
Mapping Constructs from AOM to CPN Tools

1 Overview of Mapping Constructs

This document aims to give a detailed description on the process of mapping AOM

design models for distributed STS to CPN Tools. Once AOM design models are

correctly presented in CPN Tools, they can then be formally validated and verified.

In CPN Tools uses simulation analysis technique for model validation and

reachability graph analysis technique for verification purposes. The following sub-

sections give the overview of the mapping constructs.

1.1 Construct Structure

This subsection explains the structure of the suggested mapping constructs. The

objective of these mapping constructs is to provide a step by step guidance to

designers and implementers of STS for validation and verification of their design

models. Since the general objective of these mapping constructs and design constructs

is to help designers and developers to solve problems related to software systems, the

author has decided to adopt some elements of construct structure into mapping

constructs. The following are important elements that describe mapping constructs

in detail.

Construct Name: This feature identifies the construct itself and gives the overview of

its main functionality.

Intent: By using few sentences, this feature presents the main goal of the construct

and briefly describes the solution to the given problem.

Problem Description: This feature describes the context of the problem and shows the

need to solve it by answering to the question, “why is the given construct important?”

Solution: This feature is very important in each construct. It provides the solution to

the described problem and its implementation on platform in CPN Tools for the

purpose of verifying correctness of the design, simulation and visualising the

behaviour of the system. Although, different designers may suggest different

solutions to similar problem, it is guaranteed the given solutions are correct. The

specific implementations of given constructs follows in Section 1.2.

1.2 A List of Mapping Constructs

According to recent literature, researchers have shown a strong interest to consider

human factors during software development life style. Among these researchers,

Sterling and Taveter, suggested an approach named Agent Oriented Modelling

(AOM), for engineering such systems from agent-oriented perspective. For many

years, AOM has been focusing on the analysis and design of STS without proper

mechanism of validation and verification. The following table summarises the

mapping constructs from AOM to CPN Tools for verification and validation purposes.

Table 1: Summary of mapping constructs from AOM to CPN Tools

ID Construct Name Intent

1 Incoming Message To describe a message transferred by an

agent instance to another agent instance.

2 Outgoing Message To describe a response message by an

agent after successfully receiving the

message from another agent.

3 Non-Communicative Action

Event

To describe a physical event by a human

agent or a hardware device during the

interaction

4 Agent Initialisation To identify and show the availability of an

agent instance in an open and distributed

socio-technical system.

5 Composite Activity To describe the behaviour of an agent that

needs to perform an activity composing a

set of sub-activities.

6 Reactive Event To describe the behaviour of an agent after

perceiving changes in the environment.

7 Looping Condition To allow an agent execute the same

activity repeatedly as far as a given pre-

condition(s) or post-condition(s) holds.

8 Conditional Activity To prevent an agent to execute a particular

activity until fulfilling a given condition.

9 Parameters Passing Between

Activities

To allow an agent to transfer knowledge

from one activity to another activity.

10 Receive Message To describe the behaviour of an agent

receiving a message sent by another agent

asynchronously.

11 Send Message To describe the behaviour of an agent

sending asynchronous message to another

agent.

12 Perceive Non-

Communicative Action Event

To describe the behaviour of a software

agent perceiving non-communicative

action event from human or hardware

device.

2 Catalogue of Mapping Constructs

This section presents the mapping constructs and categorises them into three main

viewpoint aspects in Agent Oriented Software Engineering, namely knowledge,

interaction and behaviour. The following subsection explains mapping constructs

related to knowledge aspect.

2.1 Knowledge Constructs

Agents need sufficient amount of knowledge in order to execute its behaviour,

especially make decisions. The foundation of these knowledge constructs comes from

abstract role-based domain model and more concreate knowledge model presented in

Section 3.4.1 and Section 3.4.2 respectively. An agent knowledge can either be about

itself, other agents or objects in its environment. An agent uses knowledge attributes

to describe itself and uses conceptual objects to describe knowledge about other

agents and objects in its environment. The following constructs describe the means

to map knowledge attributes and conceptual objects to CPN tools in order to simulate

and verify platform independent design models of STS.

Construct Name: Knowledge Attributes

Intent: To represent one or more quality dimension of an agent

Problem Description: Agent uses knowledge attributes to represent quality dimension

about itself. For example, each person can be characterised by the date of birth,

height, weight, hair colour, eye colour, and so forth. This way, an agent can easily

differentiate itself from other agents in STS, hence easily identified. The heuristics

for knowledge modelling in Section 3.4.2 describes the most frequent data types for

knowledge attributes are String, Integer, Real, Boolean, Date and Enumeration. The

challenge is to identify and design a better way to represent knowledge attributes in

CPN Tools.

Solution: ….

Construct Name: Conceptual Objects

Intent: To represent knowledge of an agent about other agents and objects in its

environment.

Problem Description: Agent uses conceptual objects to represent knowledge about

other agents and objects in its environments. The latter includes resources consumed

by agents. The description of conceptual objects normally uses knowledge attributes.

For example, a medical prescription can be characterised by patient name, patient

address, prescriber name, prescriber address, prescriber registration number,

drug(s), and so forth. This way, an agent can therefore possess or share a large

amount of information using only one conceptual object. The challenge is to identify

and design a suitable manner to represent conceptual objects in CPN Tools.

Solution: ….

2.2 Interaction Constructs

Construct Name: Incoming Message

Intent: To describe a message transferred by an agent instance to another agent

instance.

Problem Description: Distributed agents are located in different places, either

physically or virtually. Additionally, the agents exchange messages through

interactions for the purpose of achieving common goals. Therefore, it is becomes

important to ensure a sent message is delivered by intended agent instance.

For example, Figure 2.1 shows interaction sequence diagram between two agent

instances of type Sender and Receiver. The exchanged knowledge is contained in an

instance of MessageType1 which is an incoming message with respect to agent

instance Receiver.

Sender Receiver
MessageType1

Figure 2.1: An agent sending a message

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivityType1 Trigger1 Precondition1 Postcondition1

Postcondition2

2 SubActivityType2 Trigger2 Precondition2 Postcondition3

Standard declarations

MSC Setup
val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val receiver = "Receiver";
val _ = MSC.addProcess(msc,sender);
val _ = MSC.addProcess(msc,receiver);

colset

colset INT = int;
colset STRING = string;
colset INTxSTRING = product INT*STRING;
colset INTxINTxSTRING = product INT*INT*STRING;

variables

var messageType: STRING;
var sid, rid: INT;

functions

fun send_message(senderID, receiverID, message)=
MSC.addEvent(msc,sender,receiver,"SUB-ACTIVITY 1:"^message);

Construct Name: Outgoing Message.

Intent: To describe a response message by an agent after successfully receiving the

message from another agent.

Problem Description: Through interaction process an agent may receive more than

one message from a single or many agents. It is therefore very important to clearly

describe response message for each received message and ensure delivery of the

message by an appropriate (intended) agent.

According to the Fundamentals of Intelligent Physical Agents (FIPA) [72], an agent

needs to send an acknowledgement to the appropriate agent(s) confirming the receipt

of a given message. Figure 2.2 shows an interaction diagram depicting

acknowledgement instance MessageType1 sent by the receiver agent to sender agent.

Sender Receiver
MessageType1

Figure 2.2: An agent receiving a message

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 ActivityType1 Trigger 1 Postcondition1

Postcondition2

2 ActivityType2 Trigger 2 Precondition 2 Postcondition 3

Trigger1  Precondition1

Trigger2  Postcondition2

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val receiver = "Receiver";
val _ = MSC.addProcess(msc,sender);
val _ = MSC.addProcess(msc,receiver);

colset

colset INT = int;
colset STRING = string;
colset INTxINTxSTRING = product INT*INT*STRING;

variables

var messageType: STRING;
var sid, rid: INT;

functions

fun acknowledge_receipt(senderID, recieverID,message)
=MSC.addEvent(msc,receiver,sender,"SUB-ACTIVITY
1:"^message);

Construct Name: Non-Communicative Action Event

Intent: To describe a physical event by a human agent or a hardware device during

the interaction

Problem Description: Among the main characteristics of sociotechnical systems is

consideration of humans, software and hardware devices during the design phase [1].

When designing interaction diagrams, it becomes crucial to differentiate

communicative action event (message) performed by a software from physical action

event commonly referred as non-communicative action event performed by humans

or hardware devices.

Figure 2.3 describes non-communicative action instance ActionType1 performed by

the sender agent on the receiver agent. The sender performing non-communicative

action can either be a human or hardware device. This construct is similar to the

construct for sending a message. The only difference is in the notation that describes

an instance of action type. In

Sender Receiver
MessageType1

Figure 2.3: Non-communicative action event by a human or hardware device

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivityType1 Trigger1 Precondition1 Postcondition1

Postcondition2

2 SubActivityType2 Trigger2 Precondition2 Postcondition3

Standard declarations

MSC Setup
val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val receiver = "Receiver";
val _ = MSC.addProcess(msc,sender);
val _ = MSC.addProcess(msc,receiver);

colset

colset INT = int;
colset STRING = string;
colset INTxSTRING = product INT*STRING;
colset INTxINTxSTRING = product INT*INT*STRING;

variables

var messageType: STRING;
var sid, rid: INT;

functions

fun send_message(senderID, receiverID, message)=
MSC.addEvent(msc,sender,receiver,"SUB-ACTIVITY 1:"^message);

2.3 Behaviour Constructs

Construct Name: Agent Initialization

Intent: To identify and show the availability of an agent instance in an open and

distributed socio-technical system.

Problem Description: In an open and distributed sociotechnical system, each

collaborating agent type is represented by one or many agent instances that enter

and leaves the system at any time. Therefore, during initialisation process of an

agent, it becomes important to register each instance of any agent type.

In the registration activity, an agent instance acquires unique identifier and makes

itself ready for collaboration, i.e., receiving or sending of action events. For example,

in Java Agent Development (JADE) framework, Agent Management System (AMS)

service is responsible to register agents when enter the system and deregister when

leave the system [73]. Figure 2.4 describes initialisation process of an instance of

AgentType1.

Agent Type

Figure 2.4: Agent Initialisation

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 ActivityType1 Trigger 1 Postcondition1

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val agent = "Agent";
val _ = MSC.addProcess(msc,agent);

colset

colset INT = int;

variables

var aid: INT;

functions

fun initialisation(agentID)=
MSC.addInternalEvent(msc,agent,"INITIALIZE:"^INT.mkstr(agent
ID));

Construct Name: Composite Activity

Intent: To describe the behaviour of an agent that executes an activity containing a

set of sub-activities.

Problem Description: It is common to find an activity composed of a set of sub-

activities. The execution of a set of sub-activities gives the output to the main activity.

It is therefore important to correctly describe the connection between the main

activity and the composed set of sub-activities.

For the main activity and each sub-activity, there is input and output. Since sub-

activities are contained in the main activity, the input of the first sub-activity must

be the same as the input of main activity. Similarly, the output of the main activity

must be the same to the out-put of the last sub-activities. Figure 2.5 illustrates an

instance of the main activity containing two instances of sub-activities that are

executed in a sequential manner.

Main Activity Type1

SubActivity Type1

SubActivity Type2

Figure 2.5: A composite activity containing two sub-activities.

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 MainActivity

Type1

Trigger 1 Postcondition1

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

Trigger 1 Postcondition2

2 SubActivity

Type2

Trigger 2 Postcondition1

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val agent = "Agent";
val _ = MSC.addProcess(msc,agent);

colset

colset STRING = string;

variables

var messageType: STRING;

functions

fun SubActivity_Type1(message)=
MSC.addInternalEvent(msc,agent,"CONTENT:"^message);

fun SubActivity_Type2(message)=
MSC.addInternalEvent(msc,agent,"CONTENT:"^message);

Construct Name: Reactive Behaviour

Intent: To describe the behaviour of an agent after perceiving changes in the internal

or external environment.

Problem Statement: Reactivity is among important characteristics of an agent in

socio-technical systems and multi-agent systems in general. Reactivity is a system

behavior in which every single agent in the system copes with the environmental

changes by providing a specific solution to reorganize its own task in order to fulfill

the accomplishment of its originally assigned goal [74]. A reactive agent continuously

observes the environment and detects changes that trigger certain behaviours after

satisfying given conditions. Figure 2.6 describes a reactive behaviour of an agent that

is triggered when a condition contained in rule R1 is fulfilled by changes in the

environment. A given agent executes Sub-Activity Type1 in response to the

environmental change that fulfils the condition. Otherwise the agent executes Sub-

Activity Type2.

Main Activity Type1

R1

SubActivity Type1

SubActivity Type2

{precondition}

MessageType1

Figure 2.6: Reactive behaviour of an agent

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

 Precondition1 Postcondition1

2 SubActivity

Type2

 Precondition1 Postcondition2

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val receiver = "Receiver";
val _ = MSC.addProcess(msc,sender);
val _ = MSC.addProcess(msc,receiver);

colset

colset INT = int;
colset STRING = string;
colset INTxINTxSTRING = product INT*INT*STRING;

variables

var messageType: STRING;

values
val value = “messageType1”;

functions

fun SubActivity_Type1(senderID, receiverID, message)=
MSC.addEvent(msc,sender,receiver,"CONTENT:"^message);

fun SubActivity_Type2(message)=
MSC.addInternalEvent(msc,sender,"CONTENT:"^message);

Construct Name: Looping Condition

Intent: To allow an agent to execute the same activity repeatedly as far as a given

pre-condition(s) or post-condition(s) holds.

Motivation: Agent behaviour consists of a set of activities, each activity contains at

least one pre-condition and one post-condition. When executing its activities,

sometimes an agent needs to execute the same activity repeatedly as far as a given

pre-condition or post condition holds.

Figure 2.7(a) describes pre-conditional looping behaviour that occurs when an agent

executes Sub-Activity Type 1 repeatedly as far as the pre-condition contained in rule

R1 holds, otherwise executes Sub-Activity Type 2. In the other hand, Figure 2.7(b)

describes post-conditional looping behaviour that occurs when an agent executes Sub-

Activity Type 1 repeatedly as far as the post-condition contained in rule R1 holds,

otherwise executes Sub-Activity Type 2. The main difference between these two

conditional looping is that, in pre-condition looping the minimum number of

executing Sub-Activity Type 1 is zero while in post-condition looping, the minimum

of executing Sub-Activity Type 1 is one.

Problem Description:

Main Activity Type1

R1

SubActivity Type1

{precondition}

SubActivity Type2

Figure 2.7(a): Pre-condition looping

Main Activity Type1

R1

SubActivity Type1

{precondition}

SubActivity Type2

Figure 2.7(b): Post-condition looping

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

 Precondition1 Postcondition1

2 SubActivity

Type2

 Precondition1 Postcondition2

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val _ = MSC.addProcess(msc,sender);

colset

colset STRING = string;

variables

var messageType: STRING;

values
val value = “messageType”;

functions

fun SubActivity_Type1(message)=
MSC.addInternalEvent(msc,sender,"SUB-ACTIVITY 1:"^message);
fun SubActivity_Type2(message)=
MSC.addInternalEvent(msc,sender,"SUB-ACTIVITY 2:"^message);

Construct Name: Looping Condition

Intent:

Motivation:

Problem Description:

Main Activity Type1

R1

SubActivity Type1

{precondition}

SubActivity Type2

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

 Precondition1 Postcondition1

2 SubActivity

Type2

 Precondition1 Postcondition2

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val _ = MSC.addProcess(msc,sender);

colset

colset STRING = string;

variables

var messageType: STRING;

values
val value = “messageType”;

functions

fun SubActivity_Type1(message)=
MSC.addInternalEvent(msc,sender,"SUB-ACTIVITY 1:"^message);
fun SubActivity_Type2(message)=
MSC.addInternalEvent(msc,sender,"SUB-ACTIVITY 2:"^message);

Construct Name: Rule-Based Activity

Intent: To allow an agent to reason in order to execute the most appropriate activity.

Problem Description: All agents in socio-technical system aim to effectively and

efficiently achieve the main purpose of the system [75], i.e., main goal of the system.

Since the multi-agents environment keeps on changing, often each agent needs to

reason and decide appropriate set of activities to execute in order to achieve the

intended goal [76]. Reasoning is among the main characteristics of an agent that is

achieved through execution of rules stored in rule engine. Figure 2.8 depicts a rule-

based activity where an agent executes Sub-Activity Type 1 when the condition

contained in rule R1 is fulfilled.

Main Activity Type1

R1

SubActivity Type1

infoType:InfoType

Figure 2.8: Rule-based activity

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

 Precondition1 Postcondition1

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val _ = MSC.addProcess(msc,sender);

colset

colset STRING = string;

variables

var infoType: STRING;

values
val value = “infoType1”;

functions

fun SubActivity_Type1(info)=
MSC.addInternalEvent(msc,sender,"SUB-ACTIVITY 1:"^info);

Construct Name: Parameter Passing Between Activities

Intent: To allow an agent to transfer knowledge from one activity to another activity.

Problem Description: Normally an agent performs a set of activities when executing

certain behaviour. In many cases, these activities depend on each other, i.e., the

output of a given activity becomes the input of the following activity. Therefore, it is

important to enable an agent to seamlessly transfer knowledge between two

successive activities. Figure 2.9 describes an agent transferring knowledge from

Activity Type1 to Activity Type 2.

AgentType

ActivityType1

infoType:InfoType

ActivityType2

infoType:InfoType

Figure 2.9: An agent transfer knowledge between activities

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

 Precondition1 Postcondition1

2 SubActivity

Type2

 Precondition1 Postcondition2

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val _ = MSC.addProcess(msc,sender);

colset

colset STRING = string;

variables

var infoType: STRING;

functions

fun SubActivity_Type1(info)=
MSC.addInternalEvent(msc,sender,"SUB-ACTIVITY 1:"^info);
fun SubActivity_Type2(info)=
MSC.addInternalEvent(msc,sender,"SUB-ACTIVITY 2:"^info);

Construct Name: Receiving Message

Intent: To describe the behaviour of an agent receiving asynchronous message sent

by another agent.

Motivation: One of the key concepts of multi-agent system is asynchronous

communication, where the sender transmits data to the receiver, generally without

the use of an external clock signal [77]. In other words, the sender may perform

communicative action event while the receiver is offline.

Each agent has its own goal(s) and behaviours that execute a set of activities.

Additionally, an agent may enter and leave the system at any time. For this reason,

it becomes important to identify necessary condition(s) that may trigger an activity

for receiving asynchronously sent message. Figure 2.10 describes agent behaviour for

receiving asynchronous message. When the necessary conditions contained in rule R1

are fulfilled, an agent receives the instance of MessageType1 and performs Sub-

Activity Type1.

Main Activity Type1

R1

SubActivity Type1

MessageType1

Figure 2.10: An agent receiving a message

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

Trigger1 Precondition1 Postcondition1

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";

val receiver = "Receiver";
val _ = MSC.addProcess(msc,sender);
val _ = MSC.addProcess(msc,receiver);

colset

colset INT = int;
colset STRING = string;
colset INTxINTxSTRING = product INT*INT*STRING;

variables

var messageType: STRING;
var sid, rid: INT;

values

val value = “messageType1”;

functions

fun receive_message(senderID,receiverID, message)=
MSC.addEvent(msc,sender,receiver,"SUB-ACTIVITY 1:"^message);

Construct Name: Sending Message

Intent: To describe the behaviour of an agent sending asynchronous message to

another agent.

Problem Description: Agents in socio-technical systems that are naturally distributed

work in collaboration and pursue assigned tasks to achieve the overall goal of the

system [78]. Agents often need to receive help other agents and therefore send

messages to request services offered by other agents.

When designing agent behaviour it is important to specify necessary condition(s) that

may trigger an activity for sending message. Figure 2.11 describes the behaviour of

agent sending a message. Sub-Activity Type1 for sending instance of Message Type1

executes when an agent fulfils the condition stated in rule R1.

Main Activity Type1

R1

SubActivity Type1MessageType1

Figure 2.11: An agent sending a message

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

Trigger1 Precondition1 Postcondition1

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val receiver = "Receiver";
val _ = MSC.addProcess(msc,sender);
val _ = MSC.addProcess(msc,receiver);

colset

colset INT = int;
colset STRING = string;
colset INTxSTRING = product INT*STRING;
colset INTxINTxSTRING = product INT*INT*STRING;

variables

var messageType: STRING;
var sid, rid: INT;

values

val value = “messageType1”;

functions

fun send_message(senderID,receiverID, message)=
MSC.addEvent(msc,sender,receiver,"SUB-ACTIVITY 1:"^message);

Construct Name: Perceiving Non-Communicative Action Event

Intent: To describe the behaviour of a software agent perceiving non-communicative

action event from human or hardware device.

Problem Statement: Non-communicative action event occurs when the event, usually

physical event is initiated by human agent or hardware device [79]. In contrast to

receiving message construct, software agents perceive non-communicative action

events take into consideration physical actions by other agents. It is then important

to clearly describe the behaviour of an agent perceiving non-communicative action

event.

Figure 2.12 describes agent behaviour for perceiving an instance of non-

communicative action event ActionType1. When the necessary conditions contained

in rule R1 are fulfilled, an input management activity starts. Input management

activity consists of rule R2 that contains condition(s) necessary for handling input

action events.

AgentType

ActionType1 R1

Input Management

R2

Handle Input

Figure 2.12: An agent perceiving non-communicative action event

Solution:

AID Activity Name Trigger Precondition(s) Postcondition(s)

1 SubActivity

Type1

Trigger1 Precondition1 Postcondition1

Standard declarations

MSC Setup

val msc = MSC.createMSC("Sequence Diagram");
val sender = "Sender";
val receiver = "Receiver";
val _ = MSC.addProcess(msc,sender);
val _ = MSC.addProcess(msc,receiver);

colset

colset INT = int;
colset STRING = string;
colset INTxINTxSTRING = product INT*INT*STRING;

variables

var messageType: STRING;
var sid, rid: INT;

values

val value = “messageType1”;

functions

fun receive_message(senderID,receiverID, message)=
MSC.addEvent(msc,sender,receiver,"SUB-ACTIVITY 1:"^message);

