
Introduction to VHDL
IAS0060 Digital Systems Design with VHDL

Natalia Cherezova07.09.22

Digital systems

• A discrete system is a system in which signals have a finite number of discrete values
• In contrast to analog systems, in which signals have continuous values from an infinite set

• Digital systems process signals that take only two values: '0' and '1' (Low and High)

2

Representation

3

O = s1 ∙ s0 ∙ in0 + s1 ∙ s0 ∙ in1 + s1 ∙ s0 ∙ in2 + s1 ∙ s0 ∙ in3

Boolean equation

s1 s0 in3 in2 in1 in0 O

0 0 x x x 1 1

0 1 x x 1 x 1

1 0 x 1 x x 1

1 1 1 x x x 1

Truth table

entity MUX is

port (I : in std_logic_vector(3 downto 0);

S : in std_logic_vector(1 downto 0);

O : out std_logic);

end MUX;

architecture model of MUX is

begin

O <= I(0) when S = "00" else

I(1) when S = "01" else

I(2) when S = "10" else

I(3);

end model;

Hardware description language

Schematic diagram

Timing diagram

HDL vs SW programming languages

4

Program
code

Assembly
code

Machine
code

HDL
description

Technology
netlist

Layout

• Program
• Sequential in nature
• Variables stored in memory
• Compiler turns code into a list of

processor instructions

• Design entity
• Concurrent in nature
• Signals modeling wires/buses
• Synthesis tool turns HDL code into a list

of HW components

VHDL: brief history

• VHDL — VHSIC Hardware Description Language

• VHSIC — Very High Speed Integrated Circuit

• Developed in the early 1980s as a research project funded by the U.S. Department of
Defense (DoD) for the documentation and later simulation

• Situation in 1980:
• Multiple design entry methods and hardware description languages in use

• Limited portability of designs between CAD tools from different vendors

• In 1987 VHDL became IEEE Standard 1076-1987

• In 1993 the standard was revised, new features added

• In 1999 IEEE issued a standard describing an official subset of language suitable for synthesis

• Latest standard revision in 2008

5

VHDL: overview

• Technology/vendor independent

• Industrial standard

• Based on ADA language

• Strongly typed
• Conversion functions are required for type cast

• Case-insensitive

6

VHDL: synthesizable vs non-synthesizable

• HDL key feature — possibility to describe the design and an environment for simulation
and testing

• Synthesizable subset — design description

• Non-synthesizable — testbench and simulation
• Time-related statements

• Files

• Print statements, assertions

• Dynamic loops

7

VHDL: entity structure

• Design entity is the basic building block in VHDL

• One file — one entity

• The name of the file should be the same as the entity name

8

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity and_gate is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

y : out STD_LOGIC);

end and_gate;

architecture model of and_gate is

begin

y <= a AND b;

end model;

Library declaration

Entity declaration (interface)

Architecture body (functionality)

VHDL: entity declaration

• Entity declaration describes the interface of the component, its input and output ports

entity <entity_name> is

Port (<port_name> : <mode> <data_type>;

<port_name> : <mode> <data_type>);

end <entity_name>;

9

entity and_gate is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

y : out STD_LOGIC);

end and_gate;

entity mux is

Port (a : in STD_LOGIC;

b : in STD_LOGIC;

sel : in STD_LOGIC;

y : out STD_LOGIC);

end mux;

a
b

y

a

b
y

sel

VHDL: port modes

• Four modes:
• IN, OUT (unidirectional)

• INOUT (bidirectional)

• BUFFER (signal is sent out but can also be read internally)

• INOUT is useful to implement memories
• That use the same data bus for writing and reading

• The use of BUFFER is not recommended
• A port of type BUFFER can only be connected to ports of the same type

• Create an internal signal to hold the output value and assign its value to the out port

10

entityin

out

inout

buffer

VHDL: architecture

• Architecture describes the functionality of the component

architecture <arch_name> of <entity_name> is

<declarative_part>

begin

<functionality>

end <arch_name>;

• Declarative part is used to declare internal signals, custom data types, used components

• Functionality can be described using
• Concurrent assignment statements

• Interconnected components

• Sequential assignment statements (in a process)

11

VHDL: design entity

• One entity can have several architectures

• It is useful if one wants to compare different implementations
of the same design

12

Design entity

Entity declaration

Architecture #1

Architecture #2

Architecture #3

VHDL: objects

• The main object in VHDL is a signal
• Model physical wires (buses) for communications or physical storage of information
signal <name>: <type> [range] [:= default_value];

• Variable is a programming construct to model temporary storage
• Used only inside processes
variable <name>: <type> [range] [:= default_value];

• Constant is an object whose value cannot be changed
constant <name>: <type> := <value>;

13

VHDL: data types

• INTEGER

• REAL
• Floating-point

• Limited synthesis support

• CHARACTER, STRING

• BOOLEAN

• TIME
• Not synthesizable

14

VHDL: data types

• BIT
• Two possible values: '0' and '1'

• STD_LOGIC
• Nine possible values: '0', '1', 'U', 'X', 'L', 'H', 'W', 'Z', '–'

• Better model actual hardware

• Industry standard for ports

• 'U', 'X', 'L', 'H', 'W' are only used during simulation

• Only '0', '1', 'Z', '–' are synthesizable

• UNSIGNED, SIGNED
• Based on STD_LOGIC

• Numeric types

15

std_logic values

'0' LOW

'1' HIGH

'U' Uninitialized

'X' Unknown

'L' Weak LOW

'H' Weak HIGH

'W' Weak unknown

'Z' High impedance

'–' Don’t care

VHDL: std_logic

• 'X' means contention on the bus • High impedance 'Z' means that there is no
current flow through the wire

• Used in tri-state buffers

16

VHDL: wires and buses

• Single-bit signal (wire)

signal x: std_logic := '0';

• Multi-bit signal (bus)
• Size is defined as a range

• Little-endian order is preferred

signal y: std_logic_vector(3 downto 0) := "0001"; -- little-endian order

signal z: std_logic_vector(0 to 3) := "0001"; -- big-endian order

17

VHDL: operators

Operator type Operators Supported data types

Assignment <=, := All

Logical NOT, AND, NAND, OR, NOR, XOR, XNOR bit, bit_vector, boolean, std_logic,
std_logic_vector, (un)signed*

Arithmetic +, –, *, /, **, ABS, REM, MOD integer, (un)signed, std_logic_vector**

Comparison =, /=, >, <, >=, <= bit, bit_vector, boolean, integer, string,
(un)signed*, std_logic_vector**

Shift*** SLL, SRL, SLA, SRA, ROL, ROR bit_vector, std_logic_vector**, (un)signed*

Concatenation & bit_vector, string, std_logic_vector, (un)signed*

18

* Requires package numeric_std
** Requires package std_logic_(un)signed (non-standard)
*** Recommended approach for shifting data is with the concatenation operator

VHDL: basic identifiers

• Consist of Latin letters (a…z), underscores (_), and digits (0…9)

• Must start with a letter

• Cannot have two consecutive underscores

• Cannot end with an underscore

• Special characters are not allowed

Comp_1, LED_OUT, counter -- legal

comp, reg-01, 2bitAdder -- illegal

19

Testbench

• When a design is implemented, it should be simulated and tested

• In order to simulate the design, we need a testbench

• VHDL can be used both for describing hardware and the environment
• Testbench is also written in VHDL

• During the simulation and testing, design inputs are driven by test vectors, and outputs
are monitored and checked

20

Testbench entity

UUT
Test vector
generator

Monitor

Design flow for FPGA

21

Specification

VHDL code

Analysis and synthesis

Implementation

Generate config file

Configure FPGA

RTL functional
simulation

Post-synthesis
functional simulation

Post-implementation
timing simulation

For labs 1–5, functional
simulation is enough

For lab 6, timing simulation
might be necessary

Coding guide

• Use the coding style suggested in the guide in Moodle
• For readability and proper synthesis results

• Based on
• Xilinx coding guidelines

• OpenCores coding guidelines

• Textbooks

22

“The task of synthesis tool is to analyze VHDL
description and infer what hardware elements are
represented and how they are connected. A tool
cannot infer hardware from any arbitrarily written
VHDL model. Instead, we need to write models in a
synthesis style that is recognized by the tool.”

-- The Designer’s Guide to VHDL, P. J. Ashenden

