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Digital systems

• A discrete system is a system in which signals have a finite number of discrete values
• In contrast to analog systems, in which signals have continuous values from an infinite set

• Digital systems process signals that take only two values: '0' and '1' (Low and High)
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Representation

3

O = s1 ∙ s0 ∙ in0 + s1 ∙ s0 ∙ in1 + s1 ∙ s0 ∙ in2 + s1 ∙ s0 ∙ in3

Boolean equation

s1 s0 in3 in2 in1 in0 O

0 0 x x x 1 1

0 1 x x 1 x 1

1 0 x 1 x x 1

1 1 1 x x x 1

Truth table

entity MUX is

port (I : in std_logic_vector(3 downto 0);

S : in std_logic_vector(1 downto 0);

O : out std_logic);

end MUX;

architecture model of MUX is

begin

O <= I(0) when S = "00" else

I(1) when S = "01" else

I(2) when S = "10" else

I(3);

end model;

Hardware description language

Schematic diagram

Timing diagram



HDL vs SW programming languages
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Program 
code

Assembly 
code

Machine 
code

HDL 
description

Technology 
netlist

Layout

• Program
• Sequential in nature
• Variables stored in memory
• Compiler turns code into a list of 

processor instructions

• Design entity
• Concurrent in nature
• Signals modeling wires/buses
• Synthesis tool turns HDL code into a list 

of HW components



VHDL: brief history

• VHDL — VHSIC Hardware Description Language

• VHSIC — Very High Speed Integrated Circuit

• Developed in the early 1980s as a research project funded by the U.S. Department of 
Defense (DoD) for the documentation and later simulation

• Situation in 1980:
• Multiple design entry methods and hardware description languages in use

• Limited portability of designs between CAD tools from different vendors

• In 1987 VHDL became IEEE Standard 1076-1987

• In 1993 the standard was revised, new features added

• In 1999 IEEE issued a standard describing an official subset of language suitable for synthesis

• Latest standard revision in 2008
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VHDL: overview

• Technology/vendor independent

• Industrial standard

• Based on ADA language

• Strongly typed
• Conversion functions are required for type cast

• Case-insensitive
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VHDL: synthesizable vs non-synthesizable

• HDL key feature — possibility to describe the design and an environment for simulation 
and testing

• Synthesizable subset — design description

• Non-synthesizable — testbench and simulation
• Time-related statements

• Files

• Print statements, assertions

• Dynamic loops

7



VHDL: entity structure

• Design entity is the basic building block in VHDL

• One file — one entity

• The name of the file should be the same as the entity name
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library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity and_gate is

Port ( a : in STD_LOGIC;

b : in STD_LOGIC;

y : out STD_LOGIC);

end and_gate;

architecture model of and_gate is

begin

y <= a AND b;

end model;

Library declaration

Entity declaration (interface)

Architecture body (functionality)



VHDL: entity declaration

• Entity declaration describes the interface of the component, its input and output ports

entity <entity_name> is

Port ( <port_name> : <mode> <data_type>;

<port_name> : <mode> <data_type>);

end <entity_name>;
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entity and_gate is

Port ( a : in STD_LOGIC;

b : in STD_LOGIC;

y : out STD_LOGIC);

end and_gate;

entity mux is

Port ( a   : in STD_LOGIC;

b   : in STD_LOGIC;

sel : in STD_LOGIC;

y   : out STD_LOGIC);

end mux;

a
b

y

a

b
y

sel



VHDL: port modes

• Four modes:
• IN, OUT (unidirectional)

• INOUT (bidirectional)

• BUFFER (signal is sent out but can also be read internally)

• INOUT is useful to implement memories
• That use the same data bus for writing and reading

• The use of BUFFER is not recommended
• A port of type BUFFER can only be connected to ports of the same type

• Create an internal signal to hold the output value and assign its value to the out port
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entityin

out

inout

buffer



VHDL: architecture

• Architecture describes the functionality of the component

architecture <arch_name> of <entity_name> is

<declarative_part>

begin

<functionality>

end <arch_name>;

• Declarative part is used to declare internal signals, custom data types, used components

• Functionality can be described using
• Concurrent assignment statements

• Interconnected components

• Sequential assignment statements (in a process)
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VHDL: design entity

• One entity can have several architectures

• It is useful if one wants to compare different implementations 
of the same design
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Design entity

Entity declaration

Architecture #1

Architecture #2

Architecture #3



VHDL: objects

• The main object in VHDL is a signal
• Model physical wires (buses) for communications or physical storage of information
signal <name>: <type> [range] [:= default_value];

• Variable is a programming construct to model temporary storage
• Used only inside processes
variable <name>: <type> [range] [:= default_value];

• Constant is an object whose value cannot be changed
constant <name>: <type> := <value>;
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VHDL: data types

• INTEGER

• REAL
• Floating-point

• Limited synthesis support

• CHARACTER, STRING

• BOOLEAN

• TIME
• Not synthesizable

14



VHDL: data types

• BIT
• Two possible values: '0' and '1'

• STD_LOGIC
• Nine possible values: '0', '1', 'U', 'X', 'L', 'H', 'W', 'Z', '–'

• Better model actual hardware

• Industry standard for ports

• 'U', 'X', 'L', 'H', 'W' are only used during simulation

• Only '0', '1', 'Z', '–' are synthesizable

• UNSIGNED, SIGNED
• Based on STD_LOGIC

• Numeric types
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std_logic values

'0' LOW

'1' HIGH

'U' Uninitialized

'X' Unknown

'L' Weak LOW

'H' Weak HIGH

'W' Weak unknown

'Z' High impedance

'–' Don’t care



VHDL: std_logic

• 'X' means contention on the bus • High impedance 'Z' means that there is no 
current flow through the wire

• Used in tri-state buffers

16



VHDL: wires and buses

• Single-bit signal (wire)

signal x: std_logic := '0';

• Multi-bit signal (bus)
• Size is defined as a range

• Little-endian order is preferred

signal y: std_logic_vector(3 downto 0) := "0001"; -- little-endian order

signal z: std_logic_vector(0 to 3) := "0001"; -- big-endian order
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VHDL: operators

Operator type Operators Supported data types

Assignment <=, := All

Logical NOT, AND, NAND, OR, NOR, XOR, XNOR bit, bit_vector, boolean, std_logic, 
std_logic_vector, (un)signed*

Arithmetic +, –, *, /, **, ABS, REM, MOD integer, (un)signed, std_logic_vector**

Comparison =, /=, >, <, >=, <= bit, bit_vector, boolean, integer, string, 
(un)signed*, std_logic_vector**

Shift*** SLL, SRL, SLA, SRA, ROL, ROR bit_vector, std_logic_vector**, (un)signed*

Concatenation & bit_vector, string, std_logic_vector, (un)signed*
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* Requires package numeric_std
** Requires package std_logic_(un)signed (non-standard)
*** Recommended approach for shifting data is with the concatenation operator



VHDL: basic identifiers

• Consist of Latin letters (a…z), underscores (_), and digits (0…9)

• Must start with a letter

• Cannot have two consecutive underscores

• Cannot end with an underscore

• Special characters are not allowed

Comp_1, LED_OUT, counter  -- legal

_comp_, reg-01, 2bitAdder -- illegal
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Testbench

• When a design is implemented, it should be simulated and tested

• In order to simulate the design, we need a testbench

• VHDL can be used both for describing hardware and the environment
• Testbench is also written in VHDL

• During the simulation and testing, design inputs are driven by test vectors, and outputs 
are monitored and checked
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Testbench entity

UUT
Test vector 
generator

Monitor



Design flow for FPGA
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Specification

VHDL code

Analysis and synthesis

Implementation

Generate config file

Configure FPGA

RTL functional
simulation

Post-synthesis 
functional simulation

Post-implementation 
timing simulation

For labs 1–5, functional 
simulation is enough

For lab 6, timing simulation 
might be necessary



Coding guide

• Use the coding style suggested in the guide in Moodle
• For readability and proper synthesis results

• Based on
• Xilinx coding guidelines

• OpenCores coding guidelines

• Textbooks
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“The task of synthesis tool is to analyze VHDL 
description and infer what hardware elements are 
represented and how they are connected. A tool 
cannot infer hardware from any arbitrarily written 
VHDL model. Instead, we need to write models in a 
synthesis style that is recognized by the tool.”

-- The Designer’s Guide to VHDL, P. J. Ashenden


