Inverse problems for parabolic integro-differential equations with
instant and integral conditions

Hetk- ja integraaltingimustega poérdiilesanded paraboolsetele
integro-diferentsiaalvorranditele



Physical notation

Let us introduce the following parabolic integro-differential equation:
Blu+ pxult = Au—mx Au + x, (1)

where y is the source term, the symbol x stands for the time
convolution vy * vo(t) = fot vi(t — 7)vo(7)dr and

A= Z aj(x 8x, 5% +Z X, 1), (2)
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where aj;, a; and a are some coefficients.
We will consider the solution u of the integro-differential equation (1)
for the arguments

(x,) e Q=Qx(0,T),

where Q € R” is an n-dimensional open domain and T > 0 is a fixed
number.



Smooth problems

We will start with the initial-boundary value problem

Blu+p*xuly = Au—mxAu+x inQ, (3)
u=1uy inQx{0}, Bu=binS=Tx(0,T), (4)

where T is the boundary of Q, up and b are given functions, B is the
boundary operator defined either by

Bu=u (we call it casel) (5)
or by
Bu=w-Vu—mxw-Vu (wecallit case ll), (6)

w(x) = (w1(x),...,wn(x)) is an x-dependent vector satisfying the
condition w - v > 0 and v(x) is the outer normal of I' at the point x € T.
We assume that w € (C'(I"))".



Throughout the talk we assume that the x-dependent coefficient matrix
aj; of the higher order part of the operator A is uniformly elliptic, i.e.

n
> " ajAidj > €e[A? inQ forany A€ R” and some e € (0,00) (7)
ij=1
and x-dependent coefficient g is strictly positive:
B> pBo inQ with some 3y € (0, 0). (8)

In the analysis we will make use of the Hélder spaces C/(Q2) and

anisotropic Hoélder spaces C”%(Q). The norms in these spaces are
denoted by || - ||, and || - ||, L respectively.



Let us formulate the following inverse problems that use
over-determined final data at t = T of the solution of (3), (4):

IP1: Let the free term be of the following form:
X(Xa t) = Z(X)¢(X7 t)+X0(X7 t) (9)

Given 1, m, 3, aj, a;, a, Up, b, ¢, xo and a function ur(x), x € Q, find z
and u so that the relations (3), (4), (9) and

u=ur inQx{T} (10)

hold.

IP2: Let a; = 0. Given p, m, 3, aj, &;, Up, b, x and a function ur(x),
x € Q, find a and u so that the relations (3), (4) and (10) hold.

IP3: Given 1, m, aj, a;, a, Up, b, x and a function ur(x), x € Q, find 3
and v so that the relations (3), (4) and (10) hold.



Define the resolvent kernel m of the kernel m as the solution of the
following Volterra integral equation:

_/tm(t_T)ﬁv(T)dT =m(t), te(0,T). (11)
0

Bringing the derivative with respect to t into the integral 1 x u and
applying the operator / + m to the equation (3) and the boundary
condition (4) in case Il we transform the relations (3), (4) to the
following form:

Blus+k*xu)=Au+finQ, u=uy inQx {0}, Biu=g in S,(12)

where
K=p+pxm+m, (13)
f = x—Buly+ m=(x — Bul), (14)
Bi=B, g=0>b incasel, (15)
Biu=w-Vu, g=b+mxb incasell. (16)



Positivity principle

Theorem 1
Assume k € W} (0, T), 8, aj, a; € C(Q), ae C(Q) and
k>0, k' <0. (17)

Letu e W§’1 (Q) with some p € (1, 00) solve the problem (12) and
ug >0, g=>0,f>0. Then the following assertions are valid:
(i) uz>0;
(i) if, in addition, B, a;, a; € C'(Q), a € C"2(Q) with some | € (0,1)
and there exists an open subset Qs of Q such that f > 0 in Qy,
thenu(-, T) > 0inQincasel and u(-, T) > 0inQ in case 1L




I
Results for IP1

IP1 is in the class of pairs (z, u) of functions, whose second
component u together with its derivatives u;, uy,, U belongs to
LP(0, T), p > 1, for any x, equivalent to the following inverse problem:

Blus+ k*xu)=Au+zr+fy in Q,
u=uy inQx{0}, Bju=g in S,
u=ur inQx{T}, (19)

(18)

where By, g are given by (15), (16) and

r=¢+mx¢, fo=xo— Buly+ M= (xo— Bulp). (20)



|
Uniqueness theorem
Theorem 2

Letk € W}(0,T), k>0, k'<O0 holdandp,aj,a € C(Q),
ac C"2(Q), a € LP(Q) with some | € (0,1),p € (1,00). Moreover, let
a;>0inQ, reC':(Q),n e LP(Q) and

r>0, n+kxrn—0r>0 in Q, (21)

T .
where 6 = sup alx. ). Finally, assume that
XeQ B(X)

for all x € Q there exists an open subset Qy of Q such that (22)
€ (0,T) : (x,tx) € Qv and ri+kxr—60r>0 inQx.

If (z,u) € C'(Q) x C2+1+2(Q) solves (18), (19) and fy, Uy, g, ur = O
thenz =0, u=0.

.




|
Existence and stability

Theorem 3

LetB,aj,aj€ C'(Q),ac C”%(Q) and a; € LP(Q) with some
l€(0,1),p € (1,00). Moreover, leta; > 0, r € C”%(Q), r € LP(Q) and
r>6inQx(T—6T) withsomese (0,L)and r=0 inQ x (0,9)
hold. In addition, let fy € C"2(Q), uy € C>+/(Q), g € C2+~"1+2-3(8),
ur € C?>*(Q) and the consistency conditions

(@ u=g, B8g:r=Au +fy incasel,

w-Vug=g incasell inl x {0} (23)
(b) ur=g incasel, (24)
w-Vur=g incasell inT x{T}

be satisfied. Then the following assertions are valid.

v



Existence and stability

Theorem 3

(i) (Fredholm-type result) a(x, T)

lfkeW1 (0 T),r>0,r—60r>0inQ with§ = sup
XeQ 6()

all x € Q exzsts an open subset QX of Q such that 3t, € (0, T) :
(x,1) € Qcand r;—6r >0 in Qy

, for

(25)

and the homogeneous inverse problem, i.e.

B+ kxv)=AL+q inQ, (26)
W =0 inQx{0}, Bjv®=0inS, v' =0 inQx{T} (27)

has in C'(Q) x C?+11+2(Q) only the trivial solution g° = 0, v° = 0,

then the inverse problem (18), (19) has a unique solution (z, u) in
the space C'(Q) x C3+11+3(Q).

v
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Existence and stability

Theorem 3
Moreover, the solution (z, u) satisfies the estimate

||ZH/ + ||u||2+l71+% S A(/Ba aij7 aju a7 k, r)
X {”fOH/,é + [[Uoll2+/ + ”gH2+/719,1+%7g + ”UT”2+I} (28)

with some constant A depending on the quantities shown in brackets.

(ii) (Full existence, uniqueness and stability result)
Ifke W', (0,T), k>0, k'<O0 andr satisfies (21), (22), (25)

2—1
then the inverse problem (18), (19) has a unique solution (z, u) in

the space C!(Q) x C2+1+2(Q). The solution satisfies the
estimate (28).




Making use of results proved for IP1, we have proved global
uniqueness and local existence and stability of solutions to IP2 and
IP3.



Non-smooth problems

Let (1) have the following form:
U+ (uxU)y = Au—mxAu+f+V-o+p: inQ, (29)

where f, ¢ are regular scalar functions and ¢ is a regular vector
function, A is of the divergence type and has symmetric principal part,
n

ie. (A)(x)= > (@(x)wy), +alx)v(x), a; = aj.
=

u=uy inQx{0} (30)
u=g inlTyx(0,T), (31)
—va-Vu+mxva-Vu=h+v-¢ inlToax(0,T), (32)

n
where the functions ug, g, h are given and v4 = ( > ajy
j=1

) is
i=1,...,n

the co-normal vectorto ' and ' =Ty U5, measly N [2 = 0.



Inverse problems

Let us pose formal inverse problems. They use instant and integral
data of the solution of (29) - (32).

IP4: Let the component f of the free term be of the form

N

f(x, 1) = fo(x, 1) + > yj(twj(x) (33)
j=1

and p =0, ¢ = 0. Given m, a;;, a, up, f, 9,9, h,~;, j=1,...,N, and
functions ur(x), x € Q,i=1,... ., Nwith0<Ti < Tp <...< Ty < T,
find w;, j=1,..., N, such that the solution u of (29) - (32) satisfies the
following instant additional conditions:

u=ur, InQx{T;}, i=12...,N.



IP5: Let the component f of the free term be of the form (33) and
pn=0,p=0.Given m,a;,a,fh,¢ g h~,j=1,...,N, and functions
Vi(x), x € Q,i=1,...,N+1,findw;, j=1,...,N, and ug such that
the solution u of (29) - (32) satisfies the following integral additional
conditions:

;
/ rkilx,hu(x,ydt =vi(x), x € Q, i=1,2,....N+1, (34)
0

where x;, i =1,..., N+ 1 are given weights.

IP6: Let meas >, > 0. Given aj, up, f, ¢, , g, h and functions ur(x),

x € Q,v(t),te(0,T),i=1,2, find a, mand 1 such that the solution
of (29) - (32) satisfies the following final and integral additional
conditions:

u=ur inQx{T}, (35)
/ rki(x, Hu(x, t)dlr = vi(t), te (0, T), i=1,2, (36)
Mo

where k;, I = 1,2, are weights and dr is the surface measure on I



We introduce t-dependent cylinders
F7="r1x(0,T), Toar=r2x(0,T).

In the treatment of the weak direct problem we make use of the
following functional spaces:

UQ) = C([0, T]; L3(Q)) N L3(0, T; W3 (Q)),

Up(Q) = {77 cU(Q) : nr,; =0 incase 'y # @},
T(Q) = {n e 20, T: WJ(Q)) : m € L3(0, T L2(@)) },
To(Q) = {77 €T(Q) : nlr,, =0 incasel # (Z)}.



Let us collect other regularity assumptions on the data of the direct
problem (29) - (32). They are

aj € L*(9), (37)
acL"(Q), where gy =1 if n=1, q1>,§7 if n>2, (38)
pe L?0,7), (39)
me L'(0,T), (40)
up € L*(Q), (41)
geT(Q), hel’(ay), (42)
fel?0,T;L%(Q)), where

( (2)) . (43)

q2:1 if n:17 QZ€(17(J1) if n:2> QZ:m if n23>

0= (d1,...,n) € (L3(Q))", (44)
pelU(Q) andincase Ty #0 39, €T(Q) : ¢=g, inTy 7. (45)



[ [t = )0 T, T) = () = (x.0))n(x,0) o

—//(u—i—,u*u—go)ntdxdt (46)
Q

n

+//[Z ajj( Uy, — M Uy )nx, — a(u — mx U)??} dxat

Q ’7]

=1
+//h77drdt—/Q/(fn—<z>-V77)dxdt:0.

Mo 1

We call a weak solution of the problem (29) - (32) a function that
belongs to U(Q), satisfies the relation (46) for any n € To(Q) and, in
case 1 # (), fulfills the boundary condition (31).



Theorem 5

Let (37) - (45) hold. Then the problem (29) - (32) has a unique weak
solution u € U(Q).

The function u € U(Q) satisfies the relation (46) for any n € To(Q) if
and only if it satisfies the following relation

t
/Q(U"i'#*U—SO)*??dX—/Q/O(UO(X)—<P(X>0))77(X>7')d7'dx(4

n
+/ 1% [Z a;j(uxj—m*uxj)*nx,—a(u—m*u)*n]dx
Q <
ij=1

n
—I—/ 1*h*ndr—/1*(f*n—z¢,*nxi)dx:0, te[0,T],
2 Q p

for any n € Up(Q).

7

.



Quasi-solutions

(1) Firstly, let us consider IP4. We look for the vector of unknowns
w = (wi,...,wp) in the space Z; = (L2(Q))N. Assume that 1 = 0,
» =0, (37), (38), (40) - (42), (44) hold, f, satisfies (43) and

vj € L3(0,T),j=1,...,N. Then, by Theorem 5, the problem (29) -
(82) with f of the form (33) has a unique weak solution u € U(Q) for
any w € Z1. We denote this w-dependent solution by u(x, t; w).

Let M C Z4. Assume ur, € L2(Q),i=1,...,N. The quasi-solution of
IP4 in the set M is an element w* € arg miAr/ll Ji(w), where J; is the
we

following cost functional:
N
Jiw) = 3 ulx, Tiw) — ur () |Zzqq)-
i=1



(2) In IP5 we search for vectors z = (w, Up) € Z» = (L2(Q))N*.
Assume that © =0, ¢ = 0, (37), (38), (40), (42), (44) hold, f, satisfies
(43) and v; € L?(0,T),j=1,...,N. Then the problem (29) - (32) with f
of the form (33) has a unique weak solution u = u(x, t; z) € U(Q) for
any z € Z,.

Further, let M C 2, and assume that x; € L=(Q), v; € L?(Q),
i=1,...,N+1. The quasi-solution of IP5 in the set M is
Z* € arg miAr), J>(z), where J; is the cost functional

ze

N+1

J(2) = ;H/()Tm(',t)u(',t; z)dt —v; :

Q)




(3) In IP6 we look for the vector

z=(a,m,pu) € Z3 = L?(Q) x (L2(0, T))?. Assume that n € {1;2;3}.
This guarantees that any a € L?(Q) satisfies (38). Moreover, assume
that (37), (41) - (45) hold, where g, € (1,2) in (43) in case n = 2.
Under such assumptions the problem (29) - (32) has a unique weak
solution u = u(x,t;z) e U(Q) for any z € Zs.

Let M C 25 and assume that ur € L2(Q), x; € L>(T2 1), v; € L2(0, T),
i =1,2. The quasi-solution of IP6 in the set M is z* ¢ arg miAr} J3(2),
ze

where Jj is the cost functional

2

Js(2) = |u(-, T;2) — urlfegy + >
i=1

2

/ ki(x,)u(x,-; z)dl —v;

I

L2(0,T)



I
Derivative of J;

Theorem 6

Let the assumptions listed in (1) be satisfied. Then the functional J is
Fréchet differentiable in 2y and J{(w)Aw = (o1, Aw) z,, where the

w-dependent vector o1 = p1(Xx; w) consists of the components

N /T
o) =3 [ Onx T k)t =1 N (a8)
i=1

vi =vi(x, tbw) eU(Q),i=1,...,N, are the unique w-dependent
weak solutions of the following (adjoint) problems:
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Theorem 6
vi = 2u(x, Trw) — ur(x)] inQ x {0}, (50)
lb,':O in r1’7'[, (51)
—va-Vi+mxva-Vii =0 inTy7, (52)

N
and (o1, w)z, = > {01,j,wj)2(q) IS the inner product of o1 and w in the
=1

space Z;.




Analogously we can formulate results for Frechet derivative of J> and
Js.
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Existence of quasi-solutions

Theorem 7

Let the assumptions listed in (1) be satisfied and M C Z; be compact.
Then IP4 has a quasi-solution in M. Similar assertions are valid for IP5
and IP6, too.

Theorem 8

Let the assumptions listed in (1) be satisfied and M C Z4 be bounded,
closed and convex. Then 1P4 has a quasi-solution in M. The set of
quasi-solutions is closed and convex. Similar assertion is valid for IP5,
too.




Theorem 9

Let the assumptions listed in (3) be satisfied. Assume thatn =1,
Q= (cd), »=0,9(-,0) =0 and M be bounded, closed and convex.
Then IP6 has a quasi-solution in M.




Thank you!
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