ELECTRONICS

Practical work 1

BIPOLAR TRANSISTOR AMPLIFIERS

1. Study of bipolar transistor amplifiers.

1.1. Compose the CE amplifier as in Fig. 1.

Fig. 1 Diagram of the CE transistor amplifier.

Connect the function generator at f = 400 Hz and adjust the level of the sine wave input for a maximum undistorted signal at the output.

Measure the following voltages:

1.2. Take the relationship $V_{ex\ m} = f(V_{in\ m})$ for amplifier by voltmeter and write the results into the Table 1 and Fig. 2.

Find the voltage gain A_v for the circuit from Table 1:

$$A_{v} = \frac{V_{ex}}{V_{in}} = \frac{V_{ex}}{V_{in}}$$

Calculate theoretical voltage gain A_{vth} for the circuit:

$$A_{v th} = -\frac{h_{21}}{h_{II}} \cdot R_4 \text{ II } R_5 = ----= =$$

where: h_{21} is the current gain for transistor in common emitter (CE) configuration (a value between 30 and 200; use in the following calculations $h_{21} = 100$);

 h_{II} is the input impedance for transistor in CE configuration and calculates as

$$h_{11} = V_T / I_B = V_T h_{21} / I_E = = [\Omega],$$

where emitter current $I_E = = [mA]$.

and V_T is the thermal voltage: V_T = [mV].

Table 1

14010 1				T
V_{in} [V]	V_{ex} [V]	$V_{in} \sqrt{2}[V]$	$V_{ex} \sqrt{2}[V]$	$A_{v} = \frac{V_{ex} \cdot \sqrt{2}}{V_{in} \cdot \sqrt{2}}$

Fig. 2 Transfer relationship $V_{ex\,m} = f(V_{in\,m})$ for CE amplifier.

1.3. Find the logarithmic gain - frequency response.

For it calculate:

- voltage gain A_o for passband frequencies (e.g. at 400 Hz)

$$A_o = 20 \lg V_{exm} / V_{inm} = 20 \lg \dots / \dots = \dots [dB]$$
, and

- lower cutoff frequency (by multimeter): $f_b = \dots [Hz]$; $\lg f_b = \dots [Hz]$;
- upper cutoff frequency (by oscilloscope): $f_h = \dots [kHz]$; $\lg f_h = \dots [kHz]$; where:

 f_b and f_h are - 3 dB frequencies for amplifier.

Write the results into the Table 2 and use for Fig. 3.

Construct the straight-line approximation and corrected smooth curve for logarithmic gain - frequency relationship.

Table 2

f[Hz]	V_{in} [dB]	V_{ex} [dB]	$A_{v} [dB] = V_{ex} [dB] - V_{in} [dB]$
$f_b =$			
400			A_0 [dB] =
$f_h =$			

Fig. 3 Logarithmic gain - frequency relationship for CE amplifier.

The horiz	ontal a	xis is scaled	l logari	thmical	ly, in decades	of frequency;			
the dB gai	in is as	ssigned to tl	ne verti	cal axis	S.				
Explain	the	reasons	for	the	frequency	distortions	of	CE	amplifier
									-

1.4. Assume, you apply the incoming square-wave signal v_{IN} for frequency $f_I = 400$ Hz. Draw the output voltage v_{EX} curves in Fig. 4.

Determine the phase shift φ for input and output voltages and explain it:

Explain the reasons for the output voltage distortion:

.....

Fig. 4 Input voltage v_{IN} and output voltage v_{EX} curves.

1.5. Design the CE amplifier configuration without emitter capacitor and determine the voltage gain A_v for 400 Hz sine wave input:

$$A_{v} = \frac{V_{ex}}{V_{in}} = \frac{V_{ex}}{V_{in}}$$

Compare the result with the theoretical gain value $A_{v,th}$:

$$A_{v th} \approx \frac{R_4 \text{ II } R_5}{R_3} \approx \frac{R_4 \text{ II } R_5}{R_3}$$

1.6. Design the common collector (CC) configuration amplifier (emitter follower). The CC amplifier diagram is shown in Fig. 5.

Fig. 5 Diagram of the CC amplifier (emitter follower).

Apply the 400 Hz sine wave input.

Adjust by input signal the maximum undistorted output signal.

Find the voltage gain for CC amplifier:

$$A_v = \frac{V_{ex}}{V_{in}} = \frac{}{} ;$$

Measure the DC voltage:

$$V_E = \dots [V]$$
;

Calculate the following DC currents:

0,....

Determine the phase shift φ for the input and output voltages and explain it:

Cor	ıc	lu	si	Ol	ns	: .	 •	•	•		•	•	•	•	• •			. •	•			•									•		•	•	•	•	•	•	•	•	•		•			•				•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		
• • •	• •		• •	•		•	 • •	•	•	•		•	•	•	•	•	• •			 	•	•	•	•		 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	 		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• • •	• •		• •	•		•	 • •	•	•	•		•	•	•	•	•	• •			 	•	•	•	•		 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	 		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• • •	• •		• •	•		•	 • •	•	•	•		•	•	•	•	•	• •			 	•	•	•	•		 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	 		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• • •		• •		•		•	 	•	•	•		•	•	•	•	•	• ‹			 	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•••		• •		•		•	 	•	•	•		•	•	•	•	•	• ‹			 	•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•