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Physical notation

Let us introduce the following parabolic integro-differential equation:

β[u + µ ∗ u]t = Au −m ∗ Au + χ, (1)

where χ is the source term, the symbol ∗ stands for the time
convolution v1 ∗ v2(t) =

∫ t
0 v1(t − τ)v2(τ)dτ and

A =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

aj(x)
∂

∂xj
+ a(x , t), (2)

where aij , aj and a are some coefficients.
We will consider the solution u of the integro-differential equation (1)
for the arguments

(x , t) ∈ Q = Ω× (0,T ),

where Ω ∈ Rn is an n-dimensional open domain and T > 0 is a fixed
number.
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Smooth problems

We will start with the initial-boundary value problem

β[u + µ ∗ u]t = Au −m ∗ Au + χ in Q, (3)
u = u0 in Ω× {0} , Bu = b in S = Γ× (0,T ) , (4)

where Γ is the boundary of Ω, u0 and b are given functions, B is the
boundary operator defined either by

Bu = u (we call it case I) (5)

or by

Bu = ω · ∇u −m ∗ ω · ∇u (we call it case II), (6)

ω(x) = (ω1(x), . . . , ωn(x)) is an x-dependent vector satisfying the
condition ω · ν > 0 and ν(x) is the outer normal of Γ at the point x ∈ Γ.
We assume that ω ∈ (C1(Γ))n.
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Throughout the talk we assume that the x-dependent coefficient matrix
aij of the higher order part of the operator A is uniformly elliptic, i.e.

n∑
i,j=1

aijλiλj ≥ ε|λ|2 in Ω for any λ ∈ Rn and some ε ∈ (0,∞) (7)

and x-dependent coefficient β is strictly positive:

β ≥ β0 in Ω with some β0 ∈ (0,∞). (8)

In the analysis we will make use of the Hölder spaces C l(Ω) and
anisotropic Hölder spaces C l, l

2 (Q). The norms in these spaces are
denoted by ‖ · ‖l and ‖ · ‖l, l

2
, respectively.
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Let us formulate the following inverse problems that use
over-determined final data at t = T of the solution of (3), (4):

IP1: Let the free term be of the following form:

χ(x , t) = z(x)φ(x , t) + χ0(x , t). (9)

Given µ,m, β, aij ,aj ,a,u0,b, φ, χ0 and a function uT (x), x ∈ Ω, find z
and u so that the relations (3), (4), (9) and

u = uT in Ω× {T} (10)

hold.
IP2: Let at = 0. Given µ,m, β, aij ,aj ,u0,b, χ and a function uT (x),
x ∈ Ω, find a and u so that the relations (3), (4) and (10) hold.
IP3: Given µ,m,aij ,aj ,a,u0,b, χ and a function uT (x), x ∈ Ω, find β
and u so that the relations (3), (4) and (10) hold.

18.05.2016 5 / 29



Define the resolvent kernel m̂ of the kernel m as the solution of the
following Volterra integral equation:

m̂(t)−
∫ t

0
m(t − τ)m̂(τ)dτ = m(t), t ∈ (0,T ). (11)

Bringing the derivative with respect to t into the integral µ ∗ u and
applying the operator I + m̂ to the equation (3) and the boundary
condition (4) in case II we transform the relations (3), (4) to the
following form:

β(ut + k ∗ ut ) = Au + f in Q , u = u0 in Ω× {0} , B1u = g in S,(12)

where

k = µ+ µ ∗ m̂ + m̂, (13)
f = χ− βµu0 + m̂ ∗ (χ− βµu0), (14)

B1 = B , g = b in case I , (15)
B1u = ω · ∇ u , g = b + m̂ ∗ b in case II. (16)
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Positivity principle

Theorem 1

Assume k ∈W 1
1 (0,T ), β,aij ,aj ∈ C(Ω), a ∈ C(Q) and

k ≥ 0, k ′ ≤ 0. (17)

Let u ∈W 2,1
p (Q) with some p ∈ (1,∞) solve the problem (12) and

u0 ≥ 0, g ≥ 0, f ≥ 0. Then the following assertions are valid:
(i) u ≥ 0;

(ii) if, in addition, β,aij ,aj ∈ C l(Ω), a ∈ C l, l
2 (Q) with some l ∈ (0,1)

and there exists an open subset Qf of Q such that f > 0 in Qf ,
then u(·,T ) > 0 in Ω in case I and u(·,T ) > 0 in Ω in case II.
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Results for IP1

IP1 is in the class of pairs (z,u) of functions, whose second
component u together with its derivatives ut , uxi , uxi xj belongs to
Lp(0,T ), p > 1, for any x , equivalent to the following inverse problem:

β(ut + k ∗ ut ) = Au + zr + f0 in Q,

u = u0 in Ω× {0}, B1u = g in S,
(18)

u = uT in Ω× {T}, (19)

where B1, g are given by (15), (16) and

r = φ+ m̂ ∗ φ , f0 = χ0 − βµu0 + m̂ ∗ (χ0 − βµu0). (20)
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Uniqueness theorem

Theorem 2

Let k ∈W 1
1 (0,T ) , k ≥ 0 , k ′ ≤ 0 hold and β,aij ,aj ∈ C l(Ω),

a ∈ C l, l
2 (Q), at ∈ Lp(Q) with some l ∈ (0,1),p ∈ (1,∞). Moreover, let

at ≥ 0 in Q, r ∈ C l, l
2 (Q), rt ∈ Lp(Q) and

r ≥ 0 , rt + k ∗ rt − θr ≥ 0 in Q, (21)

where θ = sup
x∈Ω

a(x ,T )

β(x)
. Finally, assume that

for all x ∈ Ω there exists an open subset Qx of Q such that
∃tx ∈ (0,T ) : (x , tx ) ∈ Qx and rt + k ∗ rt − θr > 0 in Qx .

(22)

If (z,u) ∈ C l(Ω)× C2+l,1+ l
2 (Q) solves (18), (19) and f0,u0,g,uT = 0

then z = 0, u = 0.
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Existence and stability

Theorem 3

Let β,aij ,aj ∈ C l(Ω), a ∈ C l, l
2 (Q) and at ∈ Lp(Q) with some

l ∈ (0,1),p ∈ (1,∞). Moreover, let at ≥ 0, r ∈ C l, l
2 (Q), rt ∈ Lp(Q) and

r ≥ δ in Ω× (T − δ,T ) with some δ ∈ (0, T
2 ) and r = 0 in Ω× (0, δ)

hold. In addition, let f0 ∈ C l, l
2 (Q), u0 ∈ C2+l(Ω), g ∈ C2+l−ϑ,1+ l

2−
ϑ
2 (S),

uT ∈ C2+l(Ω) and the consistency conditions

(a) u0 = g , βgt = Au0 + f0 in case I,
ω · ∇u0 = g in case II in Γ× {0} (23)

(b) uT = g in case I,
ω · ∇uT = g in case II in Γ× {T} (24)

be satisfied. Then the following assertions are valid.
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Existence and stability

Theorem 3
(i) (Fredholm-type result)

If k ∈W 1
2

2−l
(0,T ), r ≥ 0, rt − θr ≥ 0 in Q with θ = sup

x∈Ω

a(x ,T )

β(x)
, for

all x ∈ Ω exists an open subset Q̃x of Q such that ∃t̃x ∈ (0,T ) :

(x , t̃x ) ∈ Q̃x and rt − θr > 0 in Q̃x
(25)

and the homogeneous inverse problem, i.e.

β(v0
t + k ∗ v0

t ) = Av0 + q0r in Q, (26)
v0 = 0 in Ω×{0}, B1v0 = 0 in S , v0 = 0 in Ω×{T} (27)

has in C l(Ω)× C2+l,1+ l
2 (Q) only the trivial solution q0 = 0, v0 = 0,

then the inverse problem (18), (19) has a unique solution (z,u) in
the space C l(Ω)× C2+l,1+ l

2 (Q).
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Existence and stability

Theorem 3
Moreover, the solution (z,u) satisfies the estimate

‖z‖l + ‖u‖2+l,1+ l
2
≤ Λ(β,aij ,aj ,a, k , r)

×
{
‖f0‖l, l

2
+ ‖u0‖2+l + ‖g‖2+l−ϑ,1+ l

2−
ϑ
2

+ ‖uT‖2+l

}
(28)

with some constant Λ depending on the quantities shown in brackets.

(ii) (Full existence, uniqueness and stability result)
If k ∈W 1

2
2−l

(0,T ) , k ≥ 0 , k ′ ≤ 0 and r satisfies (21), (22), (25)

then the inverse problem (18), (19) has a unique solution (z,u) in
the space C l(Ω)× C2+l,1+ l

2 (Q). The solution satisfies the
estimate (28).
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Making use of results proved for IP1, we have proved global
uniqueness and local existence and stability of solutions to IP2 and
IP3.
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Non-smooth problems

Let (1) have the following form:

ut + (µ ∗ u)t = Au −m ∗ Au + f +∇ · φ+ ϕt in Q, (29)

where f , ϕ are regular scalar functions and φ is a regular vector
function, A is of the divergence type and has symmetric principal part,

i.e. (Av)(x) =
n∑

i,j=1

(
aij(x)vxj

)
xi

+ a(x)v(x), aij = aji .

u = u0 in Ω× {0} (30)

u = g in Γ1 × (0,T ), (31)
−νA · ∇u + m ∗ νA · ∇u = h + ν · φ in Γ2 × (0,T ), (32)

where the functions u0, g, h are given and νA =
( n∑

j=1
aijνj

∣∣∣
i=1,...,n

)
is

the co-normal vector to Γ and Γ = Γ1 ∪ Γ2, measΓ1 ∩ Γ2 = 0.
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Inverse problems

Let us pose formal inverse problems. They use instant and integral
data of the solution of (29) - (32).
IP4: Let the component f of the free term be of the form

f (x , t) = f0(x , t) +
N∑

j=1

γj(t)ωj(x) (33)

and µ = 0, ϕ = 0. Given m,aij ,a,u0, f0, φ,g,h, γj , j = 1, . . . ,N, and
functions uTi (x), x ∈ Ω, i = 1, . . . ,N with 0 < T1 < T2 < . . . < TN ≤ T ,
find ωj , j = 1, . . . ,N, such that the solution u of (29) - (32) satisfies the
following instant additional conditions:

u = uTi in Ω× {Ti}, i = 1,2, . . . ,N.
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IP5: Let the component f of the free term be of the form (33) and
µ = 0, ϕ = 0. Given m,aij ,a, f0, φ,g,h, γj , j = 1, . . . ,N, and functions
vi(x), x ∈ Ω, i = 1, . . . ,N + 1, find ωj , j = 1, . . . ,N, and u0 such that
the solution u of (29) - (32) satisfies the following integral additional
conditions:∫ T

0
κi(x , t)u(x , t)dt = vi(x) , x ∈ Ω , i = 1,2, . . . ,N + 1, (34)

where κi , i = 1, . . . ,N + 1 are given weights.
IP6: Let meas Γ2 > 0. Given aij ,u0, f , φ, ϕ, g,h and functions uT (x),
x ∈ Ω, vi(t), t ∈ (0,T ), i = 1,2, find a, m and µ such that the solution
of (29) - (32) satisfies the following final and integral additional
conditions:

u = uT in Ω× {T}, (35)∫
Γ2

κi(x , t)u(x , t)dΓ = vi(t) , t ∈ (0,T ), i = 1,2, (36)

where κi , i = 1,2, are weights and dΓ is the surface measure on Γ.
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We introduce t-dependent cylinders

Γ1,T = Γ1 × (0,T ), Γ2,T = Γ2 × (0,T ).

In the treatment of the weak direct problem we make use of the
following functional spaces:

U(Q) = C([0,T ]; L2(Ω)) ∩ L2(0,T ; W 1
2 (Ω)),

U0(Q) =
{
η ∈ U(Q) : η|Γ1,T = 0 in case Γ1 6= ∅

}
,

T (Q) =
{
η ∈ L2(0,T ; W 1

2 (Ω)) : ηt ∈ L2(0,T ; L2(Ω))
}
,

T0(Q) =
{
η ∈ T (Q) : η|Γ1,T = 0 in case Γ1 6= ∅

}
.
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Let us collect other regularity assumptions on the data of the direct
problem (29) - (32). They are

aij ∈ L∞(Ω), (37)

a ∈ Lq1(Ω), where q1 = 1 if n = 1, q1 >
n
2

if n ≥ 2, (38)

µ ∈ L2(0,T ), (39)
m ∈ L1(0,T ) , (40)
u0 ∈ L2(Ω), (41)
g ∈ T (Q), h ∈ L2(Γ2,T ), (42)

f ∈ L2(0,T ; Lq2(Ω)), where
q2 = 1 if n = 1, q2 ∈ (1,q1) if n = 2, q2 = 2n

n+2 if n ≥ 3,
(43)

φ = (φ1, . . . , φn) ∈ (L2(Q))n , (44)

ϕ ∈ U(Q) and in case Γ1 6= ∅ ∃gϕ ∈ T (Q) : ϕ = gϕ in Γ1,T . (45)
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∫
Ω

[
(u + µ ∗ u − ϕ)(x ,T )η(x ,T )− (u0(x)− ϕ(x ,0))η(x ,0)

]
dx

−
∫ ∫

Q

(u + µ ∗ u − ϕ)ηt dxdt (46)

+

∫ ∫
Q

[ n∑
i,j=1

aij(uxj −m ∗ uxj )ηxi − a(u −m ∗ u)η
]
dxdt

+

∫ ∫
Γ2,T

hη dΓdt −
∫ ∫

Q

(fη − φ · ∇η) dxdt = 0.

We call a weak solution of the problem (29) - (32) a function that
belongs to U(Q), satisfies the relation (46) for any η ∈ T0(Q) and, in
case Γ1 6= ∅, fulfills the boundary condition (31).
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Theorem 5

Let (37) - (45) hold. Then the problem (29) - (32) has a unique weak
solution u ∈ U(Q).
The function u ∈ U(Q) satisfies the relation (46) for any η ∈ T0(Q) if
and only if it satisfies the following relation∫

Ω
(u + µ ∗ u − ϕ) ∗ η dx −

∫
Ω

∫ t

0
(u0(x)− ϕ(x ,0))η(x , τ)dτdx (47)

+

∫
Ω

1 ∗
[ n∑

i,j=1

aij(uxj −m ∗ uxj ) ∗ ηxi − a(u −m ∗ u) ∗ η
]
dx

+

∫
Γ2

1 ∗ h ∗ η dΓ−
∫

Ω
1 ∗
(

f ∗ η −
n∑

i=1

φi ∗ ηxi

)
dx = 0, t ∈ [0,T ],

for any η ∈ U0(Q).
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Quasi-solutions

(1) Firstly, let us consider IP4. We look for the vector of unknowns
ω = (ω1, . . . , ωN) in the space Z1 = (L2(Ω))N . Assume that µ = 0,
ϕ = 0, (37), (38), (40) - (42), (44) hold, f0 satisfies (43) and
γj ∈ L2(0,T ), j = 1, . . . ,N. Then, by Theorem 5, the problem (29) -
(32) with f of the form (33) has a unique weak solution u ∈ U(Q) for
any ω ∈ Z1. We denote this ω-dependent solution by u(x , t ;ω).

Let M ⊆ Z1. Assume uTi ∈ L2(Ω), i = 1, . . . ,N. The quasi-solution of
IP4 in the set M is an element ω∗ ∈ arg min

ω∈M
J1(ω), where J1 is the

following cost functional:

J1(ω) =
N∑

i=1

‖u(x ,Ti ;ω)− uTi (x)‖2L2(Ω).
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(2) In IP5 we search for vectors z = (ω,u0) ∈ Z2 = (L2(Ω))N+1.
Assume that µ = 0, ϕ = 0, (37), (38), (40), (42), (44) hold, f0 satisfies
(43) and γj ∈ L2(0,T ), j = 1, . . . ,N. Then the problem (29) - (32) with f
of the form (33) has a unique weak solution u = u(x , t ; z) ∈ U(Q) for
any z ∈ Z2.

Further, let M ⊆ Z2 and assume that κi ∈ L∞(Q), vi ∈ L2(Ω),
i = 1, . . . ,N + 1. The quasi-solution of IP5 in the set M is
z∗ ∈ arg min

z∈M
J2(z), where J2 is the cost functional

J2(z) =
N+1∑
i=1

∥∥∥∫ T

0
κi(·, t)u(·, t ; z)dt − vi

∥∥∥2

L2(Ω)
.
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(3) In IP6 we look for the vector
z = (a,m, µ) ∈ Z3 = L2(Ω)× (L2(0,T ))2. Assume that n ∈ {1; 2; 3}.
This guarantees that any a ∈ L2(Ω) satisfies (38). Moreover, assume
that (37), (41) - (45) hold, where q2 ∈ (1,2) in (43) in case n = 2.
Under such assumptions the problem (29) - (32) has a unique weak
solution u = u(x , t ; z) ∈ U(Q) for any z ∈ Z3.

Let M ⊆ Z3 and assume that uT ∈ L2(Ω), κi ∈ L∞(Γ2,T ), vi ∈ L2(0,T ),
i = 1,2. The quasi-solution of IP6 in the set M is z∗ ∈ arg min

z∈M
J3(z),

where J3 is the cost functional

J3(z) = ‖u(·,T ; z)− uT‖2L2(Ω) +
2∑

i=1

∥∥∥∥∫
Γ2

κi(x , ·)u(x , ·; z)dΓ− vi

∥∥∥∥2

L2(0,T )

.
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Derivative of J1

Theorem 6

Let the assumptions listed in (1) be satisfied. Then the functional J1 is
Fréchet differentiable in Z1 and J ′1(ω)∆ω = 〈%1,∆ω〉Z1 , where the
ω-dependent vector %1 = %1(x ;ω) consists of the components

%1,j(x ;ω) =
N∑

i=1

∫ Ti

0
γj(t)ψi(x ,Ti − t ;ω)dt , j = 1, . . . ,N, (48)

ψi = ψi(x , t ;ω) ∈ U(Q), i = 1, . . . ,N, are the unique ω-dependent
weak solutions of the following (adjoint) problems:
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Theorem 6

ψi,t = Aψi −m ∗ Aψi in QTi , (49)
ψi = 2[u(x ,Ti ;ω)− uTi (x)] in Ω× {0}, (50)

ψi = 0 in Γ1,Ti , (51)
−νA · ∇ψi + m ∗ νA · ∇ψi = 0 in Γ2,Ti (52)

and 〈%1, ω〉Z1 =
N∑

j=1
〈%1,j , ωj〉L2(Ω) is the inner product of %1 and ω in the

space Z1.
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Analogously we can formulate results for Frechet derivative of J2 and
J3.
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Existence of quasi-solutions

Theorem 7

Let the assumptions listed in (1) be satisfied and M ⊂ Z1 be compact.
Then IP4 has a quasi-solution in M. Similar assertions are valid for IP5
and IP6, too.

Theorem 8

Let the assumptions listed in (1) be satisfied and M ⊂ Z1 be bounded,
closed and convex. Then IP4 has a quasi-solution in M. The set of
quasi-solutions is closed and convex. Similar assertion is valid for IP5,
too.
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Theorem 9
Let the assumptions listed in (3) be satisfied. Assume that n = 1,
Ω = (c,d), ϕ = 0, g(·,0) = 0 and M be bounded, closed and convex.
Then IP6 has a quasi-solution in M.
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Thank you!
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