Inverse problems for parabolic integro-differential equations with instant and integral conditions

Hetk- ja integraaltingimustega pöördülesanded paraboolsetele integro-diferentsiaalvõrranditele

Physical notation

Let us introduce the following parabolic integro-differential equation:

$$
\begin{equation*}
\beta[u+\mu * u]_{t}=A u-m * A u+\chi, \tag{1}
\end{equation*}
$$

where χ is the source term, the symbol $*$ stands for the time convolution $v_{1} * v_{2}(t)=\int_{0}^{t} v_{1}(t-\tau) v_{2}(\tau) d \tau$ and

$$
\begin{equation*}
A=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{n} a_{j}(x) \frac{\partial}{\partial x_{j}}+a(x, t) \tag{2}
\end{equation*}
$$

where $a_{i j}, a_{j}$ and a are some coefficients.
We will consider the solution u of the integro-differential equation (1) for the arguments

$$
(x, t) \in Q=\Omega \times(0, T)
$$

where $\Omega \in \mathbb{R}^{n}$ is an n-dimensional open domain and $T>0$ is a fixed number.

Smooth problems

We will start with the initial-boundary value problem

$$
\begin{align*}
& \beta[u+\mu * u]_{t}=A u-m * A u+\chi \text { in } Q \tag{3}\\
& u=u_{0} \text { in } \Omega \times\{0\}, \quad B u=b \text { in } S=\Gamma \times(0, T) \tag{4}
\end{align*}
$$

where Γ is the boundary of Ω, u_{0} and b are given functions, B is the boundary operator defined either by

$$
\begin{equation*}
B u=u \quad(\text { we call it case I) } \tag{5}
\end{equation*}
$$

or by

$$
\begin{equation*}
B u=\omega \cdot \nabla u-m * \omega \cdot \nabla u \quad(\text { we call it case II), } \tag{6}
\end{equation*}
$$

$\omega(x)=\left(\omega_{1}(x), \ldots, \omega_{n}(x)\right)$ is an x-dependent vector satisfying the condition $\omega \cdot \nu>0$ and $\nu(x)$ is the outer normal of Γ at the point $x \in \Gamma$. We assume that $\omega \in\left(C^{1}(\Gamma)\right)^{n}$.

Throughout the talk we assume that the x-dependent coefficient matrix $a_{i j}$ of the higher order part of the operator A is uniformly elliptic, i.e.

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j} \lambda_{i} \lambda_{j} \geq \epsilon|\lambda|^{2} \quad \text { in } \Omega \text { for any } \lambda \in \mathbb{R}^{n} \quad \text { and some } \epsilon \in(0, \infty) \tag{7}
\end{equation*}
$$

and x-dependent coefficient β is strictly positive:

$$
\begin{equation*}
\beta \geq \beta_{0} \text { in } \Omega \text { with some } \beta_{0} \in(0, \infty) \tag{8}
\end{equation*}
$$

In the analysis we will make use of the Hölder spaces $C^{\prime}(\Omega)$ and anisotropic Hölder spaces $C^{1, \frac{1}{2}}(Q)$. The norms in these spaces are denoted by $\|\cdot\|_{I}$ and $\|\cdot\|_{I, \frac{l}{2}}$, respectively.

Let us formulate the following inverse problems that use over-determined final data at $t=T$ of the solution of (3), (4):
IP1: Let the free term be of the following form:

$$
\begin{equation*}
\chi(x, t)=z(x) \phi(x, t)+\chi_{0}(x, t) . \tag{9}
\end{equation*}
$$

Given $\mu, m, \beta, a_{i j}, a_{j}, a, u_{0}, b, \phi, \chi_{0}$ and a function $u_{T}(x), x \in \Omega$, find z and u so that the relations (3), (4), (9) and

$$
\begin{equation*}
u=u_{T} \text { in } \Omega \times\{T\} \tag{10}
\end{equation*}
$$

hold.
IP2: Let $a_{t}=0$. Given $\mu, m, \beta, a_{i j}, a_{j}, u_{0}, b, \chi$ and a function $u_{T}(x)$, $x \in \Omega$, find a and u so that the relations (3), (4) and (10) hold.
IP3: Given $\mu, m, a_{i j}, a_{j}, a, u_{0}, b, \chi$ and a function $u_{T}(x), x \in \Omega$, find β and u so that the relations (3), (4) and (10) hold.

Define the resolvent kernel \hat{m} of the kernel m as the solution of the following Volterra integral equation:

$$
\begin{equation*}
\widehat{m}(t)-\int_{0}^{t} m(t-\tau) \widehat{m}(\tau) d \tau=m(t), \quad t \in(0, T) . \tag{11}
\end{equation*}
$$

Bringing the derivative with respect to t into the integral $\mu * u$ and applying the operator $I+\hat{m}$ to the equation (3) and the boundary condition (4) in case II we transform the relations (3), (4) to the following form:
$\beta\left(u_{t}+k * u_{t}\right)=A u+f$ in $Q, \quad u=u_{0}$ in $\Omega \times\{0\}, \quad B_{1} u=g$ in $S,(12)$ where

$$
\begin{align*}
& k=\mu+\mu * \widehat{m}+\widehat{m}, \tag{13}\\
& f=\chi-\beta \mu u_{0}+\widehat{m} *\left(\chi-\beta \mu u_{0}\right), \tag{14}\\
& B_{1}=B, g=b \text { in case I, } \tag{15}\\
& B_{1} u=\omega \cdot \nabla u, g=b+\widehat{m} * b \text { in case II. } \tag{16}
\end{align*}
$$

Positivity principle

Theorem 1

Assume $k \in W_{1}^{1}(0, T), \beta, a_{i j}, a_{j} \in C(\bar{\Omega}), a \in C(\bar{Q})$ and

$$
\begin{equation*}
k \geq 0, \quad k^{\prime} \leq 0 \tag{17}
\end{equation*}
$$

Let $u \in W_{p}^{2,1}(Q)$ with some $p \in(1, \infty)$ solve the problem (12) and $u_{0} \geq 0, \quad g \geq 0, f \geq 0$. Then the following assertions are valid:
(i) $u \geq 0$;
(ii) if, in addition, $\beta, a_{i j}, a_{j} \in C^{\prime}(\bar{\Omega}), a \in C^{\prime, \frac{1}{2}}(Q)$ with some $I \in(0,1)$ and there exists an open subset Q_{f} of Q such that $f>0$ in Q_{f}, then $u(\cdot, T)>0$ in Ω in case I and $u(\cdot, T)>0$ in $\bar{\Omega}$ in case II.

Results for IP1

IP1 is in the class of pairs (z, u) of functions, whose second component u together with its derivatives $u_{t}, u_{x_{i}}, u_{x_{i} x_{j}}$ belongs to $L^{p}(0, T), p>1$, for any x, equivalent to the following inverse problem:

$$
\begin{align*}
& \beta\left(u_{t}+k * u_{t}\right)=A u+z r+f_{0} \text { in } Q, \tag{18}\\
& u=u_{0} \text { in } \Omega \times\{0\}, \quad B_{1} u=g \text { in } S, \\
& u=u_{T} \text { in } \Omega \times\{T\}, \tag{19}
\end{align*}
$$

where B_{1}, g are given by (15), (16) and

$$
\begin{equation*}
r=\phi+\widehat{m} * \phi, \quad f_{0}=\chi_{0}-\beta \mu u_{0}+\widehat{m} *\left(\chi_{0}-\beta \mu u_{0}\right) . \tag{20}
\end{equation*}
$$

Uniqueness theorem

Theorem 2

Let $k \in W_{1}^{1}(0, T), \quad k \geq 0, \quad k^{\prime} \leq 0$ hold and $\beta, a_{i j}, a_{j} \in C^{\prime}(\Omega)$, $a \in C^{\prime, \frac{l}{2}}(Q), a_{t} \in L^{p}(Q)$ with some $I \in(0,1), p \in(1, \infty)$. Moreover, let $a_{t} \geq 0$ in $Q, r \in C^{\prime, \frac{1}{2}}(Q), r_{t} \in L^{p}(Q)$ and

$$
\begin{equation*}
r \geq 0, \quad r_{t}+k * r_{t}-\theta r \geq 0 \quad \text { in } Q \tag{21}
\end{equation*}
$$

where $\theta=\sup _{x \in \Omega} \frac{a(x, T)}{\beta(x)}$. Finally, assume that
for all $x \in \Omega$ there exists an open subset Q_{x} of Q such that

$$
\begin{equation*}
\exists t_{x} \in(0, T):\left(x, t_{x}\right) \in Q_{x} \quad \text { and } \quad r_{t}+k * r_{t}-\theta r>0 \text { in } Q_{x} . \tag{22}
\end{equation*}
$$

If $(z, u) \in C^{\prime}(\Omega) \times C^{2+l, 1+\frac{1}{2}}(Q)$ solves (18), (19) and $f_{0}, u_{0}, g, u_{T}=0$ then $z=0, u=0$.

Existence and stability

Theorem 3

Let $\beta, a_{i j}, a_{j} \in C^{\prime}(\Omega), a \in C^{l, \frac{1}{2}}(Q)$ and $a_{t} \in L^{p}(Q)$ with some $l \in(0,1), p \in(1, \infty)$. Moreover, let $a_{t} \geq 0, r \in C^{\prime, \frac{1}{2}}(Q), r_{t} \in L^{p}(Q)$ and $r \geq \delta$ in $\bar{\Omega} \times(T-\delta, T)$ with some $\delta \in\left(0, \frac{T}{2}\right)$ and $r=0$ in $\bar{\Omega} \times(0, \delta)$ hold. In addition, let $f_{0} \in C^{l, \frac{1}{2}}(Q), u_{0} \in C^{2+l}(\Omega), g \in C^{2+l-\vartheta, 1+\frac{1}{2}-\frac{\vartheta}{2}}(S)$, $u_{T} \in C^{2+I}(\Omega)$ and the consistency conditions

> (a) $u_{0}=g, \quad \beta g_{t}=A u_{0}+f_{0} \quad$ in case I, $\omega \cdot \nabla u_{0}=g$ in case II in $\Gamma \times\{0\}$
(b) $u_{T}=g$ in case I,

$$
\begin{equation*}
\omega \cdot \nabla u_{T}=g \quad \text { in case II } \quad \text { in } \Gamma \times\{T\} \tag{24}
\end{equation*}
$$

be satisfied. Then the following assertions are valid.

Existence and stability

Theorem 3

(i) (Fredholm-type result) If $k \in W_{\frac{2}{2-1}}^{1}(0, T), r \geq 0, r_{t}-\theta r \geq 0$ in Q with $\theta=\sup _{x \in \Omega} \frac{a(x, T)}{\beta(x)}$, for all $x \in \Omega$ exists an open subset \tilde{Q}_{x} of Q such that $\exists \tilde{t}_{x} \in(0, T)$: $\left(x, \tilde{t}_{x}\right) \in \tilde{Q}_{x}$ and $r_{t}-\theta r>0$ in \tilde{Q}_{x}
and the homogeneous inverse problem, i.e.

$$
\begin{array}{r}
\beta\left(v_{t}^{0}+k * v_{t}^{0}\right)=A v^{0}+q^{0} r \text { in } Q, \\
v^{0}=0 \text { in } \Omega \times\{0\}, \quad B_{1} v^{0}=0 \text { in } S, \quad v^{0}=0 \text { in } \Omega \times\{T\} \tag{27}
\end{array}
$$

has in $C^{\prime}(\Omega) \times C^{2+1,1+\frac{1}{2}}(Q)$ only the trivial solution $q^{0}=0, v^{0}=0$, then the inverse problem (18), (19) has a unique solution (z, u) in the space $C^{\prime}(\Omega) \times C^{2+1,1+\frac{1}{2}}(Q)$.

Existence and stability

Theorem 3

Moreover, the solution (z, u) satisfies the estimate

$$
\begin{array}{r}
\|z\|_{I}+\|u\|_{2+l, 1+\frac{1}{2}} \leq \Lambda\left(\beta, a_{i j}, a_{j}, a, k, r\right) \\
\times\left\{\left\|f_{0}\right\|_{l, \frac{1}{2}}+\left\|u_{0}\right\|_{2+l}+\|g\|_{2+l-\vartheta, 1+\frac{1}{2}-\frac{\vartheta}{2}}+\left\|u_{T}\right\|_{2+l}\right\} \tag{28}
\end{array}
$$

with some constant \wedge depending on the quantities shown in brackets.
(ii) (Full existence, uniqueness and stability result) If $k \in W_{\frac{2}{2-1}}^{1}(0, T), \quad k \geq 0, \quad k^{\prime} \leq 0$ and r satisfies (21), (22), (25) then the inverse problem (18), (19) has a unique solution (z, u) in the space $C^{\prime}(\Omega) \times C^{2+l, 1+\frac{1}{2}}(Q)$. The solution satisfies the estimate (28).

Making use of results proved for IP1, we have proved global uniqueness and local existence and stability of solutions to IP2 and IP3.

Non-smooth problems

Let (1) have the following form:

$$
\begin{equation*}
u_{t}+(\mu * u)_{t}=A u-m * A u+f+\nabla \cdot \phi+\varphi_{t} \quad \text { in } Q, \tag{29}
\end{equation*}
$$

where f, φ are regular scalar functions and ϕ is a regular vector function, A is of the divergence type and has symmetric principal part, i.e. $(A v)(x)=\sum_{i, j=1}^{n}\left(a_{i j}(x) v_{x_{j}}\right)_{x_{i}}+a(x) v(x), \quad a_{i j}=a_{j i}$.

$$
\begin{gather*}
u=u_{0} \quad \text { in } \Omega \times\{0\} \tag{30}\\
u=g \quad \text { in } \Gamma_{1} \times(0, T), \tag{31}\\
-\nu_{A} \cdot \nabla u+m * \nu_{A} \cdot \nabla u=h+\nu \cdot \phi \quad \text { in } \Gamma_{2} \times(0, T), \tag{32}
\end{gather*}
$$

where the functions u_{0}, g, h are given and $\nu_{A}=\left(\left.\sum_{j=1}^{n} a_{i j} \nu_{j}\right|_{i=1, \ldots, n}\right)$ is the co-normal vector to Γ and $\Gamma=\Gamma_{1} \cup \Gamma_{2}$, meas $\Gamma_{1} \cap \Gamma 2=0$.

Inverse problems

Let us pose formal inverse problems. They use instant and integral data of the solution of (29) - (32).
IP4: Let the component f of the free term be of the form

$$
\begin{equation*}
f(x, t)=f_{0}(x, t)+\sum_{j=1}^{N} \gamma_{j}(t) \omega_{j}(x) \tag{33}
\end{equation*}
$$

and $\mu=0, \varphi=0$. Given $m, a_{i j}, a, u_{0}, f_{0}, \phi, g, h, \gamma_{j}, j=1, \ldots, N$, and functions $u_{T_{i}}(x), x \in \Omega, i=1, \ldots, N$ with $0<T_{1}<T_{2}<\ldots<T_{N} \leq T$, find $\omega_{j}, j=1, \ldots, N$, such that the solution u of (29) - (32) satisfies the following instant additional conditions:

$$
u=u_{T_{i}} \quad \text { in } \Omega \times\left\{T_{i}\right\}, \quad i=1,2, \ldots, N
$$

IP5: Let the component f of the free term be of the form (33) and $\mu=0, \varphi=0$. Given $m, a_{i j}, a, f_{0}, \phi, g, h, \gamma_{j}, j=1, \ldots, N$, and functions $v_{i}(x), x \in \Omega, i=1, \ldots, N+1$, find $\omega_{j}, j=1, \ldots, N$, and u_{0} such that the solution u of (29) - (32) satisfies the following integral additional conditions:

$$
\begin{equation*}
\int_{0}^{T} \kappa_{i}(x, t) u(x, t) d t=v_{i}(x), x \in \Omega, \quad i=1,2, \ldots, N+1, \tag{34}
\end{equation*}
$$

where $\kappa_{i}, i=1, \ldots, N+1$ are given weights.
IP6: Let meas $\Gamma_{2}>0$. Given $a_{i j}, u_{0}, f, \phi, \varphi, g, h$ and functions $u_{T}(x)$, $x \in \Omega, v_{i}(t), t \in(0, T), i=1,2$, find a, m and μ such that the solution of (29) - (32) satisfies the following final and integral additional conditions:

$$
\begin{align*}
& u=u_{T} \quad \text { in } \Omega \times\{T\} \tag{35}\\
& \int_{\Gamma_{2}} \kappa_{i}(x, t) u(x, t) d \Gamma=v_{i}(t), t \in(0, T), \quad i=1,2 \tag{36}
\end{align*}
$$

where $\kappa_{i}, i=1,2$, are weights and $d \Gamma$ is the surface measure on $\Gamma_{\bar{\Xi}}$

We introduce t-dependent cylinders

$$
\Gamma_{1, T}=\Gamma_{1} \times(0, T), \quad \Gamma_{2, T}=\Gamma_{2} \times(0, T)
$$

In the treatment of the weak direct problem we make use of the following functional spaces:

$$
\begin{aligned}
& \mathcal{U}(Q)=C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; W_{2}^{1}(\Omega)\right) \\
& \mathcal{U}_{0}(Q)=\left\{\eta \in \mathcal{U}(Q):\left.\eta\right|_{\Gamma_{1, T}}=0 \text { in case } \Gamma_{1} \neq \emptyset\right\} \\
& \mathcal{T}(Q)=\left\{\eta \in L^{2}\left(0, T ; W_{2}^{1}(\Omega)\right): \eta_{t} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)\right\}, \\
& \mathcal{T}_{0}(Q)=\left\{\eta \in \mathcal{T}(Q):\left.\eta\right|_{\Gamma_{1, T}}=0 \text { in case } \Gamma_{1} \neq \emptyset\right\}
\end{aligned}
$$

Let us collect other regularity assumptions on the data of the direct problem (29) - (32). They are

$$
\begin{aligned}
& a_{i j} \in L^{\infty}(\Omega), \\
& a \in L^{q_{1}}(\Omega), \text { where } q_{1}=1 \text { if } n=1, \quad q_{1}>\frac{n}{2} \text { if } n \geq 2, \\
& \mu \in L^{2}(0, T), \\
& m \in L^{1}(0, T), \\
& u_{0} \in L^{2}(\Omega), \\
& g \in \mathcal{T}(Q), \quad h \in L^{2}\left(\Gamma_{2, T}\right), \\
& f \in L^{2}\left(0, T ; L L_{2}(\Omega)\right), \text { where } \\
& q_{2}=1 \text { if } n=1, \quad q_{2} \in\left(1, q_{1}\right) \text { if } n=2, \quad q_{2}=\frac{2 n}{n+2} \text { if } n \geq 3, \\
& \phi=\left(\phi_{1}, \ldots, \phi_{n}\right) \in\left(L^{2}(Q)\right)^{n}, \\
& \varphi \in \mathcal{U}(Q) \text { and in case } \Gamma_{1} \neq \emptyset \quad \exists g_{\varphi} \in \mathcal{T}(Q): \varphi=g_{\varphi} \text { in } \Gamma_{1, T} \text {. }
\end{aligned}
$$

$$
\begin{align*}
& \int_{\Omega}[(u+\mu * u-\varphi)(x, T) \eta(x, T)-\left.\left(u_{0}(x)-\varphi(x, 0)\right) \eta(x, 0)\right] d x \\
&-\iint_{Q}(u+\mu * u-\varphi) \eta_{t} d x d t \tag{46}\\
&+\iint_{Q}\left[\sum_{i, j=1}^{n} a_{i j}\left(u_{x_{j}}-m * u_{x_{j}}\right) \eta_{x_{i}}-a(u-m * u) \eta\right] d x d t \\
&+\iint_{\Gamma_{2, T}} h \eta d \Gamma d t-\iint_{Q}(f \eta-\phi \cdot \nabla \eta) d x d t=0
\end{align*}
$$

We call a weak solution of the problem (29) - (32) a function that belongs to $\mathcal{U}(Q)$, satisfies the relation (46) for any $\eta \in \mathcal{T}_{0}(Q)$ and, in case $\Gamma_{1} \neq \emptyset$, fulfills the boundary condition (31).

Theorem 5

Let (37) - (45) hold. Then the problem (29) - (32) has a unique weak solution $u \in \mathcal{U}(Q)$.
The function $u \in \mathcal{U}(Q)$ satisfies the relation (46) for any $\eta \in \mathcal{T}_{0}(Q)$ if and only if it satisfies the following relation

$$
\begin{gathered}
\int_{\Omega}(u+\mu * u-\varphi) * \eta d x-\int_{\Omega} \int_{0}^{t}\left(u_{0}(x)-\varphi(x, 0)\right) \eta(x, \tau) d \tau d x(47) \\
+\int_{\Omega} 1 *\left[\sum_{i, j=1}^{n} a_{i j}\left(u_{x_{j}}-m * u_{x_{j}}\right) * \eta_{x_{i}}-a(u-m * u) * \eta\right] d x \\
+\int_{\Gamma_{2}} 1 * h * \eta d \Gamma-\int_{\Omega} 1 *\left(f * \eta-\sum_{i=1}^{n} \phi_{i} * \eta_{x_{i}}\right) d x=0, \quad t \in[0, T]
\end{gathered}
$$

for any $\eta \in \mathcal{U}_{0}(Q)$.

Quasi-solutions

(1) Firstly, let us consider IP4. We look for the vector of unknowns $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right)$ in the space $\mathcal{Z}_{1}=\left(L^{2}(\Omega)\right)^{N}$. Assume that $\mu=0$, $\varphi=0$, (37), (38), (40) - (42), (44) hold, f_{0} satisfies (43) and $\gamma_{j} \in L^{2}(0, T), j=1, \ldots, N$. Then, by Theorem 5, the problem (29) (32) with f of the form (33) has a unique weak solution $u \in \mathcal{U}(Q)$ for any $\omega \in \mathcal{Z}_{1}$. We denote this ω-dependent solution by $u(x, t ; \omega)$.

Let $M \subseteq \mathcal{Z}_{1}$. Assume $u_{T_{i}} \in L^{2}(\Omega), i=1, \ldots, N$. The quasi-solution of IP4 in the set M is an element $\omega^{*} \in \arg \min _{\omega \in M} J_{1}(\omega)$, where J_{1} is the following cost functional:

$$
J_{1}(\omega)=\sum_{i=1}^{N}\left\|u\left(x, T_{i} ; \omega\right)-u_{T_{i}}(x)\right\|_{L^{2}(\Omega)}^{2} .
$$

(2) In IP5 we search for vectors $z=\left(\omega, u_{0}\right) \in \mathcal{Z}_{2}=\left(L^{2}(\Omega)\right)^{N+1}$. Assume that $\mu=0, \varphi=0$, (37), (38), (40), (42), (44) hold, f_{0} satisfies (43) and $\gamma_{j} \in L^{2}(0, T), j=1, \ldots, N$. Then the problem (29) - (32) with f of the form (33) has a unique weak solution $u=u(x, t ; z) \in \mathcal{U}(Q)$ for any $z \in \mathcal{Z}_{2}$.

Further, let $M \subseteq \mathcal{Z}_{2}$ and assume that $\kappa_{i} \in L^{\infty}(Q), v_{i} \in L^{2}(\Omega)$, $i=1, \ldots, N+1$. The quasi-solution of IP5 in the set M is
$z^{*} \in \arg \min _{z \in M} J_{2}(z)$, where J_{2} is the cost functional

$$
J_{2}(z)=\sum_{i=1}^{N+1}\left\|\int_{0}^{T} \kappa_{i}(\cdot, t) u(\cdot, t ; z) d t-v_{i}\right\|_{L^{2}(\Omega)}^{2}
$$

(3) In IP6 we look for the vector $z=(a, m, \mu) \in \mathcal{Z}_{3}=L^{2}(\Omega) \times\left(L^{2}(0, T)\right)^{2}$. Assume that $n \in\{1 ; 2 ; 3\}$. This guarantees that any $a \in L^{2}(\Omega)$ satisfies (38). Moreover, assume that (37), (41) - (45) hold, where $q_{2} \in(1,2)$ in (43) in case $n=2$. Under such assumptions the problem (29) - (32) has a unique weak solution $u=u(x, t ; z) \in \mathcal{U}(Q)$ for any $z \in \mathcal{Z}_{3}$.

Let $M \subseteq \mathcal{Z}_{3}$ and assume that $u_{T} \in L^{2}(\Omega), \kappa_{i} \in L^{\infty}\left(\Gamma_{2, T}\right), v_{i} \in L^{2}(0, T)$, $i=1$, 2. The quasi-solution of IP6 in the set M is $z^{*} \in \arg \min _{z \in M} J_{3}(z)$, where J_{3} is the cost functional
$J_{3}(z)=\left\|u(\cdot, T ; z)-u_{T}\right\|_{L^{2}(\Omega)}^{2}+\sum_{i=1}^{2}\left\|\int_{\Gamma_{2}} \kappa_{i}(x, \cdot) u(x, \cdot ; z) d \Gamma-v_{i}\right\|_{L^{2}(0, T)}^{2}$.

Derivative of J_{1}

Theorem 6

Let the assumptions listed in (1) be satisfied. Then the functional J_{1} is Fréchet differentiable in \mathcal{Z}_{1} and $J_{1}^{\prime}(\omega) \Delta \omega=\left\langle\varrho_{1}, \Delta \omega\right\rangle_{\mathcal{Z}_{1}}$, where the ω-dependent vector $\varrho_{1}=\varrho_{1}(x ; \omega)$ consists of the components

$$
\begin{equation*}
\varrho_{1, j}(x ; \omega)=\sum_{i=1}^{N} \int_{0}^{T_{i}} \gamma_{j}(t) \psi_{i}\left(x, T_{i}-t ; \omega\right) d t, j=1, \ldots, N, \tag{48}
\end{equation*}
$$

$\psi_{i}=\psi_{i}(x, t ; \omega) \in \mathcal{U}(Q), i=1, \ldots, N$, are the unique ω-dependent weak solutions of the following (adjoint) problems:

Theorem 6

$$
\begin{gather*}
\psi_{i, t}=A \psi_{i}-m * A \psi_{i} \quad \text { in } Q_{T_{i}} \tag{49}\\
\psi_{i}=2\left[u\left(x, T_{i} ; \omega\right)-u_{T_{i}}(x)\right] \quad \text { in } \Omega \times\{0\}, \tag{50}\\
\psi_{i}=0 \quad \text { in } \Gamma_{1, T_{i}}, \tag{51}\\
-\nu_{A} \cdot \nabla \psi_{i}+m * \nu_{A} \cdot \nabla \psi_{i}=0 \quad \text { in } \Gamma_{2, T_{i}} \tag{52}
\end{gather*}
$$

and $\left\langle\varrho_{1}, \omega\right\rangle_{\mathcal{Z}_{1}}=\sum_{j=1}^{N}\left\langle\varrho_{1, j}, \omega_{j}\right\rangle_{L^{2}(\Omega)}$ is the inner product of ϱ_{1} and ω in the space \mathcal{Z}_{1}.

Analogously we can formulate results for Frechet derivative of J_{2} and

 J_{3}.
Existence of quasi-solutions

Theorem 7

Let the assumptions listed in (1) be satisfied and $M \subset \mathcal{Z}_{1}$ be compact. Then IP4 has a quasi-solution in M. Similar assertions are valid for IP5 and IP6, too.

Theorem 8

Let the assumptions listed in (1) be satisfied and $M \subset \mathcal{Z}_{1}$ be bounded, closed and convex. Then IP4 has a quasi-solution in M. The set of quasi-solutions is closed and convex. Similar assertion is valid for IP5, too.

Theorem 9
Let the assumptions listed in (3) be satisfied. Assume that $n=1$, $\Omega=(c, d), \varphi=0, g(\cdot, 0)=0$ and M be bounded, closed and convex. Then IP6 has a quasi-solution in M.

Thank you!

