Inverse problems for parabolic integro-differential equations with instant and integral conditions

Hetk- ja integraaltingimustega pöördülesanded paraboolsetele integro-diferentsiaalvõrranditele

Physical notation

Let us introduce the following parabolic integro-differential equation:

$$\beta[\mathbf{u} + \mu * \mathbf{u}]_t = \mathbf{A}\mathbf{u} - \mathbf{m} * \mathbf{A}\mathbf{u} + \chi, \tag{1}$$

where χ is the source term, the symbol * stands for the time convolution $v_1 * v_2(t) = \int_0^t v_1(t-\tau)v_2(\tau)d\tau$ and

$$A = \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{j=1}^{n} a_j(x) \frac{\partial}{\partial x_j} + a(x,t),$$
(2)

where a_{ij} , a_j and a are some coefficients.

We will consider the solution u of the integro-differential equation (1) for the arguments

$$(x,t) \in Q = \Omega \times (0,T),$$

where $\Omega \in \mathbb{R}^n$ is an *n*-dimensional open domain and T > 0 is a fixed number.

Smooth problems

We will start with the initial-boundary value problem

$$\beta [u + \mu * u]_t = Au - m * Au + \chi \quad \text{in } Q, \tag{3}$$

$$u = u_0$$
 in $\Omega \times \{0\}$, $Bu = b$ in $S = \Gamma \times (0, T)$, (4)

where Γ is the boundary of Ω , u_0 and *b* are given functions, *B* is the boundary operator defined either by

$$Bu = u$$
 (we call it *case* I) (5)

18.05.2016

3/29

or by

$$\mathsf{B}\boldsymbol{u} = \boldsymbol{\omega} \cdot \nabla \boldsymbol{u} - \boldsymbol{m} \ast \boldsymbol{\omega} \cdot \nabla \boldsymbol{u} \quad \text{(we call it } \boldsymbol{case II}\text{)}, \tag{6}$$

 $\omega(x) = (\omega_1(x), \dots, \omega_n(x))$ is an *x*-dependent vector satisfying the condition $\omega \cdot \nu > 0$ and $\nu(x)$ is the outer normal of Γ at the point $x \in \Gamma$. We assume that $\omega \in (C^1(\Gamma))^n$.

Throughout the talk we assume that the *x*-dependent coefficient matrix a_{ij} of the higher order part of the operator *A* is uniformly elliptic, i.e.

$$\sum_{i,j=1}^{n} a_{ij}\lambda_i\lambda_j \ge \epsilon |\lambda|^2 \quad \text{in } \Omega \text{ for any } \lambda \in \mathbb{R}^n \text{ and some } \epsilon \in (0,\infty) \quad (7)$$

and *x*-dependent coefficient β is strictly positive:

$$\beta \ge \beta_0$$
 in Ω with some $\beta_0 \in (0, \infty)$. (8)

In the analysis we will make use of the Hölder spaces $C^{I}(\Omega)$ and anisotropic Hölder spaces $C^{I,\frac{1}{2}}(Q)$. The norms in these spaces are denoted by $\|\cdot\|_{I}$ and $\|\cdot\|_{I,\frac{1}{2}}$, respectively.

Let us formulate the following inverse problems that use over-determined final data at t = T of the solution of (3), (4):

IP1: Let the free term be of the following form:

$$\chi(\mathbf{x},t) = \mathbf{z}(\mathbf{x})\phi(\mathbf{x},t) + \chi_0(\mathbf{x},t).$$
(9)

Given μ , m, β , a_{ij} , a_j , a, u_0 , b, ϕ , χ_0 and a function $u_T(x)$, $x \in \Omega$, find z and u so that the relations (3), (4), (9) and

$$u = u_T \text{ in } \Omega \times \{T\}$$
(10)

hold.

IP2: Let $a_t = 0$. Given μ , m, β , a_{ij} , a_j , u_0 , b, χ and a function $u_T(x)$, $x \in \Omega$, find *a* and *u* so that the relations (3), (4) and (10) hold.

IP3: Given μ , m, a_{ij} , a_j , a, u_0 , b, χ and a function $u_T(x)$, $x \in \Omega$, find β and u so that the relations (3), (4) and (10) hold.

Define the resolvent kernel \hat{m} of the kernel *m* as the solution of the following Volterra integral equation:

$$\widehat{m}(t) - \int_0^t m(t-\tau)\widehat{m}(\tau)d\tau = m(t), \quad t \in (0,T).$$
(11)

Bringing the derivative with respect to *t* into the integral $\mu * u$ and applying the operator $I + \hat{m}$ to the equation (3) and the boundary condition (4) in case II we transform the relations (3), (4) to the following form:

$$eta(u_t + k * u_t) = Au + f \text{ in } Q, \quad u = u_0 \text{ in } \Omega \times \{0\}, \quad B_1 u = g \text{ in } S,$$
 (12)
where

$$\boldsymbol{k} = \boldsymbol{\mu} + \boldsymbol{\mu} \ast \boldsymbol{\widehat{m}} + \boldsymbol{\widehat{m}}, \tag{13}$$

$$f = \chi - \beta \mu u_0 + \widehat{m} * (\chi - \beta \mu u_0), \qquad (14)$$

$$B_1 = B, \quad g = b \quad \text{in case I}, \qquad (15)$$

$$B_1 u = \omega \cdot \nabla u$$
, $g = b + \hat{m} * b$ in case II. (16)

18.05.2016 6 / 29

Theorem 1

Assume $k \in W_1^1(0, T)$, β , a_{ij} , $a_j \in C(\overline{\Omega})$, $a \in C(\overline{Q})$ and

$$k \ge 0, \quad k' \le 0. \tag{17}$$

Let $u \in W_{\rho}^{2,1}(Q)$ with some $p \in (1,\infty)$ solve the problem (12) and $u_0 \ge 0$, $g \ge 0$, $f \ge 0$. Then the following assertions are valid: (i) $u \ge 0$;

(ii) *if, in addition,* β , a_{ij} , $a_j \in C^{l}(\overline{\Omega})$, $a \in C^{l,\frac{l}{2}}(Q)$ with some $l \in (0, 1)$ and there exists an open subset Q_f of Q such that f > 0 in Q_f , then $u(\cdot, T) > 0$ in Ω in case I and $u(\cdot, T) > 0$ in $\overline{\Omega}$ in case II.

< ロ > < 同 > < 回 > < 回 >

Results for IP1

IP1 is in the class of pairs (*z*, *u*) of functions, whose second component *u* together with its derivatives u_t , u_{x_i} , $u_{x_ix_j}$ belongs to $L^p(0, T)$, p > 1, for any *x*, equivalent to the following inverse problem:

$$\beta(u_t + k * u_t) = Au + zr + f_0 \text{ in } Q,$$

$$u = u_0 \text{ in } \Omega \times \{0\}, \quad B_1 u = g \text{ in } S,$$

$$u = u_T \text{ in } \Omega \times \{T\},$$
(18)
(19)

where B_1 , g are given by (15), (16) and

$$\mathbf{r} = \phi + \widehat{\mathbf{m}} * \phi, \quad \mathbf{f}_0 = \chi_0 - \beta \mu \mathbf{u}_0 + \widehat{\mathbf{m}} * (\chi_0 - \beta \mu \mathbf{u}_0). \tag{20}$$

Uniqueness theorem

Theorem 2

Let $k \in W_1^1(0, T)$, $k \ge 0$, $k' \le 0$ hold and β , a_{ij} , $a_j \in C^l(\Omega)$, $a \in C^{l, \frac{l}{2}}(Q)$, $a_t \in L^p(Q)$ with some $l \in (0, 1)$, $p \in (1, \infty)$. Moreover, let $a_t \ge 0$ in Q, $r \in C^{l, \frac{l}{2}}(Q)$, $r_t \in L^p(Q)$ and

$$r \ge 0$$
, $r_t + k * r_t - \theta r \ge 0$ in Q , (21)

where $\theta = \sup_{x \in \Omega} \frac{a(x, T)}{\beta(x)}$. Finally, assume that

for all $x \in \Omega$ there exists an open subset Q_x of Q such that $\exists t_x \in (0, T) : (x, t_x) \in Q_x$ and $r_t + k * r_t - \theta r > 0$ in Q_x .

If $(z, u) \in C^{l}(\Omega) \times C^{2+l,1+\frac{l}{2}}(Q)$ solves (18), (19) and $f_{0}, u_{0}, g, u_{T} = 0$ then z = 0, u = 0.

(22)

Existence and stability

Theorem 3

Let β , a_{ij} , $a_j \in C^{l}(\Omega)$, $a \in C^{l,\frac{l}{2}}(Q)$ and $a_t \in L^p(Q)$ with some $l \in (0, 1)$, $p \in (1, \infty)$. Moreover, let $a_t \ge 0$, $r \in C^{l,\frac{l}{2}}(Q)$, $r_t \in L^p(Q)$ and $r \ge \delta$ in $\overline{\Omega} \times (T - \delta, T)$ with some $\delta \in (0, \frac{T}{2})$ and r = 0 in $\overline{\Omega} \times (0, \delta)$ hold. In addition, let $f_0 \in C^{l,\frac{l}{2}}(Q)$, $u_0 \in C^{2+l}(\Omega)$, $g \in C^{2+l-\vartheta,1+\frac{l}{2}-\frac{\vartheta}{2}}(S)$, $u_T \in C^{2+l}(\Omega)$ and the consistency conditions

(a)
$$u_0 = g$$
, $\beta g_t = Au_0 + f_0$ in case I,
 $\omega \cdot \nabla u_0 = g$ in case II in $\Gamma \times \{0\}$
(b) $u_T = g$ in case I,
 $\omega \cdot \nabla u_T = g$ in case II in $\Gamma \times \{T\}$
(24)

18.05.2016

10/29

be satisfied. Then the following assertions are valid.

Existence and stability

Theorem 3

(i) (Fredholm-type result)
If
$$k \in W_{\frac{2}{2-l}}^{1}(0, T), r \ge 0, r_{t} - \theta r \ge 0$$
 in Q with $\theta = \sup_{x \in \Omega} \frac{a(x, T)}{\beta(x)}$, for
all $x \in \Omega$ exists an open subset \tilde{Q}_{x} of Q such that $\exists \tilde{t}_{x} \in (0, T) :$
 $(x, \tilde{t}_{x}) \in \tilde{Q}_{x}$ and $r_{t} - \theta r > 0$ in \tilde{Q}_{x}
(25)

and the homogeneous inverse problem, i.e.

$$\beta(v_t^0 + k * v_t^0) = Av^0 + q^0 r \text{ in } Q, \quad (26)$$

$$v^{0} = 0 \text{ in } \Omega \times \{0\}, B_{1}v^{0} = 0 \text{ in } S, v^{0} = 0 \text{ in } \Omega \times \{T\}$$
 (27)

has in $C^{l}(\Omega) \times C^{2+l,1+\frac{l}{2}}(Q)$ only the trivial solution $q^{0} = 0$, $v^{0} = 0$, then the inverse problem (18), (19) has a unique solution (z, u) in the space $C^{l}(\Omega) \times C^{2+l,1+\frac{l}{2}}(Q)$.

Existence and stability

Theorem 3

Moreover, the solution (z, u) satisfies the estimate

$$\|z\|_{l} + \|u\|_{2+l,1+\frac{l}{2}} \leq \Lambda(\beta, a_{ij}, a_{j}, a, k, r) \\ \times \left\{ \|f_{0}\|_{l,\frac{l}{2}} + \|u_{0}\|_{2+l} + \|g\|_{2+l-\vartheta,1+\frac{l}{2}-\frac{\vartheta}{2}} + \|u_{T}\|_{2+l} \right\}$$
(28)

with some constant Λ depending on the quantities shown in brackets.

(ii) (Full existence, uniqueness and stability result) If $k \in W_{\frac{2}{2-l}}^1(0,T)$, $k \ge 0$, $k' \le 0$ and r satisfies (21), (22), (25) then the inverse problem (18), (19) has a unique solution (z, u) in the space $C^{l}(\Omega) \times C^{2+l,1+\frac{l}{2}}(Q)$. The solution satisfies the estimate (28).

< ロ > < 同 > < 三 > < 三 >

Making use of results proved for IP1, we have proved global uniqueness and local existence and stability of solutions to IP2 and IP3.

18.05.2016

13/29

Non-smooth problems

Let (1) have the following form:

$$u_t + (\mu * u)_t = Au - m * Au + f + \nabla \cdot \phi + \varphi_t \quad \text{in } Q,$$
(29)

where f, φ are regular scalar functions and ϕ is a regular vector function, A is of the divergence type and has symmetric principal part, i.e. $(Av)(x) = \sum_{i,j=1}^{n} (a_{ij}(x)v_{x_j})_{x_i} + a(x)v(x), \quad a_{ij} = a_{jj}.$

$$u = u_0 \quad \text{in } \Omega \times \{0\} \tag{30}$$

$$u = g \quad \text{in } \Gamma_1 \times (0, T), \tag{31}$$

$$-\nu_{A} \cdot \nabla u + m * \nu_{A} \cdot \nabla u = h + \nu \cdot \phi \quad \text{in } \Gamma_{2} \times (0, T),$$
(32)

where the functions u_0 , g, h are given and $\nu_A = \left(\sum_{j=1}^n a_{ij}\nu_j\Big|_{i=1,...,n}\right)$ is the co-normal vector to Γ and $\Gamma = \Gamma_1 \cup \Gamma_2$, meas $\Gamma_1 \cap \Gamma_2 = 0$.

Inverse problems

Let us pose formal inverse problems. They use instant and integral data of the solution of (29) - (32).

IP4: Let the component *f* of the free term be of the form

$$f(x,t) = f_0(x,t) + \sum_{j=1}^{N} \gamma_j(t) \omega_j(x)$$
(33)

and $\mu = 0$, $\varphi = 0$. Given $m, a_{ij}, a, u_0, f_0, \phi, g, h, \gamma_j, j = 1, ..., N$, and functions $u_{T_i}(x), x \in \Omega, i = 1, ..., N$ with $0 < T_1 < T_2 < ... < T_N \leq T$, find $\omega_j, j = 1, ..., N$, such that the solution u of (29) - (32) satisfies the following instant additional conditions:

$$u = u_{T_i}$$
 in $\Omega \times \{T_i\}$, $i = 1, 2, \ldots, N$.

IP5: Let the component *f* of the free term be of the form (33) and $\mu = 0, \varphi = 0$. Given $m, a_{ij}, a, f_0, \phi, g, h, \gamma_j, j = 1, ..., N$, and functions $v_i(x), x \in \Omega, i = 1, ..., N + 1$, find $\omega_j, j = 1, ..., N$, and u_0 such that the solution *u* of (29) - (32) satisfies the following integral additional conditions:

$$\int_0^T \kappa_i(x,t) u(x,t) dt = v_i(x), \ x \in \Omega, \quad i = 1, 2, ..., N+1,$$
 (34)

where κ_i , $i = 1, \ldots, N + 1$ are given weights.

IP6: Let meas $\Gamma_2 > 0$. Given a_{ij} , u_0 , f, ϕ , φ , g, h and functions $u_T(x)$, $x \in \Omega$, $v_i(t)$, $t \in (0, T)$, i = 1, 2, find a, m and μ such that the solution of (29) - (32) satisfies the following final and integral additional conditions:

$$u = u_{T} \text{ in } \Omega \times \{T\},$$

$$\int_{\Gamma_{2}} \kappa_{i}(x, t) u(x, t) d\Gamma = v_{i}(t), \ t \in (0, T), \ i = 1, 2,$$
(36)

where κ_i , i = 1, 2, are weights and $d\Gamma$ is the surface measure on Γ_i .

We introduce *t*-dependent cylinders

$$\Gamma_{1,T} = \Gamma_1 \times (0,T), \quad \Gamma_{2,T} = \Gamma_2 \times (0,T).$$

In the treatment of the weak direct problem we make use of the following functional spaces:

$$\begin{split} \mathcal{U}(Q) &= C([0,T];L^2(\Omega)) \cap L^2(0,T;W_2^1(\Omega)),\\ \mathcal{U}_0(Q) &= \Big\{ \eta \in \mathcal{U}(Q) \ : \ \eta|_{\Gamma_{1,T}} = 0 \ \text{ in case } \Gamma_1 \neq \emptyset \Big\},\\ \mathcal{T}(Q) &= \Big\{ \eta \in L^2(0,T;W_2^1(\Omega)) \ : \ \eta_t \in L^2(0,T;L^2(\Omega)) \Big\},\\ \mathcal{T}_0(Q) &= \Big\{ \eta \in \mathcal{T}(Q) \ : \ \eta|_{\Gamma_{1,T}} = 0 \ \text{ in case } \Gamma_1 \neq \emptyset \Big\}. \end{split}$$

18.05.2016 17/29

Let us collect other regularity assumptions on the data of the direct problem (29) - (32). They are

$$a_{ij} \in L^{\infty}(\Omega), \tag{37}$$

$$a \in L^{q_1}(\Omega)$$
, where $q_1 = 1$ if $n = 1$, $q_1 > \frac{n}{2}$ if $n \ge 2$, (38)

$$\mu \in L^{2}(0, T), \tag{39}$$

$$m \in L^{1}(0, T) \tag{40}$$

$$u_0 \in L^2(\Omega), \tag{41}$$

$$g \in \mathcal{T}(Q), h \in L^2(\Gamma_{2,T}),$$
 (42)

$$\begin{array}{l} f \in L^2(0,\,T;\,L^{q_2}(\Omega)), & \text{where} \\ q_2 = 1 & \text{if } n = 1, \ q_2 \in (1,\,q_1) & \text{if } n = 2, \ q_2 = \frac{2n}{n+2} & \text{if } n \geq 3, \end{array}$$

$$\phi = (\phi_1, \dots, \phi_n) \in (L^2(Q))^n, \qquad (44)$$

 $\varphi \in \mathcal{U}(Q)$ and in case $\Gamma_1 \neq \emptyset \quad \exists g_{\varphi} \in \mathcal{T}(Q) : \varphi = g_{\varphi} \text{ in } \Gamma_{1,T}.$ (45)

$$\int_{\Omega} \left[(u + \mu * u - \varphi)(x, T)\eta(x, T) - (u_0(x) - \varphi(x, 0))\eta(x, 0) \right] dx$$
$$- \iint_{Q} (u + \mu * u - \varphi)\eta_t \, dx dt \quad (46)$$

$$+ \iint_{Q} \left[\sum_{i,j=1}^{n} a_{ij} (u_{x_j} - m * u_{x_j}) \eta_{x_i} - a(u - m * u) \eta \right] dx dt$$
$$+ \iint_{\Gamma_{2,T}} h\eta \, d\Gamma dt - \iint_{Q} (f\eta - \phi \cdot \nabla \eta) \, dx dt = 0.$$

We call a *weak solution* of the problem (29) - (32) a function that belongs to $\mathcal{U}(Q)$, satisfies the relation (46) for any $\eta \in \mathcal{T}_0(Q)$ and, in case $\Gamma_1 \neq \emptyset$, fulfills the boundary condition (31).

• • • • • • • • • • • •

Theorem 5

Let (37) - (45) hold. Then the problem (29) - (32) has a unique weak solution $u \in U(Q)$.

The function $u \in U(Q)$ satisfies the relation (46) for any $\eta \in T_0(Q)$ if and only if it satisfies the following relation

$$\int_{\Omega} (u + \mu * u - \varphi) * \eta \, dx - \int_{\Omega} \int_{0}^{t} (u_0(x) - \varphi(x, 0)) \eta(x, \tau) d\tau \, dx \, (47)$$
$$+ \int_{\Omega} \mathbf{1} * \Big[\sum_{i,j=1}^{n} a_{ij} (u_{x_j} - m * u_{x_j}) * \eta_{x_i} - a(u - m * u) * \eta \Big] dx$$
$$+ \int_{\Gamma_2} \mathbf{1} * h * \eta \, d\Gamma - \int_{\Omega} \mathbf{1} * \Big(f * \eta - \sum_{i=1}^{n} \phi_i * \eta_{x_i} \Big) dx = 0, \quad t \in [0, T],$$

< ロ > < 同 > < 回 > < 回 >

18.05.2016

20/29

for any $\eta \in \mathcal{U}_0(Q)$.

Quasi-solutions

(1) Firstly, let us consider IP4. We look for the vector of unknowns $\omega = (\omega_1, \ldots, \omega_N)$ in the space $\mathcal{Z}_1 = (L^2(\Omega))^N$. Assume that $\mu = 0$, $\varphi = 0$, (37), (38), (40) - (42), (44) hold, f_0 satisfies (43) and $\gamma_j \in L^2(0, T), j = 1, \ldots, N$. Then, by Theorem 5, the problem (29) - (32) with *f* of the form (33) has a unique weak solution $u \in \mathcal{U}(Q)$ for any $\omega \in \mathcal{Z}_1$. We denote this ω -dependent solution by $u(x, t; \omega)$.

Let $M \subseteq \mathcal{Z}_1$. Assume $u_{T_i} \in L^2(\Omega)$, i = 1, ..., N. The quasi-solution of IP4 in the set M is an element $\omega^* \in \arg \min_{\omega \in M} J_1(\omega)$, where J_1 is the following cost functional:

$$J_{1}(\omega) = \sum_{i=1}^{N} \|u(x, T_{i}; \omega) - u_{T_{i}}(x)\|_{L^{2}(\Omega)}^{2}.$$

・ロン ・ 四 と ・ ヨ と ・ ヨ

(2) In IP5 we search for vectors $z = (\omega, u_0) \in \mathbb{Z}_2 = (L^2(\Omega))^{N+1}$. Assume that $\mu = 0$, $\varphi = 0$, (37), (38), (40), (42), (44) hold, f_0 satisfies (43) and $\gamma_j \in L^2(0, T)$, j = 1, ..., N. Then the problem (29) - (32) with f of the form (33) has a unique weak solution $u = u(x, t; z) \in \mathcal{U}(Q)$ for any $z \in \mathbb{Z}_2$.

Further, let $M \subseteq \mathbb{Z}_2$ and assume that $\kappa_i \in L^{\infty}(Q)$, $v_i \in L^2(\Omega)$, i = 1, ..., N + 1. The quasi-solution of IP5 in the set M is $z^* \in \arg\min_{z \in M} J_2(z)$, where J_2 is the cost functional

$$J_2(z) = \sum_{i=1}^{N+1} \left\| \int_0^T \kappa_i(\cdot, t) u(\cdot, t; z) dt - v_i \right\|_{L^2(\Omega)}^2$$

18.05.2016 22/29

(3) In IP6 we look for the vector

 $z = (a, m, \mu) \in \mathbb{Z}_3 = L^2(\Omega) \times (L^2(0, T))^2$. Assume that $n \in \{1; 2; 3\}$. This guarantees that any $a \in L^2(\Omega)$ satisfies (38). Moreover, assume that (37), (41) - (45) hold, where $q_2 \in (1, 2)$ in (43) in case n = 2. Under such assumptions the problem (29) - (32) has a unique weak solution $u = u(x, t; z) \in \mathcal{U}(Q)$ for any $z \in \mathbb{Z}_3$.

Let $M \subseteq \mathbb{Z}_3$ and assume that $u_T \in L^2(\Omega)$, $\kappa_i \in L^{\infty}(\Gamma_{2,T})$, $v_i \in L^2(0, T)$, i = 1, 2. The quasi-solution of IP6 in the set M is $z^* \in \arg\min_{z \in M} J_3(z)$, where J_3 is the cost functional

$$J_{3}(z) = \|u(\cdot, T; z) - u_{T}\|_{L^{2}(\Omega)}^{2} + \sum_{i=1}^{2} \left\| \int_{\Gamma_{2}} \kappa_{i}(x, \cdot) u(x, \cdot; z) d\Gamma - v_{i} \right\|_{L^{2}(0, T)}^{2}$$

Derivative of J_1

Theorem 6

Let the assumptions listed in (1) be satisfied. Then the functional J_1 is Fréchet differentiable in \mathcal{Z}_1 and $J'_1(\omega)\Delta\omega = \langle \varrho_1, \Delta\omega \rangle_{\mathcal{Z}_1}$, where the ω -dependent vector $\varrho_1 = \varrho_1(x; \omega)$ consists of the components

$$\varrho_{1,j}(x;\omega) = \sum_{i=1}^{N} \int_{0}^{T_i} \gamma_j(t) \psi_i(x, T_i - t; \omega) dt, \ j = 1, \dots, N,$$
(48)

< ≧ > < ≧ > 18.05.2016

24/29

 $\psi_i = \psi_i(x, t; \omega) \in \mathcal{U}(Q), i = 1, ..., N$, are the unique ω -dependent weak solutions of the following (adjoint) problems:

Theorem 6

$$\psi_{i,t} = A\psi_i - m * A\psi_i \quad in \ Q_{T_i}, \tag{49}$$

$$\psi_i = 2[u(x, T_i; \omega) - u_{T_i}(x)] \quad in \ \Omega \times \{0\}, \tag{50}$$

$$\psi_i = 0 \quad in \ \Gamma_{1,T_i}, \tag{51}$$

$$-\nu_A \cdot \nabla \psi_i + m * \nu_A \cdot \nabla \psi_i = 0 \quad in \ \Gamma_{2,T_i} \tag{52}$$

A D > A B > A B > A

18.05.2016

25/29

and $\langle \varrho_1, \omega \rangle_{\mathcal{Z}_1} = \sum_{j=1}^N \langle \varrho_{1,j}, \omega_j \rangle_{L^2(\Omega)}$ is the inner product of ϱ_1 and ω in the space \mathcal{Z}_1 .

Analogously we can formulate results for Frechet derivative of J_2 and J_3 .

• • • • • • • • • • • •

18.05.2016

26/29

Existence of quasi-solutions

Theorem 7

Let the assumptions listed in (1) be satisfied and $M \subset Z_1$ be compact. Then IP4 has a quasi-solution in M. Similar assertions are valid for IP5 and IP6, too.

Theorem 8

Let the assumptions listed in (1) be satisfied and $M \subset Z_1$ be bounded, closed and convex. Then IP4 has a quasi-solution in M. The set of quasi-solutions is closed and convex. Similar assertion is valid for IP5, too.

Theorem 9

Let the assumptions listed in (3) be satisfied. Assume that n = 1, $\Omega = (c, d), \varphi = 0, g(\cdot, 0) = 0$ and M be bounded, closed and convex. Then IP6 has a quasi-solution in M.

Thank you!

<ロ> <四> <ヨ> <ヨ>