\qquad
\qquad
\qquad

BIST Optimization

Choose circuits from Table 1 and constraints from Table 2 according to your variant.
Example: variant $5 \rightarrow$ circuits: C1908, C3540; C1908 constraint - M; C3540 constraint - T

1. Pseudo-random test generation:

- Find out the maximum fault coverage for given circuits applying tuned ATPG.
- Choose "good" seed and polynomial to generate effective pseudo-random test.
- Generated pseudo-random test sequences must have the maximum fault coverage and the length of test must be in the range $\mathbf{T}<=$ length $<=1, \mathbf{2}^{*} \mathbf{T}$ where \mathbf{T} - Time Constraint from Table 2. (Example: c1908 $\rightarrow 7500<=$ test length $<=9000$).
- Use Type I and Type II LFSR generators.

2. Reseeding algorithm:

- Find complete test (max. fault coverage) for given circuit, using the best PRPG (Type I LFSR) test sequence achieved in task 1.
- Perform experiments stepping through the constraint values and choose 5 results (test must comply with the constraints specified in your variant). Example: $\mathrm{c} 1908 \rightarrow \mathrm{M}=1,2$, $3 \ldots 15$ (min. step $=1$); $\mathrm{T}=7500,7000,6500 \ldots(\min . \operatorname{step}=$ at least 5% of T$)$.

3. Hybrid BIST algorithm:

- Find complete test (max. fault coverage) for given circuit, using the best PRPG (Type I LFSR) test sequence achieved in task 1.
- Perform experiments and choose 5 evenly distributed results (test must comply with the constraints specified in your variant).

4. Results evaluation:

- According to the marginal results obtained in task 2 and 3 construct the Cost curves on the same graph for Reseeding and Hybrid BIST algorithms.
- Compare results of Reseeding and Hybrid algorithms.

Table 1

Variant:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Circuits:	C432	C499	C1355	C880	C1908	C3540	S1196	S1269	S1423	S832
	S1196	S1423	S832	S1269	C3540	C880	C499	C1908	C432	C1355

Table 2

Circuits	Time Constraint (patterns): (T)	Memory Constraint (patterns): (M)	$\boldsymbol{\alpha}$	Cost (C) Constraint$\mathbf{C}=\mathbf{T}+\alpha^{*} \mathbf{M}$	Reseeding		Hybrid BIST	
					Variant - odd	Variant even	$\begin{aligned} & \text { Variant - } \\ & \text { odd } \end{aligned}$	Variant - even
C432	550	10	40	550	M	T	M	T
C499	2200	10	70	2200	M	T	M	T
C1355	2000	10	50	2000	M	T	M	T
C880	10000	10	600	10000	M	T	M	T
C1908	7500	15	400	7500	M	T	M	T
C3540	16000	30	400	16000	T	M	T	M
S1196	30000	20	1500	30000	T	M	T	M
S1269	1000	10	70	1000	T	M	T	M
S1423	30000	12	2500	30000	T	M	T	M
S832	18000	20	700	18000	T	M	T	M

[^0]5. Results:

Circuit:	Type I LFSR			Type II LFSR
	Test Length	Fault Coverage	Test Length	Fault Coverage

Circuit 1:

Reseeding				Hybrid BIST			
Calculated Cost:	Test Length	Memory Vectors	Fault Coverage	Calculated Cost	Test Length	Memory Vectors	Fault Coverage
1.				1.			
2.				2.			
3.				3.			
4.				4.			
5.				5.			

Circuit 2:

Reseeding				Hybrid BIST			
Calculated Cost:	Test Length	Memory Vectors	Fault Coverage	Calculated Cost	Test Length	Memory Vectors	Fault Coverage
1.				1.			
2.				2.			
3.				3.			
4.				4.			
5.				5.			

Test Length - number of pseudo-random test patterns. Memory Vectors - number of deterministic patterns.

Present BIST Cost curves on the plot below:

X-axis - Test Length or Memory Vectors (according to your variant)

[^0]: \mathbf{T} - number of pseudo-random test patterns (test length). \mathbf{M} - number of deterministic patterns(memory vectors).

