9D506!
! ! ! !C0E504C06C16D7CB17C0 )!

!
_443._tcp.fedoraproject.org. 263 IN RRSIG TLSA 5 4 300 (!

! ! ! !20141114150617 20141015150617 7725 
fedoraproject.org.!

! ! ! !hrk0si7I/BWTz0wEtMcFZNUCj/0o5796k5FVuZx6eXrc!
! ! ! !YOe/ChHA/Shu/WHr3iM1yNGi86+8t4wMq9GA+JZthWZC!
! ! ! !ZmENxf9OTNe/t/LBAc2EDW/fMBJq0JO2b4ZkJHXCEyX0!
! ! ! !CDsIYz8shZ20nPGlrsYqwLdQiCeravWcwcJiPuc= )!

!
!
Usage 0 (“CA Constraint”) – this record says:!
-  For service at fedoraproject.org tcp port 443!
-  only the CA with the specified SHA-256 certificate 

fingerprint (19400BE5B…) should be trusted!
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DANE/TLSA tools and software!

•  TLSA Record Generation!
•  Command line tools: “swede”, “hash-slinger”, “ldns-dane”!
•  Web based tool: https://www.huque.com/bin/gen_tlsa!

•  TLSA validators for web!
•  Some 3rd party validator plugins are available (Firefox, Chrome, 

Opera, Safari):!
•  https://www.dnssec-validator.cz/!
•  http://blog.huque.com/2014/02/dnssec-dane-tlsa-browser-

addons.html!
•  Bloodhound Mozilla fork:!
•  https://www.dnssec-tools.org/wiki/index.php/Bloodhound!
!
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DANE for SMTP!
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DANE for SMTP!

•  DANE in conjunction with SMTP over TLS, or SMTP + 
STARTTLS can be used to more fully secure email 
delivery!

•  DANE can authenticate the certificate of the SMTP 
submission server that the user’s mail client (MUA) 
communicates with!

•  DANE can authenticate TLS connections between SMTP 
servers (“MTA”s or Mail Transfer Agents)!

•  This second use case is where DANE solves some 
important problems that are unaddressed today!
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DANE for SMTP!

•  Most connections between SMTP servers today use 
encryption opportunistically (i.e. if both sides support and 
advertise it, it is used)!

•  Even when encryption is used, it is vulnerable to attack:!
•  Attackers can strip away the TLS capability advertisement and 

downgrade the connection to not use TLS!
•  TLS connections are often unauthenticated (e.g. the use of self 

signed certificates as well as mismatched certificates is common)!

•  DANE can address both these vulnerabilities!
•  Authenticate the certificate using a DNSSEC signed TLSA record!
•  Use the presence of the TLSA record as an indicator that 

encryption must be performed (prevent downgrade)!
•  http://tools.ietf.org/html/draft-ietf-dane-smtp-with-dane!
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Example TLSA record (for SMTP)!
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_25._tcp.mx1.freebsd.org. 2389 IN TLSA 3 0 1 (!
! ! ! !5EC0508C3F337D18509F41BFF9D8AB07FED588A132FA!
! ! ! !12FA1E223BA6B9403ACB )!

!
_25._tcp.mx1.freebsd.org. 2389 IN RRSIG !TLSA 8 5 3600 (!

! ! ! !20141023072418 20141009105807 39939 
freebsd.org.!

! ! ! !ll6DEQ7oP2lbEcOeJyPk+I8tYiGz4CzuDiqiMbr4Mzp3!
! ! ! !90UWdej3kdAz4t+1BT0dO3/o0nz0pp3HFsDu+gkwT6YH!
! ! ! !Jg4C6mi3STPciCP1tjbFuW/dv4lPkCUaN7kJt/qwPrR6!
! ! ! !0kQmyvcuUoYgUDPbNYbJNJXai+mFai5WqLS2MEP15ydU!
! ! ! !nt8KympnjHS5mVLVGXW0e7tLY1afQz1VrIeYsGW8YztM!
! ! ! !DYUpCXjWiq+YpCFv7rZ7ICejQR6ot1M35CDsfjk68eu0!
! ! ! !EAjx+HlqaTdGyilcMB+GduFwqkULDPIgiFu/3xb+srJR!
! ! ! !zuR89YpHga9OCnz6nXJgQ6cxvSImZWbKuw== )!

!
This is a domain-issued certificate (usage 3), which can 
be authenticated without a trusted CA.!
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Early large adopters of SMTP + DANE!

•  posteo.de!
•  mailbox.org!
•  umbkw.de!
•  bund.de!
•  denic.de!
•  freebsd.org!
•  unitybox.de!

•  debian.org, debian.net!
•  ietf.org!
•  nlnetlabs.nl!
•  nic.cz!
•  nic.ch!
•  torproject.org!
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Quite a few are large email systems in Germany. See a!
larger list at https://www.tlsa.info/!
!
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SMTP servers that support DANE!

•  Postfix MTA (works today, version 2.11 onwards)!
•  Exim (currently under development)!
!

22!

Quick start for Postfix:!
!
  postconf -e "smtpd_use_tls = yes”!
  postconf -e "smtp_dns_support_level = dnssec”!
  postconf -e "stmp_tls_security_level = dane”!
!
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XMPP servers!

•  XMPP (Jabber) has seen some uptake of DANE.!
•  To authenticate the c2s and/or s2s portion of the XMPP 
protocol!

•  List of XMPP servers with DANE TLSA records:!
•  https://xmpp.net/reports.php#dnssecdane!

23!

Example:!
!
_xmpp-server._tcp.mail.de. 3600!IN!SRV! 10 20 5269 jabber.mail.de.!
!
_5269._tcp.jabber.mail.de. 600 !IN!TLSA !3 1 1 (!
                         A0315F0CF61CAC787140833C2C608550476!
                         246DDA54122D66BB339D5 0FBB10E3 )!
!
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OpenPGPKEY!

•  OPENPGPKEY record!
•  Used to publish an OpenPGP public key in the DNS!
•  DNSSEC signature provides authentication!
•  Spec under development, but RR code already assigned!

•  https://tools.ietf.org/html/draft-ietf-dane-openpgpkey!

!
!
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Example OPENPGPKEY record!
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sha224(username)._openpgpkey.<domain>!
!
e.g. for shuque@huque.com!
!
1st label: sha224 hash of “shuque” = !
4f7c2705c0f139ede60573f8537a0790fb64df5d4a819af951d259bc!
!
2nd label: “_openpgpkey”!
!
Remaining labels: domain name portion of the email addr:!
Huque.com!
!
Resulting record looks like this:!
!
4f7c2705c0f139ede60573f8537a0790fb64df5d4a819af951d259bc.
_openpgpkey.huque.com.! IN OPENPGPKEY <base64 encoding of 
the openpgp key>!
!
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SMIMEA!

•  Using DNSSEC to associate certificates with domain 
names for S/MIME!
•  https://tools.ietf.org/html/draft-ietf-dane-smime!

•  S/MIME is a method of encrypted and signing MIME data 
used in email messages!

•  The SMIMEA DNS record proposes to associate S/MIME 
certificates with DNS domain names!

•  Verisign DANE/SMIMEA early Mail User Agent Prototype!
•  http://la51.icann.org/en/schedule/wed-dnssec/presentation-

dnssec-dane-smime-15oct14-en!
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getdns: a brief introduction!
A new application friendly interface to the DNS!
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Application access to any kind of DNS data!

•  Today’s commonly used DNS application interfaces, like 
getaddrinfo(), getnameinfo() are designed to obtain the 
most common types of DNS data, e.g. name to IP address 
mappings, reverse DNS mappings, etc.!

•  How do applications ask for other types of data, eg. TLSA, 
SSHFP records, or even SRV records?!

•  How can we tell if a response was successfully 
authenticated with DNSSEC?!

•  Some lower level, harder to use libraries exist (libresolv 
etc) that can do some of this, but application developers 
deserve something much better!
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. (root)!

.edu!

upenn.edu!www.upenn.edu!

referral to .edu!
+ DS, RRSIG!

recursive!
resolver!

endstation!
(uses DNS stub 

resolver)!

1!

2!

3!

4! 5!

6!
8!

7!

referral to upenn.edu!
+ DS, RRSIG!

answer 1.2.3.4!
+ RRSIG!

www.upenn.edu!
set DO bit!

root’s pubkey!

(has root’s pubkey)!

edu pubkey!

upenn pubkey!

Stub to Recursive!
Resolver channel!

29!

Securing the 
first hop?!
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DNS first hop protection!

•  Applications normally query a DNS stub resolver!
•  The stub resolver communicates over the network with a 
recursive resolver. How do we secure that path?!

•  Complex solutions exist (but rarely used)!
•  e.g. employ a channel security mechanism between the stub and 

the validating recursive resolver:!
•  TSIG, SIG(0), IPsec!

•  Run full-service validating resolver on endstation!
•  There may be other solutions, like DNScrypt – not 
standards based, only supported by a few resolvers, not 
widely used!

•  getdns can solve this problem!
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getdns: a new DNS library for applications!

•  getdns: A new application-friendly interface to the DNS!

•  Get and use arbitrary data in the DNS easily!
•  Get this data securely, authenticated with DNSSEC if it’s 
available!
•  Full iterative resolver mode with validation!
•  Validating stub resolver mode!

•  Designed by application developers. Most previous APIs 
have been developed by DNS protocol people with less 
concern for the needs of app developers.!
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getdns!

•  API specification:!
•  http://www.getdnsapi.net/spec.html!

•  Latest revision: January 2015!
•  Creative Commons Attribution 3.0 Unported license!

•  An opensource implementation at http://getdnsapi.net/!
•  A joint project of Verisign Labs and NLNet Labs!
•  First release (0.1.0) in February 2014!
•  Latest release (0.1.6) in January 2015!
•  C library!
•  Bindings in Python, and Node.js (upcoming: java, go, ruby, perl)!
•  BSD 3 License!
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getdns features!

•  Asynchronous and synchronous modes of operation!
•  Sensible defaults suitable for consumption by most users!
•  But behavior highly configurable for users with advanced 
knowledge of the DNS!

•  DNS query results are returned in an easy to parse 
“response dictionary” data structure!

•  Members of the data structure can be lists, dictionaries, 
integers, and binary strings!

•  Can return DNSSEC status, and can be instructed to only 
return DNSSEC authenticated results!

33!



Verisign Public!

getdns functions!

34!

Four main functions defined.!
!
getdns_address()     Obtain IPv4 and/or IPv6 addresses!
!
getdns_hostname()    Obtain reverse DNS mappings!
!
getdns_service()     Obtain SRV record answers!
!
getdns_general()     General purpose DNS record query!
!
Read the API specification for full details:!
!
http://www.getdnsapi.net/spec.html!
!
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getdns response dictionary (partial)!
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{!
  "answer_type": GETDNS_NAMETYPE_DNS,!
  "canonical_name": <bindata of "www.internet2.edu.">,!
  "just_address_answers”: [!
    {!
      "address_data": <bindata for 207.75.164.248>,!
      "address_type": <bindata of "IPv4">!
    },!
    {!
      "address_data": <bindata for 2001:48a8:68fe::248>,!
      "address_type": <bindata of "IPv6">!
    }!
  ],!
  "replies_full":!
  [!
     <bindata of 0x000081a0000100040000000103777777...>,!
     <bindata of 0x000081a0000100040005000d03777777...>!
  ], …!
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getdns response dictionary (partial)!

36!

"dnssec_status": GETDNS_DNSSEC_SECURE,!
!
"replies_tree":!
  [!
    {!
      "additional": [],!
      "answer":!
      [!
        {!
          "class": GETDNS_RRCLASS_IN,!
          "name": <bindata for www.internet2.edu.>,!
          "rdata":!
          {!
            "cname": <bindata for webprod2.internet2.edu.>,!
            "rdata_raw": <bindata for webprod2.internet2.edu.>!
          },!
          "ttl": 120,!
          "type": GETDNS_RRTYPE_CNAME!
        },!
 […]!
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getdns: example code: hostname lookup!
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# Example python code to query a domain name and!
# return all associated IPv4 and IPv6 addresses.!
!
hostname = sys.argv[1]!
!
ctx = getdns.Context()!
extensions = {"return_both_v4_and_v6”:getdns.GETDNS_EXTENSION_TRUE}!
!
results = ctx.address(name=hostname, extensions=extensions)!
status = results['status']!
!
if status == getdns.GETDNS_RESPSTATUS_GOOD:!
    for addr in results['just_address_answers']:!
        print addr['address_data']!
else:!
    print "%s: getdns.address() error: %d" % (hostname, status)!
!
!
$ ./program.py www.internet2.edu!
207.75.164.248!
2001:48a8:68fe::248!
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getdns: example code: TLSA record lookup!
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# Example python code to lookup an authenticated TLSA!
# record for a domain name, transport, & service port.!
!
qname = “_443._tcp.fedoraproject.org”!
qtype = getdns.GETDNS_RRTYPE_TLSA!
!
ctx = getdns.Context()!
extensions = {!
  "dnssec_return_only_secure”:getdns.GETDNS_EXTENSION_TRUE !
}!
!
results = ctx.general(name=qname, request_type=qtype, !
                      extensions=extensions)!
status = results['status']!
!
if status == getdns.GETDNS_RESPSTATUS_GOOD:!
    # here we’d normally parse and do something useful with the!
    # result data. For now just pretty print the dict.!
    pprint.pprint(results)!
else:!
    print "%s: getdns.address() error: %d" % (hostname, status)!
!
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Questions or comments?!
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