
Generic Containers and Iterators in Java

Motivation

� containers are objects that store an arbitrary number of
other objects

� these containers are manipulated by iterating over the
contents

� virtually any non-trivial program will involve these two
concepts

� power of computers is in ability to quickly perform
repetitive operations

Don't do everything from first principles

� if you find yourself writing code that manages the
contents of an array or vector, performing inserts,
deletes, etc, there's probably a container that already
does what you're doing.

� arrays are relatively crude ways to store objects, only
really useful for fixed sized groups of objects, without
any properties like order or uniqueness

� using existing containers allows you to write faster,
more correct code in less time

Containers

� Collection

� a group of elements

� often with additional constraints, like order or uniqueness

� implements the java.util.Collection interface

� Map

� a group of key-value pairs

� also known as associative containers

� implements the java.util.Map interface

� Manage storage automatically

Collections

� two dimensions, uniqueness of elements, and ordering
of elements

� ordered, non-unique: List

� ordered, unique: *

� unordered, non-unique: Multi-set, Bag

� unordered, unique: Set

� the standard Java libraries do not include a multi-set or
a unique-element list.

� such collections do not conflict with the design however,
one could write classes for these.

Collections

� the Collection interface defines all of the common
operations you can perform on a group of elements

� all Collections support:

� boolean contains(Object o)

� Iterator iterator()

� int size()

� may also support:

� boolean add(Object o)

� boolean remove(Object o)

Example

� for any collection, you can define a “bigger than”
method:

public static boolean biggerThan(Collection lhs, Collection rhs) {
 return lhs.size() > rhs.size();
}

� as you can see, without iteration, we're pretty limited...

Iterators

� abstract the process of iteration

� advantageous because:

� allows you to support many kinds of containers (even at
run-time)

� will often be more efficient than iterating over indices
manually

� exist as object separate from the container, so multiple
iterations can be in progress at the same time

� replaces Enumeration from previous Java versions

iterator cont'd

�

java.util.Iterator interface

� Object next(): returns next element

� boolean hasNext(): returns true if there are more
elements

� void remove(): if supported, removes the most
recently accessed (via next()) element

� when created, the first call to next() will return the first
object

Example

� generically define a “contains” method for collections
// returns true if lhs contains all of the elements of rhs
public boolean contains(Collection lhs, Collection rhs) {
 Iterator i = rhs.iterator();
 while (i.hasNext()) {
 if (!lhs.contains(i.next())) {
 return false;
 }
 }
 return true;
}

Ordered Collections

� if you care about the order that the elements are stored,
use a List

� lists usually allow duplicate elements, so can be used in
place of a multi-set

� refines add, to end of sequence

� refines remove, the first occurence

� two lists are equal if they contain the same sequence of
elements, compared using the elements' equals()
method

� thus you can compare different kinds of lists

ListIterator

� bidirectional, allow insertion and deletion

� created by listIterator() method in List
interface

�

add(Object o): inserts o immediately before the
next element

�

hasPrevious(), previous(): analogous to
hasNext() and next(), moving towards the front of
the list

�

set(Object o): replaces the most recently
returned element with o

List implementations

� LinkedList

� good insert/delete performance

� poor random access

� ArrayList

� poor insert/delete (requires elements to shift)

� good random access

� Vector

� thread safe, but otherwise comparable to ArrayList

Unordered Collections

� if order is unimportant, use a Set

�

Set also implies uniqueness of elements

� a List can be used as a (less efficient) Set with
duplicates in it

� if you really need a proper multi-set, it would implement
Collection

� refines add to refuse duplicates

Uniqueness and Equality

� to determine whether or not an element is already in the
Set, the equals() method is used

� on the surface, this is straightforward, BUT...

� if the objects in the Set are mutable, the result of
equals() must not change after they have been
added to the set

� this can also work against you in the opposite direction

� e.g. two Vectors are equal if they have the same state,
i.e. for all i, v1.get(i).equals(v2.get(i))

� as a consequence, you can't insert two empty Vectors
into a Set!

Example

Set s = new HashSet () ;
Vect or v1 = new Vect or () ;
Vect or v2 = new Vect or () ;
s. i nser t (v1) ;
s. i nser t (v2) ; / / does not hi ng
v1. add(“ somet hi ng”) ;
i f (s. cont ai ns(v2)) / / f al se!

� can't insert v1 and v2 into s, even though they are
different objects

Example (cont'd)

Set s = new HashSet();
Vector v1 = new Vector();
Vector v2 = new Vector();
s.insert(new Wrapper(v1));
s.insert(new Wrapper(v2));
v1.add(“something”);
if (s.contains(new Wrapper(v2))) // true!

public class Wrapper {
 private Object wrapped;

 public Wrapper(Object o) {
 wrapped = o;
 }

 public Object get() {
 return wrapped;
 }

 public boolean equals(Object o) {
 if (! (o instanceof Wrapper)) return false;
 return (wrapped == ((Wrapper)o).wrapped);
 }
}

� a solution, use a wrapper object that defines equals in
terms of references:

Set implementations

� HashSet

� constant time add(), remove(), contains()

� iterator order unknown, may even change as contents
change

�

TreeSet, implements OrderedSet

� elements are sorted (sequence not preserved though)

� O(logN) add(), remove(), contains()

Comparator/Comparable

� you can define the order that elements are sorted in
using two approaches:

� have the elements implement the Comparable interface

� public int compareTo(Object rhs)

� returns -1 if this < rhs, 0 if this is equal to rhs, and 1 if this
> rhs

� throws an exception if rhs is wrong type

� supply a Comparator object to the container

� public int compare(Object lhs, Object rhs)

� analogous semantics as compareTo()

� Comparator is more flexible, since it can be chosen at
run-time

Associative containers

�

Map interface, not related to Collection

� defines key-value pairs

� a generalization of containers which can be accessed
by index, keys can be arbitrary objects

� Collection values()

� Set keySet()

Map Example

Map m = new HashMap();
m.put(“spot”, new Dog(“brown”, “shaggy”));
m.put(“rover”, new Dog(“black”, “short-haired”));
System.out.println(m);

Dog d = m.get(“rover”);
System.out.println(d);

OUTPUT
{ spot=brown and shaggy dog, rover=black and short-haired dog }
black and short-haired dog

Map Implementations

� HashMap

�

HashTable – old version of HashMap, thread safe

�

WeakHashMap – values may be garbage collected if
there are no external references to them

�

TreeMap – slower for all operations O(2logN), but can
provide sorted contents at no extra cost

Choosing a container

� identify the abstract properties you require:

� ordered/unordered?

� look-up by key?

� duplicate elements allowed?

� store sorted?

� this will pick the interface for you:

� one of Collection, Set, List, Map, SortedMap, SortedSet

� pick an implementation, based on expected usage in
the program

� if you get the interface right, you can easily change
implementations if your performance needs turn out
differently than expected (which they often do)

