
Technical University Tallinn, ESTONIA

Overview

1. Introduction
2. Testability measuring
3. Design for testability

4. Built in Self-Test

Technical University Tallinn, ESTONIA

Built-In Self-Test

Outline
• Motivation for BIST
• Testing SoC with BIST
• Test per Scan and Test per Clock
• HW and SW based BIST
• Hybrid BIST
• Pseudorandom test generation with LFSR
• Exhaustive and pseudoexhaustive test generation
• Response compaction methods
• Signature analyzers

Technical University Tallinn, ESTONIA

Testing Challenges: SoC Test
Cores have to be tested on chip

Source: Elcoteq
Source: Intel

Technical University Tallinn, ESTONIA

Built-In Self-Test

• Advances in microelectronics technology
have introduced a new paradigm in IC
design: System-on-Chip (SoC)

• Many systems are nowadays designed by
embedding predesigned and preverified
complex functional blocks (cores) into
one single die

• Such a design style allows designers to
reuse previous designs and will lead to
shorter time-to-market and reduced cost

System-on-Chip

E m
D

I n
C

C o p
c o r

U D L

L e g a
c o r e

D
c

S
c o

1 1 4 9 .

U D

SoC structure breakdown:
• 10% UDL
• 75% memory
• 50% in-house cores
• 60-70% soft cores

Technical University Tallinn, ESTONIA

Self-Test in Complex Digital Systems

SoC

SRAM
Peripheral
Component
Interconnect

SRAM

CPU

Wrapper
Core
Under
Test

ROM

MPEG UDL
DRAM

Test Access
Mechanism

Test Access
Mechanism

Sink

SoC

Source

Test architecture components:
• Test pattern source & sink
• Test Access Mechanism
• Core test wrapper

Solutions:
• Off-chip solution

– need for external ATE
• Combined solution

– mostly on-chip, ATE
needed for control

• On-chip solution
– BIST

Technical University Tallinn, ESTONIA

Self-Test in Complex Digital Systems

SoC

SRAM
Peripheral
Component
Interconnect

SRAM

CPU

Wrapper
Core
Under
Test

ROM

MPEG UDL
DRAM

Sink

SoC

Source

Test architecture components:
• Test pattern source & sink
• Test Access Mechanism
• Core test wrapper

Solutions:
• Off-chip solution

– need for external ATE
• Combined solution

– mostly on-chip, ATE
needed for control

• On-chip solution
– BIST

Technical University Tallinn, ESTONIA

What is BIST

• On circuit
– Test pattern generation
– Response verification

• Random pattern
generation,
very long tests

• Response compression

BIST
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

IC

Technical University Tallinn, ESTONIA

SoC BIST

System on Chip

Core 2

Core 3 Core 4 Core 5

Embedded Tester
Core 1

Test access
mechanismBIST BIST

BISTBISTBIST

Test
Controller

Tester
Memory

Optimization:
- testing time ↓
- memory cost ↓
- power consumption ↓
- hardware cost ↓
- test quality ↑

Technical University Tallinn, ESTONIA

Built-In Self-Test

• Motivations for BIST:
– Need for a cost-efficient testing (general motivation)
– Doubts about the stuck-at fault model
– Increasing difficulties with TPG (Test Pattern Generation)
– Growing volume of test pattern data
– Cost of ATE (Automatic Test Equipment)
– Test application time
– Gap between tester and UUT (Unit Under Test) speeds

• Drawbacks of BIST:
– Additional pins and silicon area needed
– Decreased reliability due to increased silicon area
– Performance impact due to additional circuitry
– Additional design time and cost

Technical University Tallinn, ESTONIA

Costly Test Problems Alleviated by BIST

• Increasing chip logic-to-pin ratio – harder observability
• Increasingly dense devices and faster clocks
• Increasing test generation and application times
• Increasing size of test vectors stored in ATE
• Expensive ATE needed for 1 GHz clocking chips
• Hard testability insertion – designers unfamiliar with gate-

level logic, since they design at behavioral level
• In-circuit testing no longer technically feasible
• Shortage of test engineers
• Circuit testing cannot be easily partitioned

Technical University Tallinn, ESTONIA

BIST in Maintenance and Repair

• Useful for field test and diagnosis (less expensive
than a local automatic test equipment)

• Disadvantages of software tests for field test and
diagnosis (nonBIST):
– Low hardware fault coverage
– Low diagnostic resolution
– Slow to operate

• Hardware BIST benefits:
– Lower system test effort
– Improved system maintenance and repair
– Improved component repair
– Better diagnosis

Technical University Tallinn, ESTONIA

Design
and test

+ / -

+ / -

+ / -

Fabri-
cation

+

+

+

Manuf.
Test

-

-

-

Level

Chips

Boards

System

Maintenance
test

-

Diagnosis
and repair

-

-

Service
interruption

-

+ Cost increase
- Cost saving

+/- Cost increase may balance cost reduction

Benefits and Costs of BIST with DFT

Technical University Tallinn, ESTONIA

Economics – BIST Costs

 Chip area overhead for:
• Test controller
• Hardware pattern generator
• Hardware response compacter
• Testing of BIST hardware

 Pin overhead -- At least 1 pin needed to activate BIST operation
 Performance overhead – extra path delays due to BIST
 Yield loss – due to increased chip area or more chips In system

because of BIST
 Reliability reduction – due to increased area
 Increased BIST hardware complexity – happens when BIST

hardware is made testable

Technical University Tallinn, ESTONIA

BIST Benefits

• Faults tested:
 Single stuck-at faults
 Delay faults
 Single stuck-at faults in BIST hardware

• BIST benefits
 Reduced testing and maintenance cost
 Lower test generation cost
 Reduced storage / maintenance of test patterns
 Simpler and less expensive ATE
 Can test many units in parallel
 Shorter test application times
 Can test at functional system speed

Technical University Tallinn, ESTONIA

BIST Techniques

• BIST techniques are classified:
– on-line BIST - includes concurrent and nonconcurrent techniques
– off-line BIST - includes functional and structural approaches

• On-line BIST - testing occurs during normal functional operation
– Concurrent on-line BIST - testing occurs simultaneously with normal operation

mode, usually coding techniques or duplication and comparison are used
– Nonconcurrent on-line BIST - testing is carried out while a system is in an idle

state, often by executing diagnostic software or firmware routines
• Off-line BIST - system is not in its normal working mode, usually

– on-chip test generators and output response analyzers or microdiagnostic routines
– Functional off-line BIST is based on a functional description of the Component

Under Test (CUT) and uses functional high-level fault models
– Structural off-line BIST is based on the structure of the CUT and uses structural

fault models (e.g. SAF)

Technical University Tallinn, ESTONIA

General Architecture of BIST

BIST
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

• BIST components:
– Test pattern generator

(TPG)
– Test response

analyzer (TRA)
• TPG & TRA are usually

implemented as linear
feedback shift registers
(LFSR)

• Two widespread
schemes:

– test-per-scan
– test-per-clock

Technical University Tallinn, ESTONIA

Detailed BIST Architecture

Source: VLSI Test: Bushnell-Agrawal

Technical University Tallinn, ESTONIA

Built-In Self-Test

Scan Path

Scan Path

Scan Path

.

.

.

CUT

Test pattern
generator

Test response
analysator

BIST
Control

• Assumes existing scan
architecture

• Drawback:
– Long test application time

Test per Scan:

Initial test set:

T1: 1100
T2: 1010
T3: 0101
T4: 1001

Test application:

1100 T 1010 T 0101T 1001 T
Number of clocks = 4 x 4 + 4 = 20

Technical University Tallinn, ESTONIA

Scan-Path Design

Combinational
circuit

IN OUT

R

Scan-IN

Scan-OUT

1
&
&

q

q
Scan-IN

T

TD
C

Scan-OUT

q’

q’

The complexity of testing is a function
of the number of feedback loops and
their length

The longer a feedback loop, the more
clock cycles are needed to initialize
and sensitize patterns

Scan-register is a aregister with both
shift and parallel-load capability

T = 0 - normal working mode T = 1
- scan mode

Normal mode : flip-flops are connected
to the combinational circuit

Test mode: flip-flops are disconnected
from the combinational circuit and
connected to each other to form a shift
register

Technical University Tallinn, ESTONIA

Built-In Self-Test

Test per Clock:
• Initial test set:

• T1: 1100
• T2: 1010
• T3: 0101
• T4: 1001

• Test application:

• 1 10 0 1 0 1 0 01 01 1001
•

• T1 T4 T3 T2
• Number of clocks = 10

Combinational Circuit

Under Test

Scan-Path Register

Technical University Tallinn, ESTONIA

BILBO BIST Architecture

Working modes:

B1 B2
0 0 Reset
0 1 Flip-flop (normal)
1 0 Scan mode
1 1 Test mode

Testing modes:

CC1: LFSR 1 - TPG
LFSR 2 - SA

CC2: LFSR 2 - TPG
LFSR 1 - SA

LFSR 1

CC1

LFSR 2

CC2

B1
B2

B1
B2

Technical University Tallinn, ESTONIA

BILBO BIST Architecture: Example

• Testing epoch I:
 LFSR1 generates tests for CUT1 and CUT2
 BILBO2 (LFSR3) compacts CUT1 (CUT2)

• Testing epoch II:
 BILBO2 generates test patterns for CUT3
 LFSR3 compacts CUT3 response

Source: VLSI Test: Bushnell-Agrawal

Technical University Tallinn, ESTONIA

Pattern Generation
• Store in ROM – too expensive
• Exhaustive
• Pseudo-exhaustive
• Pseudo-random (LFSR) – Preferred method
• Binary counters – use more hardware than LFSR
• Modified counters
• Test pattern augmentation

 LFSR combined with a few patterns in ROM
 Hardware diffracter – generates pattern cluster in

neighborhood of pattern stored in ROM

Technical University Tallinn, ESTONIA

Pattern Generation

Pseudorandom Test generation by LFSR:

CUT

LFSR

LFSR

X1Xo Xn. . .

ho h1 hn

. . .

• Using special LFSR registers
• Several proposals:

– BILBO
– CSTP

• Main characteristics of LFSR:
– polynomial
– initial state
– test length

Technical University Tallinn, ESTONIA

Some Definitions

• LFSR – Linear feedback shift register, hardware that generates
pseudo-random pattern sequence

• BILBO – Built-in logic block observer, extra hardware added to
flip-flops so they can be reconfigured as an LFSR pattern generator
or response compacter, a scan chain, or as flip-flops

• Exhaustive testing – Apply all possible 2n patterns to a circuit with
n inputs

• Pseudo-exhaustive testing – Break circuit into small, overlapping
blocks and test each exhaustively

• Pseudo-random testing – Algorithmic pattern generator that
produces a subset of all possible tests with most of the properties of
randomly-generated patterns

Technical University Tallinn, ESTONIA

More Definitions

• Irreducible polynomial – Boolean polynomial that cannot be factored
• Primitive polynomial – Boolean polynomial p(x) that can be used to

compute increasing powers n of xn modulo p(x) to obtain all possible
non-zero polynomials of degree less than p(x)

• Signature – Any statistical circuit property distinguishing between bad
and good circuits

• TPG – Hardware test pattern generator
• PRPG – Hardware Pseudo-Random Pattern Generator
• MISR – Multiple Input Response Analyzer

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

x x2 x3 x4

x3x2 x4x

Polynomial: P(x) = x4 + x3 + 1

Standard LFSR

Modular LFSR

Technical University Tallinn, ESTONIA

Theory of LFSR

y0

y1 y2 y3 y4

c4c3c2c1

)1()(1 −= − tyty jj

j
j xtyty)()(0=

x x2 x3 x4

)()(
1

0 tycty j

nj

j
j∑

=

=

=

j
nj

j
j xtycty)()(0

1
0 ∑

=

=

=

jfor j ≠ 0

)()(0 jtyty j −=

where j represents the time
translation units

Technical University Tallinn, ESTONIA

Theory of LFSR

y0

y1 y2 y3 y4

c4c3c2c1

x x2 x3 x4

j
nj

j
j xctyty ∑

=

=

=
1

00)()(

j
nj

j
j xtycty)()(0

1
0 ∑

=

=

=
0)1)((

1
0 =+∑

=

=

j
nj

j
j xcty

Polynomial:

0)()(0 =xPty n

Technical University Tallinn, ESTONIA

Theory of LFSR

y0

y1 y2 y3 y4

c4c3c2c1

x x2 x3 x4

0)()(0 =xPty n
j

nj

j
jn

n

xcxP

xPty

∑
=

=

+=

=≠

1

0

1)(where

0)(0)(For

Characteristic polynomial:

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

x x2 x3 x4

Polynomial: P(x) = x4 + x3 + 1

Technical University Tallinn, ESTONIA

Matrix Equation for Standard LFSR

Xn (t + 1)
Xn-1 (t + 1)...
X3 (t + 1)
X2 (t + 1)
X1 (t + 1)

1
0...
0
0

hn-1

0
1...
0
0

hn-2

0
0...
0
0
1

…
…

…
…
…

0
0...
1
0
h2

0
0...
0
1
h1

Xn (t)
Xn-1 (t)...
X3 (t)
X2 (t)
X1 (t)

=

X (t + 1) = Ts X (t) (Ts is companion matrix)

x x2 x3 x4

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

x x2 x3 x4

Polynomial: P(x) = x4 + x3 + 1

X4 (t + 1)
X3 (t + 1)
X2 (t + 1)
X1 (t + 1)

1
0
0
h3

0
1
0
h2

0
0
0
1

0
0
1
h1

=

X4 (t)
X3 (t)
X2 (t)
X1 (t)

t x x2 x3 x4 t x x2 x3 x4

1 0 0 0 1 9 0 1 0 1
2 1 0 0 0 10 1 0 1 0
3 0 1 0 0 11 1 1 0 1
4 0 0 1 0 12 1 1 1 0
5 1 0 0 1 13 1 1 1 1
6 1 1 0 0 14 0 1 1 1
7 0 1 1 0 15 0 0 1 1
8 1 0 1 1 16 0 0 0 1

1 0 0

Technical University Tallinn, ESTONIA

• Irreducible polynomial – cannot be factored, is divisible
only by itself

• Irreducible polynomial of degree n is characterized by:
– An odd number of terms including 1 term
– Divisibility into 1 + xk, where k = 2n – 1

• Any polynomial with all even exponents can be factored and
hence is reducible

• An irreducible polynomial is primitive if it divides the
polynomial 1+xk for k = 2n – 1, but not for any smaller
positive integer k

Theory of LFSR: Primitive Polynomials

Properties of Polynomials:

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples

Polynomials of degree n=3 (examples):

123 ++ xx

Primitive polynomials:

13 ++ xx

The polynomials will divide evenly the polynomial x7 + 1,
but not any one of k<7, hence, they are primitive

They are also reciprocal: coefficients are 1011 and 1101

Reducible polynomials (non-primitive):

)1)(1(1

)1)(1(1

223

23

++=+++

+++=+

xxxxx

xxxx

k = 2n – 1= 23 – 1=7

The polynomials don’t divide
evenly the polynomial x7 + 1

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples

100
110
111
011
101
010
001
100

100
010
101
110
111
011
001
100

100
010
001
100
010
001
100
010

100
110
011
001
100
110
011
001

Comparison of test sequences generated:

123 ++ xx
Primitive polynomials

13 ++ xx 1 1 233 ++++ xxxx
Non-primitive polynomials

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples
Reducible polynomial (non-primitive):

)1)(1(1 23 +++=+ xxxx

100
010
001
100

1
0
1 01

10
11
01

x x2

13 +x 12 ++ xx1+x

Primitive polynomial

Multiplication of
two primitive
polynomials:

1

1
1
1

24

234

23

2

2

2

++
++
++
++
++
++

xx
xxx
xxx

xx
xx
xx

Is
124 ++ xx

a primitive polynomial?

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples

Is a primitive polynimial?124 ++ xx

1

1

1

1

1

3

357

57

579

9

91113

1113

111315

15

+
++
++
++

+
++
++
++

+

x
xxx

xx
xxx

x
xxx

xx
xxx

x

35911 xxxx +++

124 ++ xx
Irreducible polynomial of
degree n is characterized by:

- An odd number of terms
including 1 term?

Yes, it includes 3 terms

-Divisibility into 1 + xk,
where k = 2n – 1

No, there is remainder

Divisibility check:

13 +x

is non-primitive?124 ++ xx

Technical University Tallinn, ESTONIA

Non-primitive polynomial
x4 + x2 + 1

Theory of LFSR: Examples

x x2 x3 x4

0001
1000
0100
1010
0101
0010
0001

1001
1100
1110
1111
0111
0011
1001

0110
1011
1101
0110

Primitive polynomial
x4 + x + 1

x x2 x3 x4

0001
1000
1100
1110
1111
0111

1011
0101
1010
1101
0110
0011

1001
0100
0010
0001

Technical University Tallinn, ESTONIA

Theory of LFSR: Examples
Primitive polynomial
x4 + x + 1

x x2 x3 x4

0001
1000
1100
1110
1111
0111

1011
0101
1010
1101
0110
0011

1001
0100
0010
0001

Zero generation:

x x2 x3 x4

1

1000
1100
1110
1111
0111

1011
0101
1010
1101
0110
0011

1001
0100
0010
0001
0000

0000

Technical University Tallinn, ESTONIA

Theory of LFSR: Reciprocal Polynomials
The reciprocal polynomial of P(X) is defined by:

(X) =XN PN (1/X) = XN {1 + Cj X-J}

(X) = XN + Cj XN-J for 1 ≤ i ≤ N

Thus every coefficient Ci in P(X) is replaced by CN-I.

Example:
The reciprocal of polynomial P3(X) = 1 + X + X3

is P’3 (X) = 1 + X2 + X3

 The reciprocal of a primitive polynomial is also primitive

Technical University Tallinn, ESTONIA

Theory of LFSR: Primitive Polynomials

Number of primitive
polynomials of
degree N

N No
1 1
2 1
4 2
8 16

16 2048
32 67108864

N Primitive Polynomials
1,2,3,4,6,7,15,22 1 + X + Xn

5,11, 21, 29 1 + X2 + Xn

10,17,20,25,28,31 1 + X3 + Xn

9 1 + X4 + Xn

23 1 + X5 + Xn

18 1 + X7 + Xn

8 1 + X2 + X3 + X4 + Xn

12 1 + X + X3 + X4 + Xn

13 1 + X + X4 + X6 + Xn

14, 16 1 + X + X3 + X4 + Xn

Table of primitive polynomials up to degree 31

Technical University Tallinn, ESTONIA

Theory of LFSR: Primitive Polynomials

Number of PP of
degree n

n No
1 1
2 1
4 2
8 16

16 2048
32 67108864

Examples of PP (exponents of terms):

n other n other
1 0 9 4 0
2 1 0 10 3 0
3 1 0 11 2 0
4 1 0 12 7 4 3 0
5 2 0 13 4 3 1 0
6 1 0 14 12 11 1 0
7 1 0 15 1 0
8 6 5 1 0 16 5 3 2 0

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

Generation of the polynomial and seed for the given test sequence

(1) 100x0
(2) x1010
(3) 10101
(4) 01111

Given test
sequence:

Creation of the
shortest bit-stream:

Expected shortest
LFSR sequence:

10010 1 01111
1

0

01111 (4)
10111
01011
10101 (3)
01010 (2)
00101
10010 (1)

Seed

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

Expected shortest
LFSR sequence:

01111 (4)
1 0111
0 1011
1 0101 (3)
0 1010 (2)
0 0101
1 0010 (1)

01111
10111
01011
10101
01010
00101

System of linear equations:

Generation of the polynomial and seed for the given test sequence

x

x1
x2
x3
x4
x5

1
0
1
0
0
1

=

x x2 x3 x4 x5
x1 x2 x3 x4 x5

We are looking for values of xi

:

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

01111
10111
01011
10101
01010
00101

System of linear equations:

Generation of the polynomial and seed for the given test sequence

x

x1
x2
x3
x4
x5

1
0
1
0
0
1

=

x x2 x3 x4 x5
x1 x5

01000
10000
00100
00010
00001
00001

Solving the equation by
Gaussian elimination:

x

x1
x2
x3
x4
x5

0
1
0
0
1
1

=

1
2
3
4
5
6

1,2,4,6
4,6
1,3
2,4
1,2,3,4,6

Polynomial: x5 + x + 1 Seed: 01111
Solution: x1 x2 x3 x4 x5

1 0 0 0 1

Technical University Tallinn, ESTONIA

Deterministic Synthesis of LFSR

Embedding deterministic test patterns into LFSR sequence:

x x2 x3 x4 x5
x1 x5

Polynomial: x5 + x + 1 Seed: 01111

(1) 100x0
(2) x1010
(3) 10101
(4) 01111

Given
deterministic
test
sequence:

LFSR sequence:

(1) 01111 (4)
(2) 10111
(3) 01011
(4) 10101 (3)
(5) 01010 (2)
(6) 00101
(7) 10010 (1)

Technical University Tallinn, ESTONIA

BIST: Test Generation

Problems:
• Very long test

application time
• Low fault coverage
• Area overhead
• Additional delay

Pseudorandom Test generation by LFSR:

Possible solutions
• Weighted pattern PRPG
• Combining pseudorandom

test with deterministic test
– Multiple seed
– Hybrid BIST

Time

Fa
ul

t C
ov

er
ag

e

Time

Fa
ul

t C
ov

er
ag

e

breakpoint

Technical University Tallinn, ESTONIA

BIST: Fault Coverage
Fault coverage is rapidly
growing: 1

2

n

Combinational
circuit

under test

Truth table:

Patterns

00…000
00…001
00…010

…

11…111

Functions

01 01 01…101
00 11 00…011
00 00 11…111

…

00 00 00…111 2n

1

1 2n
2

Number of
patterns

Number of functions

2n-12
tested

50%!

0%

Faulty
functions

covered by
1. pattern Faulty

functions
covered by
2. pattern

50%

75%
3. pattern

4. pat. 87,5%

93,75%

100%

Technical University Tallinn, ESTONIA

BIST: Fault Coverage

Time

Fa
ul

t C
ov

er
ag

e

Pseudorandom Test generation by LFSR:

Reasons of the high initial efficiency:

A circuit may implement functions

A test vector partitions the functions into 2 equal
sized equivalence classes (correct circuit in one of
them)

The second vector partitions into 4 classes etc.

After m patterns the fraction of functions
distinguished from the correct function is

n22

Motivation of using
LFSR:

- low generation cost
- high initial efeciency

,2
12

1
1

2
2 ∑

=

−

−

m

i

in

n
nm 21 ≤≤

Technical University Tallinn, ESTONIA

BIST: Different Techniques

Pseudorandom testing of sequential circuits:
The following rules suggested:
• clock-signals should not be random
• control signals such as reset, should be activated

with low probability
• data signals may be chosen randomly
Microprocessor testing
• A test generator picks randomly an instruction

and generates random data patterns
• By repeating this sequence a specified number of

times it will produce a test program which will
test the microprocessor by randomly excercising
its logic

Pseudorandom Test generation by LFSR:

Full identification is
achieved only after 2n input
combinations have been
tried out (exhaustive test)

A better fault model
(stuck-at-0/1)
may limit the number of
partitions necessary

,2
12

1
1

12
2 ∑

=

−

−

m

i

n

n

nm 21 ≤≤

Technical University Tallinn, ESTONIA

BIST: Structural Approach to Test

Testing of structural faults: 1
2

n

Combinational
circuit

under test

Fault coverage

100%

Number of
patterns

4

4. pat.
Not tested

faults

Faults
covered by
1. pattern

2. pattern

3. patttern

Technical University Tallinn, ESTONIA

BIST: Two Approaches to Test

Testing of
functions:

100% will be
reached only
after 2n test
patterns

Testing of
faults:

100% will be reached
when all faults from
the fault list are
covered

0%

Faulty
functions

covered by
1. pattern Faulty

functions
covered by
2. pattern

50%

75%
3. pattern

4. pat. 87,5%

93,75%

100%

100%

Testing of
faults

Testing of
functions

4. pat.
Not tested

faults

Faults
covered by
1. pattern

2. pattern

3. patttern

Technical University Tallinn, ESTONIA

BIST: Other test generation methods
Universal test sets

1. Exhaustive test (trivial test)
2. Pseudo-exhaustive test

Properties of exhaustive tests
1. Advantages (concerning the stuck at fault model):

- test pattern generation is not needed
- fault simulation is not needed
- no need for a fault model
- redundancy problem is eliminated
- single and multiple stuck-at fault coverage is 100%
- easily generated on-line by hardware

2. Shortcomings:
- long test length (2n patterns are needed, n - is the number of inputs)
- CMOS stuck-open fault problem

Technical University Tallinn, ESTONIA

BIST: Other test generation methods

Pseudo-exhaustive test sets:
– Output function verification

• maximal parallel testability
• partial parallel testability

– Segment function verification

Output function verification

4

4

4

4

216 = 65536 >> 4x16 = 64 > 16
Exhaustive

test
Pseudo-

exhaustive
sequential

Segment function verification

F &
1111

0101
0011

Pseudo-
exhaustive

parallel

Primitive
polynomials

Technical University Tallinn, ESTONIA

Testing ripple-carry adder

Output function verification (maximum parallelity)

c0 a0 b0 c1 a1 b1 c2 a2 b2 c3 …
1 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 1 0 0 1 0
3 0 1 0 0 1 0 0 1 0 0
4 0 1 1 1 0 0 0 1 1 1
5 1 0 0 0 1 1 1 0 0 0
6 1 0 1 1 0 1 1 0 1 1
7 1 1 0 1 1 0 1 1 0 1
8 1 1 1 1 1 1 1 1 1 1

Exhaustive test generation for n-bit adder:

Good news:
Bit number n - arbitrary
Test length - always 8 (!)

0-bit testing 2-bit testing1-bit testing 3-bit testing … etc

Bad news:
The method is correct
only for ripple-carry adder

Technical University Tallinn, ESTONIA

Testing carry-lookahead adder

General expressions:

iii baG = iiiii babaP ∨= 1−∨= nnnn CPGC

211211)(−−−−−− ∨∨=∨∨= nnnnnnnnnnnn CPPGPGCPGPGC

n-bit carry-lookahead adder:

01231232333 CPPPGPPGPGC ∨∨∨=

),,(011011011110111 CbafCbaCbabaCPGC =∨∨=∨=

01111222233330123))()((CbabababababaCPPP ∨∨∨=

Technical University Tallinn, ESTONIA

Testing carry-lookahead adder

01111222233330123))()((CbabababababaCPPP ∨∨∨=

1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 0 0 1 1 1 1
1 0 0 1 1 1 1 1 1 0
0 1 1 0 1 1 1 1 1 0
1 1 0 1 1 0 1 1 1 0
1 1 1 0 0 1 1 1 1 0
1 1 1 1 0 1 1 0 1 0
1 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 0 0

For 3-bit carry lookahead adder for testing only this part of the circuit at least
9 test patterns are needed

Increase in the speed implies worse testability

Testing ≡ 0

Testing ≡ 1

R

Technical University Tallinn, ESTONIA

BIST: Other test generation methods

Output function verification (partial parallelity)

x1

x2

x3

x4

F1(x1, x2)
F2(x1, x3)
F3(x2, x3)
F4(x2, x4)
F5(x1, x4)
F6(x3, x4)

0011- -

010101

010110

00-11-
000111

0011- 0
F1

F3

F2

F4
F5

Exhaustive testing - 16
Pseudo-exhaustive, full parallel - 4
Pseudo-exhaustive, partially parallel - 6

Technical University Tallinn, ESTONIA

Problems with Pseudorandom Test

Time

F
au

lt
C

o
ve

ra
g

e

Problem: low fault coverageThe main motivations of
using random patterns
are:

- low generation cost
- high initial efeciency

Counter

Decoder

&

LFSR

Reset

If Reset = 1 signal has probability 0,5 then
counter will not work and
1 for AND gate may never be produced

1

Technical University Tallinn, ESTONIA

Sequential BIST

A DFT technique of BIST for sequential circuits is proposed
The approach proposed is based on all-branches coverage metrics
which is known to be more powerful than all-statement coverage

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

Technical University Tallinn, ESTONIA

Sequential BIST

• Status signals entering the
control part are made
controllable

• In the test mode we can force
the UUT to traverse all the
branches in the FSM state
transition graph

• The proposed idea of
architecture requires small
device area overhead since a
simple controller can be
implemented to manipulate
the control signals

Digital System

FSM

Datapath

control signals status
signals

reset

clock

primary
inputs

primary outputs

masked
status bits

MUX

test/normal
mode (TM)

observation
points

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

Hardware implementation of weight generator

LFSR

&&&

MUXWeight select

Desired weighted value Scan-IN

1/21/41/81/16

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test
Problem: random-pattern-resistant faults

Solution: weighted pseudorandom
testing
The probabilities of pseudorandom signals
are weighted, the weights are determined by
circuit analysis

NCV – non-controlling value

The more faults that must be tested
through a gate input, the more the other
inputs should be weighted to NCV

&Faults
to be

tested

1 NCV

Propagated
faults

NDI - number of circuit inputs
for each gate to be the number
of PIs or SRLs in the backtrace
cone

PI - primary inputs
SRL - scan register latch

&
NDIG

NDII
I

G

NDI - relative measure of the
number of faults to be
detected through the gate

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

NCV - noncontrolling value

The more faults that must be tested
through a gate input, the more the other
inputs should be weighted to NCV

&Faults
to be

tested

1 NCV

Propagated
faults

&
NDIG

NDII
I

G

R I = NDIG / NDII

R I - the desired ratio of the
NCV to the controlling value
for each gate input

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

Example:

R 1 = NDIG / NDII = 6/1 = 6

R 2 = NDIG / NDII = 6/2 = 3

R 3 = NDIG / NDII = 6/3 = 2
&

G
1

2

3

PI

PI

PI
PI
PI

PI
More faults must be detected
through the third input than
through others

This results in the other inputs
being weighted more heavily
towards NCV

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

&
G

1

2
3

PI

PI

PI
PI
PI

PI

W0, W1 - weights of the signals

WV - the value to which the input is biased

WV = 0, if W0 > W1 else WV = 1

Calculation of signal weights:

Function WOI W1I
AND WOG RI ∗ W1G

NAND W1G RI ∗ WOG

OR RI ∗ WOG W1G

NOR RI ∗ W1G WOG

W0G = 1

W1G = 1

Calculation of W0, W1

R 1 = 6
W01 = 1
W11 = 6

R 3 = 2
W03 = 1
W13 = 2

R 2 = 3
W02 = 1
W12 = 3

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

&
G

1

2
3

W01 = 1
W11 = 6

W03 = 1
W13 = 2

W02 = 1
W12 = 3

1

1

1

PI1

PI2

PI6
PI5
PI4

PI3

R 1 = 1
W01 = 6
W11 = 1

R 1 = 2
W01 = 2
W11 = 3

R 1 = 3
W01 = 3
W11 = 2

Backtracing from all the
outputs to all the inputs
of the given cone

Weights are calculated for
all gates and PIs

Function WOI W1I
OR RI ∗ WOG W1G

NOR RI ∗ W1G WOG

Calculation of signal weights:

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

WF - weighting factor indicating the
amount of biasing toward weighted
value

WF = max {W0,W1} / min {W1,W0}

Probability:

P = WF / (WF + 1)

Calculation of signal probabilities:

For PI1 : W0 = 6 W1 = 1 P1 = 1/7 = 0.15

For PI2 and PI3 : W0 = 2 W1 = 3 P1 = 3/5 = 0.6

For PI4 - PI6 : W0 = 3 W1 = 2 P1 = 2/5 = 0.4

&
G

1

2
3

1

1

1

PI1

PI2

PI6
PI5
PI4

PI3

R 1 = 1
W01 = 6
W11 = 1

R 1 = 2
W01 = 2
W11 = 3

R 1 = 3
W01 = 3
W11 = 2

Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

&
G

1
2

3

PI

PI

PI
PI
PI

PI

Calculation of signal probabilities:

For PI1 : P1 = 0.15

For PI2 and PI3 : P1 = 0.6

For PI4 - PI6 : P1 = 0.4

1

1

1

Probability of detecting the fault ≡1
at the input 3 of the gate G:

1) equal probabilities (p = 0.5):

P = 0.5 ∗ (0.25 + 0.25 + 0.25) ∗ 0.53 =
= 0.5 ∗ 0.75 ∗ 0.125 =
= 0.046

2) weighted probabilities:
P = 0.85 ∗

∗ (0.6 ∗ 0.4 + 0.4 ∗ 0.6 + 0.62) ∗
∗ 0.63 =

= 0.85 ∗ 0.84 ∗ 0.22 =
= 0.16

≡ 1

Technical University Tallinn, ESTONIA

BIST: Response Compression

1. Parity checking

2mod)()(
1
∑
=

=
m

i
irRP

UUT
Test

T
ri

Pi-1

2. One counting

∑
=

=
m

i
irRP

1
)(

UUT
Test ri Counter

3. Zero counting

∑
=

=
m

i
irRP

1
)(

Technical University Tallinn, ESTONIA

BIST: Response Compression

4. Transition counting

UUT
Test

T

ri

ri-1)()(
2

1∑
=

−=
m

i
ii rrRP

)()(
2

1∑
=

−=
m

i
ii rrRP

a) Transition 0→1

b) Transition 1→0

UUT
Test

T

ri

ri-1

5. Signature analysis

&

&

Technical University Tallinn, ESTONIA

Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

x x2 x3 x4

x3x2 x4x

Polynomial: P(x) = x4 + x3 + 1

Standard LFSR

Modular LFSR

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

1 x x2

x3

x4

x2x1 x4

x3

Polynomial: P(x) = 1 + x3 + x4

Signature analyzer:
Standard LFSR

Modular LFSR

UUT

Response
string

Response in compacted
by LFSR

The content of LFSR after
test is called signature

Technical University Tallinn, ESTONIA

Theory of LFSR

The principles of CRC (Cyclic Redundancy Coding) are used
in LFSR based test response compaction
Coding theory treats binary strings as polynomials:

R = rm-1 rm-2 … r1 r0 - m-bit binary sequence

R(x) = rm-1 xm-1 + rm-2 xm-2 + … + r1 x + r0 - polynomial in x

Example:

11001 → R(x) = x4 + x3 + 1

Only the coefficients are of interest, not the actual value of x

However, for x = 2, R(x) is the decimal value of the bit string

Technical University Tallinn, ESTONIA

BIST: Signature Analysis
Arithmetic of coefficients:

- linear algebra over the field of 0 and 1: all integers mapped into either 0 or 1

- mapping: representation of any integer n by the remainder resulting from
the division of n by 2:

n = 2m + r, r ∈ { 0,1 } or r ≡ n (modulo 2)

Linear - refers to the arithmetic unit (modulo-2 adder), used in CRC
generator (linear, since each bit has equal weight upon the output)
Examples:

x4 + x3 + x + 1
+ x4 + x2 + x

x3 + x2 + 1

x4 + x3 + x + 1
∗ x + 1

x5 + x4 + x2 + x
x4 + x3 + x + 1

x5 + x3 + x2 + 1

Technical University Tallinn, ESTONIA

Theory of LFSR

Characteristic Polynomials:

∑
∞

=

=+++++=
0

2
210)(

m

m
m

m
m xcxcxcxccxG

Multiplication of

polynomials

1

1
1
1

34

234

2

2

2

+++
++

++
+
++

xxx
xxx

xx
x
xx

Technical University Tallinn, ESTONIA

Theory of LFSR

Characteristic Polynomials:

∑
∞

=

=+++++=
0

2
210)(

m

m
m

m
m xcxcxcxccxG

Division of

polynomials

x
x

xx
xx

xx
xx

xxx
xx

1
1

1

1 1

1

2

2

3

23

24

342

2

+
++

+
++

+

+++
++ Quotient

Remainder

DividendDivider

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

Division of one polynomial P(x) by another
G(x) produces a quotient polynomial Q(x),
and if the division is not exact, a remainder
polynomial R(x)

)(
)()(

)(
)(

xG
xRxQ

xG
xP

+=

Example:

1
11

1)(
)(

35

2
23

35

37

+++
+

+++=
+++

++
=

xxx
xxx

xxx
xxx

xG
xP

Remainder R(x) is used as a check word in data transmission
The transmitted code consists of the unaltered message P(x) followed by the check
word R(x)

Upon receipt, the reverse process occurs: the message P(x) is divided by known
G(x), and a mismatch between R(x) and the remainder from the division indicates
an error

Technical University Tallinn, ESTONIA

BIST: Signature Analysis
In signature testing we mean the use of CRC
encoding as the data compressor G(x) and
the use of the remainder R(x) as the signature
of the test response string P(x) from the UUT

Signature is the CRC code word)(
)()(

)(
)(

xG
xRxQ

xG
xP

+=

Example:

1)(
)(

35

37

+++
++

=
xxx

xxx
xG
xP

1 0 1 = Q(x) = x2 + 1

1 0 1 0 1 1 1 0 0 0 1 0 1 0
1 0 1 0 1 1

0 0 1 0 0 1 1 0
1 0 1 0 1 1

0 0 1 1 0 1 = R(x) = x3 + x2 + 1

P(x)

G(x)

Signature

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

1)(
)(

35

37

+++
++

=
xxx

xxx
xG
xP

1 0 1

1 0 1 0 1 1 1 0 0 0 1 0 1 0
1 0 1 0 1 1

0 0 1 0 0 1 1 0
1 0 1 0 1 1

0 0 1 1 0 1 = R(x) = x3 + x2 + 1

P(x)

G(x)

Signature

The division process can
be mechanized using LFSR

The divisor polynomial G(x)
is defined by the feedback
connections

Shift creates x5 which is
replaced by x5 = x3 + x + 1

x0 x1 x2 x3 x4

IN: 01 010001 Shifted into LFSR

x5

G(x)

P(x) Compressor

Response

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

Aliasing:

UUT
Response

SA

L N

L - test length

N - number of stages in
Signature Analyzer

Lk 2=

All possible responses All possible signatures
Nk 2=Faulty

response

Correct
response

N << L

Technical University Tallinn, ESTONIA

BIST: Signature Analysis
Aliasing:

UUT
Response

SA

L N

L - test length

N - number of stages in
Signature Analyzer

Lk 2= - number of different possible responses

No aliasing is possible for those strings with L - N leading zeros since they are
represented by polynomials of degree N - 1 that are not divisible by characteristic
polynomial of LFSR

12 −−NL

Probability of aliasing:
12
12

−
−

=
−

L

NL

P NP
2
1

=1>>L

- aliasing is possible
000000000000000 ... 00000 XXXXX

L N

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

x2 x 1x4

x3

Parallel Signature Analyzer:

UUT

x2 x 1x4

x3

UUT Multiple Input Signature
Analyser (MISR)

Single Input Signature Analyser

Technical University Tallinn, ESTONIA

BIST: Signature Analysis

Signature calculating for multiple outputs:

LFSR - Test Pattern Generator

Combinational circuit

LFSR - Signature analyzer

Multiplexer

LFSR - Test Pattern Generator

Combinational circuit

LFSR - Signature analyzer

Multiplexer

Technical University Tallinn, ESTONIA

BIST: Joining TPG and SA

1 x x2 x3 x4

LFSR

UUT

Response string for
Signature Analysis

Test Pattern (when generating tests)
Signature (when analyzing test responses)

FF FF FF FF

Technical University Tallinn, ESTONIA

BIST Architectures

BIST
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

• BIST components:
– Test pattern generator (TPG)
– Test response analyzer (TRA)
– BIST controller

• A part of a system (hardcore)
must be operational to execute a
self-test

• At minimum the hardcore usually
includes power, ground, and
clock circuitry

• Hardcore should be tested by
– external test equipment or
– it should be designed self-

testable by using various forms of
redundancy

General Architecture of BIST

Technical University Tallinn, ESTONIA

BIST Architectures

Test per Clock:

Disjoint TPG and SA:
BILBO

Joint TPG and SA:

CSTP - Circular Self-Test
Path:

LFSR - Test Pattern Generator

Combinational circuit

LFSR - Signature analyzer

LFSR - Test Pattern Generator

& Signature analyser

Combinational circuit

Technical University Tallinn, ESTONIA

BIST: Circular Self-Test Architecture

Circuit Under Test

FF FFFF

Technical University Tallinn, ESTONIA

BIST: Circular Self-Test Path

CSTP CSTP

CSTP

CSTP CSTP

CC CC

CC

CC

CC

R R

Technical University Tallinn, ESTONIA

BIST Embedding Example

M1 M2

M3
M5

LFSR1

M4

MISR1

BILBO

M6

MUX

CSTP

LFSR2

MISR2

MUXLFSR, CSTP → M2 → MISR1
M2 → M5 → MISR2 (Functional BIST)
CSTP → M3 → CSTP
LFSR2 → M4 → BILBO

Concurrent
testing:

Technical University Tallinn, ESTONIA

BIST Architectures

Test Pattern Generator

MISR

Sc
an

 c
ha

in

CUT
...

STUMPS:
Self-Testing Unit Using MISR
and Parallel Shift Register
Sequence Generator

LOCST: LSSD On-Chip Self-Test

CUT

Error

Test
ControllerSI SO

TPG SA

CUT

BS BS

Scan Path

Sc
an

 c
ha

in

IC

Technical University Tallinn, ESTONIA

Scan-Based BIST Architecture

Copyright: D.Xiang 2003

PS – Phase shifter

Scan-Forest

Scan-Trees

Scan-Segments (SC)

Weighted scan-
enables for SS

Compactor - EXORs

Technical University Tallinn, ESTONIA

Software BIST

To reduce the hardware
overhead cost in the BIST
applications the hardware LFSR
can be replaced by software

Software BIST is especially
attractive to test SoCs,
because of the availability of
computing resources
directly in the system (a
typical SoC usually contains
at least one processor core)

SoC ROMCPU Core
LFSR1: 001010010101010011
N1: 275

LFSR2: 110101011010110101
N2: 900
...

load (LFSRj);
 for (i=0; i<Nj; i++)
 ...
end;

Core j Core j+1 Core j+...

Software based test generation:

The TPG software is the same for all cores and is stored as a single copy
All characteristics of the LFSR are specific to each core and stored in the ROM
They will be loaded upon request.
For each additional core, only the BIST characteristics for this core have to be stored

Technical University Tallinn, ESTONIA

Problems with BIST

Time

Fa
ul

t C
ov

er
ag

e

Problems:
• Very long test

application time
• Low fault

coverage
• Area overhead
• Additional delay

Possible solutions
• Weighted

pseudorandom test
• Combining

pseudorandom test
with deterministic test

– Multiple seed
– Bit flipping

• Hybrid BIST

Time

F
au

lt
C

o
ve

ra
g

e

The main motivations of
using random patterns
are:

- low generation cost
- high initial efeciency

Technical University Tallinn, ESTONIA

Problems with BIST: Hard to Test Faults

Time

F
au

lt
C

o
ve

ra
g

e

Problem: Low fault coverageThe main motivations
of using random
patterns are:

- low generation cost
- high initial efeciency

1 2n-1
Patterns from LFSR:

Pseudorandom
test window:

Hard
to test
faults

1 2n-1
Dream solution: Find LFSR such that:

Hard
to test
faults

Technical University Tallinn, ESTONIA

Hybrid Built-In Self-Test

PRPG

CORE UNDER
TEST

. . .
. . .

. . .

ROM

.

SoC

Core

MISR

B
IS

T
C

on
tro

lle
r

Hybrid test set contains
pseudorandom and
deterministic vectors

Pseudorandom test is improved
by a stored test set which is
specially generated to target the
random resistant faults

Optimization problem:

Pseudorandom Test Determ. Test

Where should be this breakpoint?

Deterministic patterns

Pseudorandom
patterns

Technical University Tallinn, ESTONIA

Optimization of Hybrid BIST

Cost of BIST:

k rDET(k) rNOT(k) FC(k) t(k)
1 155 839 15.6% 104
2 76 763 23.2% 104
3 65 698 29.8% 100
4 90 608 38.8% 101
5 44 564 43.3% 99

10 104 421 57.6% 95
20 44 311 68.7% 87
50 51 218 78.1% 74

100 16 145 85.4% 52
200 18 114 88.5% 41
411 31 70 93.0% 26
954 18 28 97.2% 12

1560 8 16 98.4% 7
2153 11 5 99.5% 3
3449 2 3 99.7% 2
4519 2 1 99.9% 1
4520 1 0 100.0% 0

 Total Cost
 CTOTAL

Figure 2: Cost calculation for hybrid BIST

Cost of
pseudorandom test

patterns CGEN

Number of remaining
faults after applying k

pseudorandom test
patterns rNOT(k)

Cost of stored
test CMEM

Number of pseudorandom
test patterns applied, k

faults

faults
not

detected

tests
needed

PR test
length

PR test length k

tests

FAST estimation

SLOW analysis

CTOTAL = α k + β t(k)

β t(k)

α k

min CTOTAL

Det. TestPseudorandom Test

Technical University Tallinn, ESTONIA

Deterministic Test Length Estimation

i

F

F D k (i) F P E k (i)

i *

F*

| T D E k (i) |

100%

| T D F k | j i

Fault coverage

Pseudorandom
test length

Deterministic test (DT)
Pseudorandom test (PT)

Deterministic test length estimation

For each PT length i* we
determine
- PT fault coverage F*, and
- the imaginable part of DT

FDk(i) to be used for the
same fault coverage

Then the remaining part of DT
TDE

k(i) will be the estimation of
the DT length

Fast estimation for the
length of deterministic test:

Technical University Tallinn, ESTONIA

Calculation of the Deterministic Test Cost

Two possibilities to find the length of deterministic data for each
possible breakpoint in the pseudorandom test sequence:

ATPG based approach
For each breakpoint of P-
sequence, ATPG is used
Fault table based approach
A deterministic test set with fault
table is calculated
For each breakpoint of
P-sequence, the fault table is
updated for not yet detected
faults

FAST estimation
Only fault coverage is calculated

ATPG

Detected
Faults

All PR patterns?

Yes
End

No

Next PR
pattern

ATPG based:

ATPG

Fault table
update

All PR patterns?

Yes
End

No

Next PR
pattern

Fault table based:

Technical University Tallinn, ESTONIA

Calculation of the Deterministic Test Cost

ATPG based approach
For each breakpoint of P-sequence, ATPG is used

ATPG

Detected
Faults

All PR patterns?

Yes
End

No

Next PR
pattern

ATPG based:

T1
T2
.
.
.
.

Tn

Tn+1

Tp

R1 R2 Rk Rk+1 Rk+2 Rn

Faults
detected

by
pseudo-
random
patterns

Faults to be
detected

by

deterministic
patterns

New detected
faults

Task for
ATPG

Task for
fault

simulator

Technical University Tallinn, ESTONIA

Calculation of the Deterministic Test Cost

ATPG

Fault table
update

All PR patterns?

Yes
End

No

Next PR
pattern

Fault table based:

T1
T2
.
.
.
.

Tn

Tn+1

Tp

R1 R2 Rk Rk+1 Rk+2 Rn

Faults
detected

By

pseudo-
random
patterns

To be detected
faults

Task for
fault

simulator

Fault table based approach
A deterministic test set with fault table is calculated
For each breakpoint of P-sequence, the fault table is updated

Fault table
for full

deterministic
test

Updated
fault
tabel

Technical University Tallinn, ESTONIA

Experimental Data: HBIST Optimization

Pseudorandom Test Det. Test

Finding optimal brakepoint in the pseudorandom sequence:

Circuit LMAX LOPT SMAX SOPT Bk CTOTAL
C432 780 91 80 21 4 186
C499 2036 78 132 60 6 386
C880 5589 121 77 48 8 481
C1355 1522 121 126 52 6 388
C1908 5803 105 143 123 5 612
C2670 6581 444 155 77 30 26867
C3540 8734 297 211 110 7 889
C5315 2318 711 171 12 23 985
C6288 210 20 45 20 4 100
C7552 18704 583 267 61 51 2161

LMAX
LOPT SMAX

SOPT

Pseudorandom Test Det. TestOptimized hybrid test process:

Technical University Tallinn, ESTONIA

Hybrid BIST with Reseeding

Time

F
au

lt
C

o
ve

ra
g

e

Problem: low fault coverage → long PR testThe motivation of using
random patterns is:

- low generation cost
- high initial efeciency

1 2n-1

Solution: many seeds:
Pseudorandom
test:

Hard
to test
faults

1 2n-1

Pseudorandom
test:

Technical University Tallinn, ESTONIA

Store-and-Generate Test Architecture

• ROM contains test patterns for hard-to-test faults
• Each pattern Pk in ROM serves as an initial state of the LFSR for test pattern

generation (TPG) - seeds
• Counter 1 counts the number of pseudorandom patterns generated starting

from Pk - width of the windows
• After finishing the cycle for Counter 2 is incremented for reading the next

pattern Pk+1 – beginning of the new window

ROM TPG UUT

ADR

Counter 2 Counter 1

RD

CL

Seeds

Window
Pseudorandom test windows

Seeds

seeds

Technical University Tallinn, ESTONIA

HBIST Optimization Problem

1 2n-1

Using many seeds:
Pseudorandom test:

Deterministic
test (seeds):

Pseudo-
random

sequences:

Block
size:

Seed 1

Seed 1

Seed 2

Seed 2

Seed n
Seed n

Constraints

Problems:
How to calculate the
number and size of
blocks?

Which deterministic
patterns should be the
seeds for the blocks?

Minimize L at given M and

L

M

100% FC

100% FC

Technical University Tallinn, ESTONIA

Hybrid BIST Optimization Algorithm 1

ATPG patterns

Pattern selection
PRi

Pseudorandom
sequence

FC(PRi)

Modified
ATPG pattern

table

Detected faults subtraction,
optimization of ATPG patterns

Deterministic test patterns
with 100% quality are
generated by ATPG

The best pattern is selected
as a seed

A pseudorandom block is
produced and the fault table
of ATPG patterns is updated

The procedure ends when
100% fault coverage is
achieved

Algorithm is based on
D-patterns ranking

D-patterns are ranked

Technical University Tallinn, ESTONIA

Hybrid BIST Optimization Algorithm 2

Deterministic test patterns
with 100% quality are
generated by ATPG

All P-blocks are generated
for all D-patterns and
ranked

The best P-block is selected
includeed into sequence
and updated

The procedure ends when
100% fault coverage is
achieved

…

…

PTmin

PT*

 Deterministic test vector (seed) DTi
Pseudorandom test sequence PRi
Pseudorandom sequence removed with the
block length optimization

Algorithm is based on
P-blocks ranking

P-blocks are ranked

Technical University Tallinn, ESTONIA

Cost Curves for Hybrid BIST with Reseeding

C1908

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

140
Test length L Memory cost M

M(b)

L1(b)

L2(b)

Block size

Two possibilities for reseeding:
Constant block length (less HW overhead)
Dynamic block length (more HW overhead)

Technical University Tallinn, ESTONIA

Functional Self-Test

• Traditional BIST solutions use special hardware for pattern
generation on chip, this may introduce area overhead and
performance degradation

• New methods have been proposed which exploit specific functional
units like arithmetic blocks or processor cores for on-chip test
generation

• It has been shown that adders can be used as test generators for
pseudorandom and deterministic patterns

• Today, there is no general method how to use arbitrary functional
units for built-in test generation

Technical University Tallinn, ESTONIA

Functional BIST Quality

Fault coverage of FBIST compared to Functional test

Functional testing Functional BIST Data B1 B2 Total B1 B2 Total
4/2 13.21 15.09 14.15 35.14 40.57 29.72
7/2 21.23 16.98 19.10 38.44 47.64 29.25
6/3 19.34 31.6 25.47 41.04 39.62 42.45
8/2 25.47 10.38 17.92 32.07 40.57 25.00
9/4 8.96 5.66 7.31 36.56 47.64 25.47
9/3 32.55 26.89 29.72 43.63 46.07 40.57

12/6 13.44 8.02 18.87 36.08 39.62 32.55
14/2 18.16 25.00 11.32 37.50 49.06 25.94
15/3 29.48 31.13 27.83 47.88 50.00 45.75

2/4 7.8 7.55 8.02 29.01 20.75 33.02
Aver. 18.96 17.83 17.97 37.74 42.15 32.97
Gain 1.0 1.0 1.0 2.0 2.4 1.8

Reference

Result

⊕
Go/NoGo

UUT

Reference

Result

⊕
Go/NoGo

UUT

Signature

Traditional
Functional

test FBIST

FBIST: collection and analysis of samples during the working mode
Fault coverage is better, however, still very low (ranging from 42% to 70%)

HW
overhead

Technical University Tallinn, ESTONIA

Example: Functional BIST

Register
block

Control
ALU

Signature analyser

Functional
test

Data

K

Samples from N=120 cycles

K*N Fault
simulator

Fault
coverage

Test patterns (samples) are
produced on-line
during the working mode

DB=64

SB=105

Data
compression:

N*SB / DB = 197

Functional BIST quality analysis

Technical University Tallinn, ESTONIA

Hybrid Functional BIST

• To improve the quality of FBIST we introduce the
method of Hybrid FBIST

• The idea of Hybrid FBIST consists in using for test
purposes the mixture of
– functional patterns produced by the microprogram (no

additional HW is needed), and
– additional stored deterministic test patterns to improve the total

fault coverage (HW overhead: MUX-es, Memory)
• Tradeoff should be found between

– the testing time and
– the HW/SW overhead cost

Technical University Tallinn, ESTONIA

Functional Hybrid Self-Test

Register
block

ALU

Signature analyser

Deterministic
test set

Data

K

M
Automatic

Test Pattern
Generator

Random
resistant

faults

Test patterns are
stored in the

memory

MUX

Register
block

ALU

Signature analyser

Deterministic
test set

Data

K

M
Automatic

Test Pattern
Generator

Random
resistant

faults

Test patterns are
stored in the

memory

MUX

Functional BIST implementation

Technical University Tallinn, ESTONIA

Cost Functions for Hybrid Functional BIST

Total cost:
CTotal = CFB_Total +CD_Total

The cost of functional test part:
CFB_Total = CFB_Const + αCFB_T + βCFB_M

The cost of deterministic test part:
CD_Total = CD_Const + αCD_T + βCD_M

CFB_Const, CD_Const - HW/SW overhead
CFB_T, CD_T - testing time cost
α, β - weights of time and

memory expenses

αCFB_T + βCFB_M

CD_Const

Cost

CTotal = CFB_Total +CD_Total

CFB_Const
Length of
FBIST

Opt.
cost

Opt. length

αCD_T + βCD_M

Problem: minimize CTotal

Technical University Tallinn, ESTONIA

Functional Self-Test with DFT

Example: N-bit multiplier

Register
block

ALU

Signature analyser

Data

K

N cycles

T

MUX

F

Improving
controllability

EXOR
Improving

observability

Technical University Tallinn, ESTONIA

Hybrid BIST for Multiple Cores

SoC

 C3540

 C1908 C880 C1355

Embedded Tester
 C2670

Test access
mechanismBIST BIST

BISTBISTBIST

Test
Controller

Tester
Memory

Embedded tester for testing multiple cores

Technical University Tallinn, ESTONIA

Hybrid BIST for Multiple Cores

Deterministic test (DT)

Pseudorandom test (PT)

How to pack
knapsack?
How to
compress the
test sequence?

Technical University Tallinn, ESTONIA

Cost of BIST:
 Total Cost

 CTOTAL

Figure 2: Cost calculation for hybrid BIST

Cost of
pseudorandom test

patterns CGEN

Number of remaining
faults after applying k

pseudorandom test
patterns rNOT(k)

Cost of stored
test CMEM

Number of pseudorandom
test patterns applied, k

faults

PR test length k

tests

FAST estimation

SLOW analysis

CTOTAL = α k + β t(k)

β t(k)

α k

min CTOTAL

Det. TestPseudorandom Test

How to avoid the calculation of
the very expensive full DT cost
curve?

Two problems:
1) Calculation of DT cost is

difficult
2) We have to optimize n (!)

processes

Multi-Core Hybrid BIST Optimization

Technical University Tallinn, ESTONIA

Deterministic Test Length Estimation

i

F

F D k (i) F P E k (i)

i *

F*

| T D E k (i) |

100%

| T D F k | j i

Fault coverage

Pseudorandom
test length

Deterministic test (DT)
Pseudorandom test (PT)

Deterministic test length estimation for a single core

For each PT length i* we
determine
- PT fault coverage F*, and
- the imaginable part of DT

FDk(i) to be used for the
same fault coverage

Then the remaining part of DT
TDE

k(i) will be the estimation of
the DT length

Solution of the first
problem:

Technical University Tallinn, ESTONIA

Deterministic Test Cost Estimation

0

2000

4000

6000

8000

Memory usage: 5357 bits

1000 1500500

5500

542

M
em

or
y

(b
it

s)

Memory usage:

1353
480
1025
363
2136

0
0

Core name:

c499
c880
c1355
c1908
c5315
c6288
c432

 Deterministic
time:
33
8
25
11
12
0
0

Total Test Lenght (clocks)

Estimated Cost
Real Cost

Cost Estimates
for Individual Cores

Memory Constraint

Core costs
Real cost

Estimated cost

DT cost

Total
test

length

Total cost calculation of core costs:

Constraint

Solution

Technical University Tallinn, ESTONIA

Total Test Cost Estimation

COST P,k

COST T,k

COST

j
COST D,k

j min

COST E* T

j* k

Solution

E

E

DT cost

Pseudorandom test
(PT) length

Total cost

PT cost

Total cost
solution

Using total cost solution
we find the PT length:

Using PT length, we calculate
the test processes for all cores:

PT length solution

136

86

40

19

48

50

46

21

13

25

6

4

4

2

73

123

169

205

203

190

0 50 100 150 200

c499

c1355

c5315

c1908

c880

c6288

c432
Deterministic
Pseudorandom

Total Test

Technical University Tallinn, ESTONIA

Multi-Core Hybrid BIST Optimization

Iterative optimization process:

1 - First estimation

1* - Real cost calculation

2 - Correction of the estimation

2* - Real cost calculation

3 - Correction of the estimation

3* - Final real cost

Technical University Tallinn, ESTONIA

Optimized Multi-Core Hybrid BIST

Pseudorandom test is carried out in parallel,
deterministic test - sequentially

Technical University Tallinn, ESTONIA

Test-per-Scan Hybrid BIST

Embedded Tester

Test
Controller

Tester
Memory

Scan Path

Scan Path

Scan Path

Scan Path

LF
S

R

LFS
R

Scan Path

Scan Path

Scan Path

Scan Path

LFS
R

LF
S

R

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

LF
S

R

LF
S

R

LFS
R

LFS
R

s838s1423

s3271 s298

SoC

TAM

Deterministic
tests can only
be carried out
for one core at a
time

Only one test
access bus at
the system level
is needed.

Every core’s BIST logic is capable to produce a set of independent pseudorandom test
The pseudorandom test sets for all the cores can be carried out simultaneously

Technical University Tallinn, ESTONIA

Bus-Based BIST Architecture

• Self-test control broadcasts patterns to each CUT over bus –
parallel pattern generation

• Awaits bus transactions showing CUT’s responses to the
patterns: serialized compaction

Source: VLSI Test: Bushnell-Agrawal

Technical University Tallinn, ESTONIA

Broadcasting Test Patterns in BIST

Concept of test pattern sharing via novel scan structure – to
reduce the test application time:

... ...

CUT 1 CUT 2

... ...

CUT 1 CUT 2

Traditional single scan design Broadcast test architecture

While one module is tested by its test patterns, the same test
patterns can be applied simultaneously to other modules in the
manner of pseudorandom testing

Technical University Tallinn, ESTONIA

Broadcasting Test Patterns in BIST

Examples of connection possibilities in Broadcasting BIST:

CUT 1 CUT 2 CUT 1 CUT 2

j-to-j connections Random connections

Technical University Tallinn, ESTONIA

Broadcasting Test Patterns in BIST

... ...

CUT 1 CUT n

Scan configurations in Broadcasting BIST:

...

MISR

Scan-In

Scan-Out

... ...

... ...

CUT 1 CUT n

MISR 1

Scan-In

Scan-Out

... ...
MISR n

Common MISR Individual and multiple MISRs

Fault-Model Free Fault Diagnosis
Combined cause-effect and
effect-cause diagnosis

Faulty system

Faulty
area

Faulty
area

Faulty
block

Failing
test

patternsTest

Fault1) Cause-Effect
Fault Diagnosis
Suspected faulty area is
located

2) Effect-Cause
Fault Diagnosis
Faulty block is located in the
suspected faulty area

3) Fault Reasoning
Failing test patterns are mapped
into the suspected defect or into a
set of suspected defects in the
faulty block

Effect

Cause

Effect

Cause

Technical University Tallinn, ESTONIA
4/20

BISD scheme:

Test Pattern Generator
(TPG)

Circuit Under Diagnosis
(CUD)

.

Output Response
Analyser (ORA)

.

BISD
Control Unit

Pattern Signature Faults
............
............
............
............
............
............
............
............

Test patterns

............

............

............

............

............

............

............

............

May 11-14, 2008 26th International Conference on Microelectronics, Niš, Serbia

Diagnostic Points (DPs) –
patterns that detect new faults
Further minimization of DPs –
as a tradeoff with diagnostic
resolution

Pseudorandom test
sequence:

Embedded BIST Based Fault Diagnosis

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

 Test Pattern Generator
 (TPG)

Circuit Under Test
 (CUT)

.

Output Response
Analyser (ORA)

.

BIST
Control Unit

Test patterns
Number Signature Faults
............
............
............
............
............
............
............
............

Test patterns
Number Signature Faults
............
............
............
............
............
............
............
............

Faulty signature

1. test 2. test 3. test

3. test

Faulty
signature

Correct
signature

Diagnosis procedure:

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

№ All faults New faults Coverage
1 5 5 16.67%
2 15 10 50.00%
3 16 1 53.33%
4 17 1 56.67%
5 20 3 66.67%
6 21 1 70.00%
7 25 4 83.33%
8 26 1 86.67%
9 29 3 96.67%

10 30 1 100.00%

Pseudorandom test fault
simulation

Binary search with
bisectioning of test patterns

5

1

7

8

6 9

1010
1

15

1

3

1

2

3

41
3 4

Average number of test sessions: 3,3
Average number of clocks: 8,67

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

№ All faults New faults Coverage
1 5 5 16.67%
2 15 10 50.00%
3 16 1 53.33%
4 17 1 56.67%
5 20 3 66.67%
6 21 1 70.00%
7 25 4 83.33%
8 26 1 86.67%
9 29 3 96.67%

10 30 1 100.00%

Pseudorandom test fault
simulation

2

61

105 5

4

3

8

7 9

10

1

3 4

1

1

1 3
1

Binary search with
bisectioning of faults

Average number of test sessions: 3,06
Average number of clocks: 6,43

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

Test pattern generator

CUD

SA1 SA2 SA3

Fault

Diagnosis with multiple signatures:

SA1

SA2

SA3

D1 D2

D3

D4

D5 D6

D7

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

1 1 1

1 1 1

0 0 1

0 0 1

0 1 1

h

i

k

l

v

R1

R1’’’

R3

No Codeword Diagnosis

0 1 1j R2

R1’, R2’, R3’

R1’’, R2’’

v

P

F/111
k

F/011

i

j

F/011

F/111

l R3

R2

h R1

R1’’’

R1’’, R2’’

F/001

R1’, R2’, R3’

Diagnostic tree

P

P

F/001

Diagnosis with multiple signatures:

Technical University Tallinn, ESTONIA

Test pattern generator

CUD

SA1 SA2 SA3

Fault

SA1

SA2

SA3

D1 D2

D3

D4

D5 D6

D7

Faulty signature

Faulty
signature

Correct
signature

Intersection
using SA-s

Intersection
using tests

Built-In Fault Diagnosis

BIST with multiple
signature analyzers

Optimization of the interface between
CUD and SA-s

Technical University Tallinn, ESTONIA

Built-In Fault Diagnosis

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
220.0
230.0
240.0

1 2 3 4 5 6 7 8 9 10 ALL

Failed patterns

A
ve

ra
ge

 re
so

lu
tio

n

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

A
ve

ra
ge

 te
st

 le
ng

th

1 SA Resolution 5 SA Resolution 10 SA Resolution
1 SA Test length 5 SA Test length 10 SA Test length

Optimal
number of
failed
patterns

Gain in
speed of
diagnosis

Diagnosis with multiple
signatures:

Measured:
- average resolution
- average test length

Compared: 1SA, 5SA, 10SA

Gain in test length: 6 times

Technical University Tallinn, ESTONIA

Extended Fault Models

Defect

Extensions of the parallel critical path tracing for two large
general fault classes for modeling physical defects:

0
1
0
1

Conditional fault
Pattern fault

Constrained SAF
Single faulty signal

X-fault
Byzantine fault

Bridges
Stuck-opens

Multiple faulty signal

Resistive bridge fault

SAF

Multiple
fault

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Real test
experiment Simulation

Faulty machine
FM(f)

Circuit Under
Diagnosis

Test pattern t

Fault

f

Copyright: H.J.Wunderlich 2007

∆σt

∆τt

∆lt

Fault evidence:
for test pattern t
e(f,t) = (∆τt , ∆σt, ∆lt, ∆γt)
∆γt = min (∆σt, ∆lt)
for full test T (sum)
e(f,T) = (∆τ , ∆σ, ∆l, ∆γ)

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test
experiment Simulation

Faulty machine
FM(f)

Circuit Under
Diagnosis

Test pattern t

Fault

f∆σt

∆τt

∆lt

Classic model lt τt γt

Single SAF 0 0 0

Multiple SAF 0 >0 0

Single conditional SAF >0 0 0

Multiple cond. SAF >0 >0 0

Delay fault >0 0 >0

General case >0 >0 >0

Different classical fault cases

Technical University Tallinn, ESTONIA

Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test
experiment Simulation

Faulty machine
FM(f)

Circuit Under
Diagnosis

Test pattern t

Fault

f∆σt

∆τt

∆lt

Ranking
(on the top the most
suspicious faults):
(1) By increasing γT

(single SAF on top)
(2) If γT are equal then

by decreasing σT

(3) If γT and σT are
equal then by
increasing lT

∆γt = min (∆σt, ∆lt)

SAF γT σT lT
f1 0 42 0

f2 30 42 15

f3 30 42 25

f4 30 42 30

f5 30 36 38

f6 38 23 22

f7 38 23 23

Example:

Technical University Tallinn, ESTONIA

Fault Diagnosis Without Fault Models

Defective
area

dy

Reverse
defect

mapping
x1

x2

x3

x4

x5

System level

Wd

Logic level
Error

detection

Defect

Error (defective area) diagnosis

&

&

&

1

&

&

&
R2M3

+M1

*M2

R1

IN

Logic level
Transistor level

RT Level

Technical University Tallinn, ESTONIA1 0 1 0

 S1 S2

S10

S11

S5

S8

S3

S6

S9

S4

S7

1 2 3 4
1 1
2 1
3 1
4 1
5 1 1 0
6 1
7 1
8 1 1 0
9 1
10 1 1
11 1 1 1 0

Fault Model Free Fault Diagnosis

1 0 1 0
Test response:

Diagnosis: s11

No match

Rectified code

Because of the
unidirectional

“distortions” of test
responses,

rectification is
possible

Diagnostic tableSystem network graph

Technical University Tallinn, ESTONIA

Fault Tolerance: Error Detecting Codes

System

Checker Not eligible code

Examples:
Decimal digits:

Eligible: 0,1,2,..., 9

Not eligible: 10,11,..., 15

Parity check: 00 0 0 1
01 1 3 2
10 1 5 4
11 0 6 7

Parity bit

Eligible
Not eligible

Technical University Tallinn, ESTONIA

Error Detecting/Correcting Codes

d

Hamming distance between codes: Minimal number of bits
how two codes differ
from each other

Eligible
codes

Eligible
codes

Not eligible codes

Parity check: 00 0 0 1
01 1 3 2
10 1 5 4
11 0 6 7

Parity bit

Eligible
Not eligible

101
100
111
001

110

011

000
d = 2

010

Technical University Tallinn, ESTONIA

Error Detecting/Correcting Codes

d=2
Eligible
codes

Eligible
codes

Not eligible codes

Error detecting codes: Error correcting codes:

Error
detection:
direction
unknown

Error correction is
possible: direction

is knownd=3

Eligible
codes

Detection
not possible

Correction
not possible

Technical University Tallinn, ESTONIA

Fault Tolerance: Error Correcting Codes

d = 2e + 1 - 2e - error detection
e - error correction

One error correction code: 2c ≥ q + c + 1

Error free

q c
For addressing of the

erroneous bit

Check bits

Information bits

Technical University Tallinn, ESTONIA

Fault Tolerance: One Error Correcting Code

One error correction code: 2c ≥ q + c + 1

Check bits

b2
i, i = 0,1,,...,c-1

Calculation of check sums:

bc+q b2b1

1234567

cibk
Pk i

,...,1,0 ==∑
∈

Pi – number of bits where bi = 1

P1 = b1 ⊕ b3 ⊕ b5 ⊕ b7 = 0
P2 = b2 ⊕ b3 ⊕ b6 ⊕ b7 = 0
P3 = b4 ⊕ b5 ⊕ b6 ⊕ b7 = 0

Technical University Tallinn, ESTONIA

Fault Tolerance: One Error Correcting Code

Location of erroneous bit:

Check bits

b2
i, i = 1,...,c

1234567

P1 = b1 ⊕ b3 ⊕ b5 ⊕ b7 = 0
P2 = b2 ⊕ b3 ⊕ b6 ⊕ b7 = 0
P3 = b4 ⊕ b5 ⊕ b6 ⊕ b7 = 0

Analogy with fault diagnosis
by using fault table:

7 6 5 4 3 2 1 0
1 1 11

1 1 11
1 111

P1
P2

P3

Received code

Test

0
0
1

Diagnosis

0011101

0010101 Initial code

Check bits have to be independently assigned

Technical University Tallinn, ESTONIA

Fault Tolerant Communication System

Initial code

Check-bits
generator Sender Receiver

Error
correction

code

Checker

Error
correction
(restoring)

Error
indication

Received
correct code

Technical University Tallinn, ESTONIA

Error Detection in Arithmetic Operations

Residue codes

N – information bits

C = (N) mod m - check bits

m – residue of the code

p = log2 m – number of check bits

Example
Information bits: I2, I1, I0
m = 3, p = 2

Check bits: c1, c0

I2 I1 I0 I c c1 c0
0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 2 2 1 0
0 1 1 3 0 0 0
1 0 0 4 1 0 1
1 0 1 5 2 1 0
1 1 0 6 0 0 0
1 1 1 7 1 0 1

Information bits
Check bits

Technical University Tallinn, ESTONIA

Error Detection in Arithmetic Operations
Addition:

Information bits Check bits
0 0 1 0 1 0 2.2
0 1 0 0 0 1 4.1

0 1 1 0 1 1 6.3
(6)mod3 = 0 (3)mod3 = 0

Multiplication:

Information bits Check bits
0 0 1 0 1 0 2.2
0 1 0 0 0 1 4.1

1 0 0 0 1 0 8.2
(8)mod3 = 2 (2)mod3 = 2

Information bits Check bits
0 0 1 0 1 0 2.2
0 1 0 0 0 1 4.1

0 1 0 0 1 1 4.3
(4)mod3 = 1 (3)mod3 = 0

Error!

Information bits Check bits
0 0 1 0 1 0 2.2
0 1 0 0 0 1 4.1

1 0 0 1 1 0 9.2
(9)mod3 = 0 (2)mod3 = 2

Error!

Technical University Tallinn, ESTONIA

Error Detection in Arithmetic Operations

A B

Adder

Residue
calculator

A + B

C(A) C(B)

Adder mod m

(C(A) + C(B)) mod m

Comparator
C(A + B)

Error
indicator

Check
bit

generator

Technical University Tallinn, ESTONIA

Summary

• LFSR pattern generator and MISR response
compactor – preferred BIST methods

• BIST has overheads: test controller, extra circuit
delay, Input MUX, pattern generator, response
compactor, DFT to initialize circuit & test the test
hardware

• BIST benefits:
 At-speed testing for delay & stuck-at faults
 Drastic ATE cost reduction
 Field test capability
 Faster diagnosis during system test
 Less effort to design testing process
 Shorter test application times

Technical University Tallinn, ESTONIA

Testing of Networks-on-Chip (NoC)

• Consider a mesh-like topology of NoC consisting of
– switches (routers),
– wire connections between them and
– slots for SoC resources, also referred to as tiles.

• Other types of topological architectures, e.g. honeycomb and
torus may be implemented and their choice depends on the
constraints for low-power, area, speed, testability

• The resource can be a processor, memory, ASIC core etc.
• The network switch contains buffers, or queues, for the incoming

data and the selection logic to determine the output direction,
where the data is passed (upward, downward, leftward and
rightward neighbours)

Technical University Tallinn, ESTONIA

Testing of Networks-on-Chip

• Useful knowledge for testing NoC network structures can be obtained from
the interconnect testing of other regular topological structures

• The test of wires and switches is to some extent analogous to testing of
interconnects of an FPGA

• a switch in a mesh-like communication structure can be tested by using only
three different configurations

Technical University Tallinn, ESTONIA

Testing of Networks-on-Chip

• Arbitrary short and open in an
n-bit bus can be tested by
log2(n) test patterns

• When testing the NoC
interconnects we can regard
different paths through the
interconnect structures as
one single concatenated bus

• Assuming we have a NoC,
whose mesh consists of
m x m switches, we can
view the test paths through
the matrix as a wide bus of
2mn wires

m x m
matrix

2m buses

Concatenated bus
concept

Technical University Tallinn, ESTONIA

Testing of Networks-on-Chip

• The stuck-at-0 and stuck-at-1
faults are modeled as shorts
to Vdd and ground

• Thus we need two extra
wires, which makes the total
bitwidth of the bus
2mn + 2 wires.

• From the above facts we can
find that
3[log2(2mn+2)]
test patterns are needed in
order to test the switches and
the wiring in the NoC

m x m
matrix

2m buses

Concatenated bus
concept

Technical University Tallinn, ESTONIA

Testing of Networks-on-Chip

0
1

2

3
4

5

6

7

Bus

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Test Detected faults

Stuck-at-1

Stuck-at-0

All
opens

and
shorts

6 wires
tested

3[log2(2mn+2)]
test patterns
needed

Technical University Tallinn, ESTONIA

IEEE P1500 standard for core test

• The following components are generally required to
test embedded cores
– Source for application of test stimuli and a sink for observing

the responces
– Test Access Mechanisms (TAM) to move the test data from

the source to the core inputs and from the core outputs to the
sink

– Wrapper around the embedded core

embedded
core

wrapper

test
pattern
source

TAM
test

responces’
sink

TAM

Technical University Tallinn, ESTONIA

IEEE P1500 standard for core test

• The two most important components of the P1500
standard are
– Core test language (CTL) and
– Scalable core test architecture

• Core Test Language
– The purpose of it is to standardize the core test knowledge

transfer
– The CTL file of a core must be supplied by the core provider
– This file contains information on how to

• instanciate a wrapper,
• map core ports to wrapper ports,
• and reuse core test data

Technical University Tallinn, ESTONIA

IEEE P1500 standard for core test

Core test architecture
• It standardizes only the wrapper and the interface between the

wrapper and TAM, called Wrapper Interface Port or (WIP)
• The P1500 TAM interface and wrapper can be viewed as an

extension to IEEE Std. 1149.1, since
– the 1149.1 TAP controller is a P1500-compliant TAM interface,
– and the boundary-scan register is a P1500-compliant wrapper

• Wrapper contains
– an instruction register (WIR),
– a wrapper boundary register consisting of wrapper cells,
– a bypass register and some additional logic.

• Wrapper has to allow normal functional operation of the core
plus it has to include a 1-bit serial TAM.

• In addition to the serial test access, parallel TAMs may be used.

Technical University Tallinn, ESTONIA

IEEE P1500 standard for core test

System chip

Source/Sink
(Stimuli/Responses)

Off-chip or

On-chip

User-defined test access mechanism (TAM) On-chip

P1500 wrapper

Core 1

WIR

WPI WPO
Functional

inputs/
outputs

P1500 wrapper

Core n

WIR

WPI WPO
Functional

inputs/
outputs

P1500 Wrapper interface port (WIP)

WSIWSI WSO WSO

Technical University Tallinn, ESTONIA

Theory of LFSR: Galois Field

 Galois field (mathematical system) G(pn):
 Multiplication by x same as right shift of LFSR
 Addition operator is XOR (⊕)

 Ts companion matrix:
 1st column 0, except n-th element which is always 1

(X0 always feeds Xn-1)
 Rest of row n – feedback coefficients hi
 Rest is identity matrix I – means a right shift

• Near-exhaustive (maximal length) LFSR
 Cycles through 2n – 1 states (excluding all-0)
 one pattern of n 1’s, two of n-1 consecutive 0’s

LFSR as a Galois field:

	Overview
	Built-In Self-Test
	Testing Challenges: SoC Test
	Built-In Self-Test
	Self-Test in Complex Digital Systems
	Self-Test in Complex Digital Systems
	What is BIST
	SoC BIST
	Built-In Self-Test
	Costly Test Problems Alleviated by BIST
	BIST in Maintenance and Repair
	Benefits and Costs of BIST with DFT
	Economics – BIST Costs
	BIST Benefits
	BIST Techniques
	General Architecture of BIST
	Detailed BIST Architecture
	Built-In Self-Test
	Scan-Path Design
	Built-In Self-Test
	BILBO BIST Architecture
	BILBO BIST Architecture: Example
	Pattern Generation
	Pattern Generation
	Some Definitions
	More Definitions
	Pseudorandom Test Generation
	Theory of LFSR
	Theory of LFSR
	Theory of LFSR
	Pseudorandom Test Generation
	Matrix Equation for Standard LFSR
	Pseudorandom Test Generation
	Theory of LFSR: Primitive Polynomials
	Theory of LFSR: Examples
	Theory of LFSR: Examples
	Slide Number 37
	Slide Number 38
	Theory of LFSR: Examples�
	Theory of LFSR: Examples�
	Theory of LFSR: Reciprocal Polynomials
	Theory of LFSR: Primitive Polynomials
	Theory of LFSR: Primitive Polynomials
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	BIST: Test Generation
	BIST: Fault Coverage
	BIST: Fault Coverage
	BIST: Different Techniques
	BIST: Structural Approach to Test
	BIST: Two Approaches to Test
	BIST: Other test generation methods
	BIST: Other test generation methods
	Testing ripple-carry adder
	Testing carry-lookahead adder
	Testing carry-lookahead adder
	BIST: Other test generation methods
	Problems with Pseudorandom Test
	Sequential BIST
	Sequential BIST
	BIST: Weighted pseudorandom test
	BIST: Weighted pseudorandom test
	BIST: Weighted pseudorandom test
	BIST: Weighted pseudorandom test
	BIST: Weighted pseudorandom test
	BIST: Weighted pseudorandom test
	BIST: Weighted pseudorandom test
	BIST: Weighted pseudorandom test
	BIST: Response Compression
	BIST: Response Compression
	Pseudorandom Test Generation
	BIST: Signature Analysis
	Theory of LFSR
	BIST: Signature Analysis
	Theory of LFSR
	Theory of LFSR
	BIST: Signature Analysis
	BIST: Signature Analysis
	BIST: Signature Analysis
	BIST: Signature Analysis
	BIST: Signature Analysis
	BIST: Signature Analysis
	BIST: Signature Analysis
	BIST: Joining TPG and SA
	BIST Architectures
	BIST Architectures
	BIST: Circular Self-Test Architecture
	BIST: Circular Self-Test Path
	BIST Embedding Example
	BIST Architectures
	Scan-Based BIST Architecture
	Software BIST
	Problems with BIST
	Problems with BIST: Hard to Test Faults
	Hybrid Built-In Self-Test
	Optimization of Hybrid BIST
	Deterministic Test Length Estimation
	Calculation of the Deterministic Test Cost
	Calculation of the Deterministic Test Cost
	Calculation of the Deterministic Test Cost
	Experimental Data: HBIST Optimization
	Hybrid BIST with Reseeding
	Store-and-Generate Test Architecture
	HBIST Optimization Problem
	Hybrid BIST Optimization Algorithm 1
	Hybrid BIST Optimization Algorithm 2
	Cost Curves for Hybrid BIST with Reseeding
	Functional Self-Test
	Functional BIST Quality
	Example: Functional BIST
	Hybrid Functional BIST
	Functional Hybrid Self-Test
	Cost Functions for Hybrid Functional BIST
	Functional Self-Test with DFT
	Hybrid BIST for Multiple Cores
	Hybrid BIST for Multiple Cores
	Multi-Core Hybrid BIST Optimization
	Deterministic Test Length Estimation
	Deterministic Test Cost Estimation
	Total Test Cost Estimation
	Multi-Core Hybrid BIST Optimization
	Optimized Multi-Core Hybrid BIST
	Test-per-Scan Hybrid BIST
	Bus-Based BIST Architecture
	Broadcasting Test Patterns in BIST
	Broadcasting Test Patterns in BIST
	Broadcasting Test Patterns in BIST
	Fault-Model Free Fault Diagnosis
	Embedded BIST Based Fault Diagnosis
	Built-In Fault Diagnosis
	Built-In Fault Diagnosis
	Built-In Fault Diagnosis
	Built-In Fault Diagnosis
	Built-In Fault Diagnosis
	Slide Number 137
	Built-In Fault Diagnosis
	Slide Number 139
	Diagnosis of Fault Model Free Defects
	Diagnosis of Fault Model Free Defects
	Diagnosis of Fault Model Free Defects
	Fault Diagnosis Without Fault Models
	Slide Number 144
	Fault Tolerance: Error Detecting Codes
	 Error Detecting/Correcting Codes
	 Error Detecting/Correcting Codes
	Fault Tolerance: Error Correcting Codes
	Fault Tolerance: One Error Correcting Code
	Fault Tolerance: One Error Correcting Code
	Fault Tolerant Communication System
	Error Detection in Arithmetic Operations
	Error Detection in Arithmetic Operations
	Error Detection in Arithmetic Operations
	Summary
	Testing of Networks-on-Chip (NoC)
	Testing of Networks-on-Chip
	Testing of Networks-on-Chip
	Testing of Networks-on-Chip
	Testing of Networks-on-Chip
	IEEE P1500 standard for core test
	IEEE P1500 standard for core test
	IEEE P1500 standard for core test
	IEEE P1500 standard for core test
	Theory of LFSR: Galois Field

