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Overview

1. Introduction
2. Testability measuring
3. Design for testability

4. Built in Self-Test
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Built-In Self-Test

Outline
• Motivation for BIST
• Testing SoC with BIST
• Test per Scan and Test per Clock
• HW and SW based BIST
• Hybrid BIST
• Pseudorandom test generation with LFSR
• Exhaustive and pseudoexhaustive test generation
• Response compaction methods
• Signature analyzers
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Testing Challenges: SoC Test
Cores have to be tested on chip

Source: Elcoteq
Source: Intel
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Built-In Self-Test

• Advances in microelectronics technology
have introduced a new paradigm in IC
design: System-on-Chip (SoC)

• Many systems are nowadays designed by
embedding predesigned and preverified
complex functional blocks (cores) into
one single die

• Such a design style allows designers to
reuse previous designs and will lead to
shorter time-to-market and reduced cost

System-on-Chip
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SoC structure breakdown:
• 10% UDL
• 75% memory
• 50% in-house cores
• 60-70% soft cores
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Self-Test in Complex Digital Systems

SoC

SRAM
Peripheral 
Component
Interconnect

SRAM

CPU

Wrapper
Core
Under
Test

ROM

MPEG UDL
DRAM

Test Access
Mechanism

Test Access
Mechanism

Sink

SoC

Source

Test architecture components:
• Test pattern source & sink
• Test Access Mechanism
• Core test wrapper

Solutions:
• Off-chip solution

– need for external ATE
• Combined solution

– mostly on-chip, ATE 
needed for control

• On-chip solution
– BIST
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What is BIST

• On circuit
– Test pattern generation
– Response verification 

• Random pattern 
generation, 
very long tests

• Response compression

BIST 
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

IC
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SoC BIST

System on Chip

Core 2       

Core 3 Core 4 Core 5   

Embedded Tester
Core 1     

Test access
mechanismBIST BIST

BISTBISTBIST

Test 
Controller

Tester
Memory

Optimization:
- testing time ↓
- memory cost ↓
- power consumption ↓
- hardware cost ↓
- test quality ↑



Technical University Tallinn, ESTONIA

Built-In Self-Test

• Motivations for BIST:
– Need for a cost-efficient testing (general motivation)
– Doubts about the stuck-at fault model
– Increasing difficulties with TPG (Test Pattern Generation)
– Growing volume of test pattern data
– Cost of ATE (Automatic Test Equipment)
– Test application time
– Gap between tester and UUT (Unit Under Test) speeds

• Drawbacks of BIST:
– Additional pins and silicon area needed
– Decreased reliability due to increased silicon area
– Performance impact due to additional circuitry
– Additional design time and cost
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Costly Test Problems Alleviated by BIST

• Increasing chip logic-to-pin ratio – harder observability
• Increasingly dense devices and faster clocks
• Increasing test generation and application times
• Increasing size of test vectors stored in ATE
• Expensive ATE needed for 1 GHz clocking chips 
• Hard testability insertion – designers unfamiliar with gate-

level logic, since they design at behavioral level
• In-circuit testing no longer technically feasible
• Shortage of test engineers
• Circuit testing cannot be easily partitioned
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BIST in Maintenance and Repair

• Useful for field test and diagnosis (less expensive 
than a local automatic test equipment)

• Disadvantages of software tests for field test and 
diagnosis (nonBIST):
– Low hardware fault coverage
– Low diagnostic resolution
– Slow to operate

• Hardware BIST benefits:
– Lower system test effort
– Improved system maintenance and repair
– Improved component repair
– Better diagnosis
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Benefits and Costs of BIST with DFT
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Economics – BIST Costs

 Chip area overhead for:
• Test controller
• Hardware pattern generator
• Hardware response compacter
• Testing of BIST hardware

 Pin overhead -- At least 1 pin needed to activate BIST operation
 Performance overhead – extra path delays due to BIST
 Yield loss – due to increased chip area or more chips In system 

because of BIST
 Reliability reduction – due to increased area
 Increased BIST hardware complexity – happens when BIST 

hardware is made testable
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BIST Benefits

• Faults tested:
 Single stuck-at faults
 Delay faults
 Single stuck-at faults in BIST hardware

• BIST benefits
 Reduced testing and maintenance cost
 Lower test generation cost
 Reduced storage / maintenance of test patterns
 Simpler and less expensive ATE
 Can test many units in parallel
 Shorter test application times
 Can test at functional system speed
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BIST Techniques

• BIST techniques are classified: 
– on-line BIST - includes concurrent and nonconcurrent techniques
– off-line BIST - includes functional and structural approaches 

• On-line BIST - testing occurs during normal functional operation
– Concurrent on-line BIST - testing occurs simultaneously with normal operation 

mode, usually coding techniques or duplication and comparison are used 
– Nonconcurrent on-line BIST - testing is carried out while a system is in an idle

state, often by executing diagnostic software or firmware routines
• Off-line BIST - system is not in its normal working mode, usually 

– on-chip test generators and output response analyzers or microdiagnostic routines 
– Functional off-line BIST is based on a functional description of the Component 

Under Test  (CUT) and uses functional high-level fault models 
– Structural off-line BIST is based on the structure of the CUT and uses structural 

fault models (e.g. SAF)
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General Architecture of BIST

BIST 
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

• BIST components:
– Test pattern generator 

(TPG)
– Test response 

analyzer (TRA)
• TPG & TRA are usually 

implemented as linear 
feedback shift registers 
(LFSR)

• Two widespread 
schemes:

– test-per-scan
– test-per-clock
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Detailed BIST Architecture

Source: VLSI Test: Bushnell-Agrawal
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Built-In Self-Test

Scan Path

Scan Path

Scan Path

.

.

.

CUT

Test pattern 
generator 

Test response 
analysator

BIST 
Control

• Assumes existing scan 
architecture

• Drawback:
– Long test application time

Test per Scan:

Initial test set:

T1: 1100
T2: 1010
T3: 0101
T4: 1001

Test application:

1100 T 1010 T 0101T 1001 T
Number of clocks = 4 x 4 + 4 = 20
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Scan-Path Design

Combinational 
circuit

IN OUT
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The complexity of testing is a function 
of the number of feedback loops and 
their length

The longer a feedback loop, the more 
clock cycles are needed to initialize 
and sensitize patterns

Scan-register is a aregister with both 
shift and parallel-load capability

T = 0  - normal working mode        T = 1 
- scan mode

Normal mode : flip-flops are connected 
to the combinational circuit

Test mode: flip-flops are disconnected 
from the combinational circuit and 
connected to each other to form a shift 
register 
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Built-In Self-Test

Test per Clock:
• Initial test set:

• T1: 1100
• T2: 1010
• T3: 0101
• T4: 1001

• Test application:

• 1 10 0  1 0 1 0 01  01 1001 
•

• T1 T4 T3                 T2
• Number of clocks = 10

Combinational Circuit 

Under Test

Scan-Path Register
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BILBO BIST Architecture

Working modes:

B1 B2
0    0 Reset
0    1    Flip-flop (normal)
1    0    Scan mode
1    1    Test mode

Testing modes:

CC1: LFSR 1  - TPG
LFSR 2  - SA

CC2: LFSR 2  - TPG
LFSR 1  - SA

LFSR 1

CC1

LFSR 2

CC2

B1
B2

B1
B2
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BILBO BIST Architecture: Example

• Testing epoch I:
 LFSR1 generates tests for CUT1 and CUT2
 BILBO2 (LFSR3) compacts  CUT1 (CUT2) 

• Testing epoch II:
 BILBO2 generates test patterns for CUT3
 LFSR3 compacts CUT3 response

Source: VLSI Test: Bushnell-Agrawal
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Pattern Generation
• Store in ROM – too expensive
• Exhaustive
• Pseudo-exhaustive
• Pseudo-random (LFSR) – Preferred method
• Binary counters – use more hardware than LFSR
• Modified counters
• Test pattern augmentation

 LFSR combined with a few patterns in ROM
 Hardware diffracter – generates pattern cluster in 

neighborhood of pattern stored in ROM
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Pattern Generation

Pseudorandom Test generation by LFSR:

CUT

LFSR

LFSR

X1Xo Xn. . .

ho h1 hn

. . .

• Using special LFSR registers
• Several proposals:

– BILBO
– CSTP

• Main characteristics of LFSR:
– polynomial
– initial state
– test length
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Some Definitions

• LFSR – Linear feedback shift register, hardware that generates 
pseudo-random pattern sequence

• BILBO – Built-in logic block observer, extra hardware added to 
flip-flops so they can be reconfigured as an LFSR pattern generator 
or response compacter, a scan chain, or as flip-flops

• Exhaustive testing – Apply all possible 2n patterns to a circuit with 
n inputs

• Pseudo-exhaustive testing – Break circuit into small, overlapping 
blocks and test each exhaustively

• Pseudo-random testing – Algorithmic pattern generator that 
produces a subset of all possible tests with most of the properties of 
randomly-generated patterns



Technical University Tallinn, ESTONIA

More Definitions

• Irreducible polynomial – Boolean polynomial that cannot be factored
• Primitive polynomial – Boolean polynomial p(x) that can be used to 

compute increasing powers n of xn modulo p(x) to obtain all possible
non-zero polynomials of degree less than p(x)

• Signature – Any statistical circuit property distinguishing between bad 
and good circuits

• TPG – Hardware test pattern generator
• PRPG – Hardware Pseudo-Random Pattern Generator
• MISR – Multiple Input Response Analyzer
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Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

x x2 x3 x4

x3x2 x4x

Polynomial: P(x) = x4 + x3 + 1

Standard LFSR

Modular LFSR
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Theory of LFSR
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Theory of LFSR
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Theory of LFSR
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Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

x x2 x3 x4

Polynomial: P(x) = x4 + x3 + 1
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Matrix Equation for Standard LFSR

Xn (t + 1)
Xn-1 (t + 1)...
X3 (t + 1)
X2 (t + 1)
X1 (t + 1)

1
0...
0
0

hn-1

0
1...
0
0

hn-2

0
0...
0
0
1

…
…

…
…
…

0
0...
1
0
h2

0
0...
0
1
h1

Xn (t)
Xn-1 (t)...
X3 (t)
X2 (t)
X1 (t)

=

X (t + 1) = Ts X (t)        (Ts is companion matrix)

x x2 x3 x4
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Pseudorandom Test Generation

x x2 x3 x4

Polynomial: P(x) = x4 + x3 + 1

X4 (t + 1)
X3 (t + 1)
X2 (t + 1)
X1 (t + 1)

1
0
0
h3

0
1
0
h2

0
0
0
1

0
0
1
h1

=

X4 (t)
X3 (t)
X2 (t)
X1 (t)

t x x2 x3 x4 t x x2 x3 x4

1 0 0 0 1 9 0 1 0 1
2 1 0 0 0 10 1 0 1 0
3 0 1 0 0 11 1 1 0 1
4 0 0 1 0 12 1 1 1 0
5 1 0 0 1 13 1 1 1 1
6 1 1 0 0 14 0 1 1 1
7 0 1 1 0 15 0 0 1 1
8 1 0 1 1 16 0 0 0 1

1   0   0
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• Irreducible polynomial – cannot be factored, is divisible 
only by itself

• Irreducible polynomial of degree n is characterized by:
– An odd number of terms including 1 term
– Divisibility into 1 + xk, where k = 2n – 1

• Any polynomial with all even exponents can be factored and 
hence is reducible

• An irreducible polynomial is primitive if it divides the 
polynomial 1+xk for k = 2n – 1, but not for any smaller 
positive integer k

Theory of LFSR: Primitive Polynomials

Properties of Polynomials:
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Theory of LFSR: Examples

Polynomials of degree n=3 (examples):

123 ++ xx

Primitive polynomials:

13 ++ xx

The polynomials will divide evenly the polynomial  x7 + 1, 
but not any one of k<7, hence, they are primitive

They are also reciprocal: coefficients are 1011 and 1101

Reducible polynomials (non-primitive):

)1)(1(1

)1)(1(1

223

23

++=+++

+++=+

xxxxx

xxxx

k = 2n – 1= 23 – 1=7

The polynomials don’t divide 
evenly the polynomial x7 + 1
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Theory of LFSR: Examples

100
110
111
011
101
010
001
100

100
010
101
110
111
011
001
100

100
010
001
100
010
001
100
010

100
110
011
001
100
110
011
001

Comparison of test sequences generated:

123 ++ xx
Primitive polynomials

13 ++ xx 1          1 233 ++++ xxxx
Non-primitive polynomials
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Theory of LFSR: Examples
Reducible polynomial (non-primitive):

)1)(1(1 23 +++=+ xxxx

100
010
001
100

1
0
1 01

10
11
01

x x2

13 +x 12 ++ xx1+x

Primitive polynomial

Multiplication of 
two primitive 
polynomials:

1 

1  
1
1 

24

234

23

2

2

2

++
++
++
++
++
++

xx
xxx
xxx

xx
xx
xx

Is
124 ++ xx

a primitive polynomial?
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Theory of LFSR: Examples

Is a primitive polynimial?124 ++ xx

1

1 

1

1  

1

3

357

57

579

9

91113

1113

111315

15

+
++
++
++

+
++
++
++

+

x
xxx

xx
xxx

x
xxx

xx
xxx

x

35911 xxxx +++

124 ++ xx
Irreducible polynomial of 
degree n is characterized by:

- An odd number of terms 
including 1 term?

Yes, it includes 3 terms

-Divisibility into 1 + xk, 
where k = 2n – 1

No,  there is remainder  

Divisibility check:

13 +x

is non-primitive?124 ++ xx
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Non-primitive polynomial
x4 + x2 + 1

Theory of LFSR: Examples

x x2 x3 x4

0001
1000
0100
1010
0101
0010
0001

1001
1100
1110
1111
0111
0011
1001

0110
1011
1101
0110

Primitive polynomial
x4 + x + 1

x x2 x3 x4

0001
1000
1100
1110
1111
0111

1011
0101
1010
1101
0110
0011

1001
0100
0010
0001
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Theory of LFSR: Examples
Primitive polynomial
x4 + x + 1

x x2 x3 x4

0001
1000
1100
1110
1111
0111

1011
0101
1010
1101
0110
0011

1001
0100
0010
0001

Zero generation:

x x2 x3 x4

1

1000
1100
1110
1111
0111

1011
0101
1010
1101
0110
0011

1001
0100
0010
0001
0000

0000
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Theory of LFSR: Reciprocal Polynomials
The reciprocal polynomial of P(X) is defined by:

(X) =XN PN (1/X) = XN {1 +  Cj X-J}

(X) = XN +  Cj XN-J for 1 ≤ i ≤ N

Thus every coefficient Ci in P(X) is replaced by CN-I.

Example:
The reciprocal of polynomial P3(X) = 1 + X + X3

is P’3 (X) = 1 + X2 + X3

 The reciprocal of a primitive polynomial is also primitive
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Theory of LFSR: Primitive Polynomials

Number of primitive 
polynomials of 
degree N

N No
1 1
2 1
4 2
8 16

16 2048
32 67108864

N Primitive Polynomials
1,2,3,4,6,7,15,22 1 + X + Xn

5,11, 21, 29 1 + X2 + Xn

10,17,20,25,28,31 1 + X3 + Xn

9 1 + X4 + Xn

23 1 + X5 + Xn

18 1 + X7 + Xn

8 1 + X2 + X3 + X4 + Xn

12 1 + X + X3 + X4 + Xn

13 1 + X + X4 + X6 + Xn

14, 16 1 + X + X3 + X4 + Xn

Table of primitive polynomials up to degree 31
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Theory of LFSR: Primitive Polynomials

Number of PP of 
degree n

n No
1 1
2 1
4 2
8 16

16 2048
32 67108864

Examples of PP (exponents of terms):

n other n other
1 0 9 4 0
2 1 0 10 3 0
3 1 0 11 2 0
4 1 0 12 7 4 3 0
5 2 0 13 4 3 1 0
6 1 0 14 12 11 1 0
7 1 0 15 1 0
8 6 5 1 0 16 5 3 2 0
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Deterministic Synthesis of LFSR

Generation of the polynomial and seed for the given test sequence

(1)  100x0
(2)  x1010
(3)  10101
(4)  01111

Given test  
sequence:

Creation of the   
shortest bit-stream:

Expected shortest  
LFSR sequence:

10010 1 01111
1

0

01111 (4)
10111
01011
10101 (3)
01010 (2)
00101
10010 (1)

Seed
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Deterministic Synthesis of LFSR

Expected shortest  
LFSR sequence:

01111 (4)
1 0111
0 1011
1 0101 (3)
0 1010 (2)
0 0101
1 0010 (1)

01111
10111
01011
10101
01010
00101

System of linear equations:

Generation of the polynomial and seed for the given test sequence

x

x1
x2
x3
x4
x5

1
0
1
0
0
1

=

x x2 x3 x4 x5
x1 x2 x3 x4 x5

We are looking for values of xi

:
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Deterministic Synthesis of LFSR

01111
10111
01011
10101
01010
00101

System of linear equations:

Generation of the polynomial and seed for the given test sequence

x

x1
x2
x3
x4
x5

1
0
1
0
0
1

=

x x2 x3 x4 x5
x1 x5

01000
10000
00100
00010
00001
00001

Solving the equation by 
Gaussian elimination:

x

x1
x2
x3
x4
x5

0
1
0
0
1
1

=

1
2
3
4
5
6

1,2,4,6
4,6
1,3
2,4
1,2,3,4,6

Polynomial:  x5 + x + 1 Seed:  01111
Solution: x1 x2 x3 x4 x5

1  0  0  0  1
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Deterministic Synthesis of LFSR

Embedding deterministic test patterns into LFSR sequence:

x x2 x3 x4 x5
x1 x5

Polynomial:  x5 + x + 1 Seed:  01111

(1)  100x0
(2)  x1010
(3)  10101
(4)  01111

Given 
deterministic 
test  
sequence:

LFSR sequence:

(1)  01111 (4)
(2)  10111
(3)  01011
(4)  10101 (3)
(5)  01010 (2)
(6)  00101
(7)  10010 (1)
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BIST: Test Generation

Problems:
• Very long test 

application time
• Low fault coverage
• Area overhead
• Additional delay

Pseudorandom Test generation by LFSR:

Possible solutions 
• Weighted pattern PRPG
• Combining pseudorandom 

test with deterministic test
– Multiple seed
– Hybrid BIST

Time

Fa
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ag
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Time
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ag

e

breakpoint
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BIST: Fault Coverage
Fault coverage is rapidly 
growing: 1

2

n

Combinational 
circuit            

under test

Truth table:

Patterns

00…000
00…001  
00…010

…

11…111          

Functions

01 01 01…101
00 11 00…011  
00 00 11…111

…

00 00 00…111          2n

1

1 2n
2

Number of 
patterns

Number of functions

2n-12
tested

50%!

0%

Faulty 
functions 

covered by               
1. pattern Faulty 

functions 
covered by               
2. pattern

50%

75%
3. pattern

4. pat. 87,5%

93,75%

100%
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BIST: Fault Coverage

Time

Fa
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t C
ov
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e

Pseudorandom Test generation by LFSR:

Reasons of the high initial efficiency:

A circuit may implement           functions

A test vector partitions the functions into 2 equal 
sized equivalence classes (correct circuit in one of 
them)

The second vector partitions into 4 classes etc.

After m patterns the fraction of functions 
distinguished from the correct function is

n22

Motivation of using 
LFSR:

- low generation cost
- high initial efeciency

,2
12

1
1

2
2 ∑

=

−

−

m

i

in

n
nm 21 ≤≤



Technical University Tallinn, ESTONIA

BIST: Different Techniques

Pseudorandom testing of sequential circuits:
The following rules suggested:
• clock-signals should not be random
• control signals such as reset, should be activated 

with low probability
• data signals may be chosen randomly
Microprocessor testing
• A test generator picks randomly an instruction 

and generates random data patterns
• By repeating this sequence a specified number of 

times it will produce a test program which will 
test the microprocessor by randomly excercising 
its logic

Pseudorandom Test generation by LFSR:

Full identification is 
achieved only after 2n input 
combinations have been 
tried out (exhaustive test)

A better fault model 
(stuck-at-0/1)
may limit the number of 
partitions necessary

,2
12

1
1

12
2 ∑
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−

m

i

n

n

nm 21 ≤≤
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BIST: Structural Approach to Test

Testing of structural faults: 1
2

n

Combinational 
circuit            

under test

Fault coverage

100%

Number of 
patterns

4

4. pat.
Not tested 

faults

Faults 
covered by               
1. pattern

2. pattern

3. patttern
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BIST: Two Approaches to Test

Testing of 
functions:

100% will be 
reached only
after 2n test 
patterns

Testing of 
faults:

100% will be reached 
when all faults from 
the fault list are 
covered

0%

Faulty 
functions 

covered by               
1. pattern Faulty 

functions 
covered by               
2. pattern

50%

75%
3. pattern

4. pat. 87,5%

93,75%

100%

100%

Testing of 
faults

Testing of 
functions

4. pat.
Not tested 

faults

Faults 
covered by               
1. pattern

2. pattern

3. patttern
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BIST: Other test generation methods
Universal test sets

1. Exhaustive test (trivial test)
2. Pseudo-exhaustive test

Properties of exhaustive tests
1. Advantages (concerning the stuck at fault model):

- test pattern generation is not needed
- fault simulation is not needed
- no need for a fault model
- redundancy problem is eliminated
- single and multiple stuck-at fault coverage is 100%
- easily generated on-line by hardware

2. Shortcomings:
- long test length (2n patterns are needed, n - is the number of inputs)
- CMOS stuck-open fault problem
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BIST: Other test generation methods

Pseudo-exhaustive test sets:
– Output function verification

• maximal parallel testability
• partial parallel testability

– Segment function verification

Output function verification

4

4

4

4

216 = 65536  >>  4x16 = 64   >   16 
Exhaustive

test
Pseudo-

exhaustive
sequential

Segment function verification

F &
1111

0101
0011

Pseudo-
exhaustive

parallel

Primitive 
polynomials
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Testing ripple-carry adder

Output function verification (maximum parallelity)

c0 a0 b0 c1 a1 b1 c2 a2 b2 c3    …
1 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 1 0 0 1 0
3 0 1 0 0 1 0 0 1 0 0
4 0 1 1 1 0 0 0 1 1 1
5 1 0 0 0 1 1 1 0 0 0
6 1 0 1 1 0 1 1 0 1 1
7 1 1 0 1 1 0 1 1 0 1
8 1 1 1 1 1 1 1 1 1 1

Exhaustive test generation for n-bit adder:

Good news:
Bit number n - arbitrary
Test length - always 8 (!)

0-bit testing 2-bit testing1-bit testing 3-bit testing  …  etc

Bad news:
The method is correct
only for ripple-carry adder
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Testing carry-lookahead adder

General expressions:

iii baG = iiiii babaP ∨= 1−∨= nnnn CPGC

211211 )( −−−−−− ∨∨=∨∨= nnnnnnnnnnnn CPPGPGCPGPGC

n-bit carry-lookahead adder:

01231232333 CPPPGPPGPGC ∨∨∨=

),,( 011011011110111 CbafCbaCbabaCPGC =∨∨=∨=

01111222233330123 ))()(( CbabababababaCPPP ∨∨∨=
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Testing carry-lookahead adder

01111222233330123 ))()(( CbabababababaCPPP ∨∨∨=

1   1      0   0     1   1      0   0    1   1     0   0    1    1 
0   0      1   1     0   0      1   1    0   0     1   1    1    1
1   0      0   1     1   1                 1   1                1    0
0   1      1   0     1   1                 1   1                1    0
1   1                  0   1      1   0    1   1                1    0 
1   1                  1   0      0   1    1   1                1    0
1   1                  1   1                 0   1     1   0    1    0
1   1                  1   1                 1   0     0   1    1    0
1   1                  1   1                 1   1                0    0

For 3-bit carry lookahead adder for testing only this part of the circuit at least 
9 test patterns are needed

Increase in the speed implies worse testability 

Testing ≡ 0

Testing ≡ 1

R



Technical University Tallinn, ESTONIA

BIST: Other test generation methods

Output function verification (partial parallelity)

x1

x2

x3

x4

F1(x1, x2)
F2(x1, x3)
F3(x2, x3)
F4(x2, x4)
F5(x1, x4)
F6(x3, x4)

0011- -

010101

010110

00-11-
000111

0011- 0
F1

F3

F2

F4
F5

Exhaustive testing - 16
Pseudo-exhaustive, full parallel - 4
Pseudo-exhaustive, partially parallel - 6
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Problems with Pseudorandom Test

Time

F
au

lt 
C

o
ve

ra
g

e

Problem: low fault coverageThe main motivations of 
using random patterns 
are:

- low generation cost
- high initial efeciency

Counter

Decoder

&

LFSR

Reset

If Reset = 1 signal has probability 0,5 then 
counter will not work and                                   
1 for AND gate may never be produced

1
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Sequential BIST

A DFT technique of BIST for sequential circuits is proposed 
The approach proposed is based on all-branches coverage metrics
which is known to be more powerful than all-statement coverage

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1

S4

S0

S1 S5

S2

S3

A = 1

A = 0

B = 0 B = 1
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Sequential BIST

• Status signals entering the
control part are made 
controllable

• In the test mode we can force 
the UUT to traverse all the 
branches in the FSM state 
transition graph 

• The proposed idea of 
architecture requires small
device area overhead since a 
simple controller can be 
implemented to manipulate 
the control signals

Digital System

FSM

Datapath

control signals status 
signals

reset

clock

primary  
inputs

primary outputs

masked
status bits

MUX

test/normal 
mode (TM)

observation 
points



Technical University Tallinn, ESTONIA

BIST: Weighted pseudorandom test

Hardware implementation of weight generator

LFSR

&&&

MUXWeight select

Desired weighted value Scan-IN

1/21/41/81/16
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BIST: Weighted pseudorandom test
Problem: random-pattern-resistant faults

Solution: weighted pseudorandom 
testing
The probabilities of pseudorandom signals 
are weighted, the weights are determined by 
circuit analysis

NCV – non-controlling value

The more faults that must be tested 
through a gate input, the more the other 
inputs should be weighted to NCV

&Faults 
to be 

tested

1 NCV

Propagated 
faults

NDI - number of circuit inputs 
for each gate to be the number 
of PIs or SRLs in the backtrace 
cone

PI - primary inputs 
SRL - scan register latch      

&
NDIG

NDII
I

G

NDI - relative measure of the 
number of faults to be 
detected through the gate
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BIST: Weighted pseudorandom test

NCV - noncontrolling value

The more faults that must be tested 
through a gate input, the more the other 
inputs should be weighted to NCV

&Faults 
to be 

tested

1 NCV

Propagated 
faults

&
NDIG

NDII
I

G

R I = NDIG / NDII

R I - the desired ratio of the 
NCV to the controlling value 
for each gate input
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BIST: Weighted pseudorandom test

Example:

R 1 = NDIG / NDII = 6/1 = 6

R 2 = NDIG / NDII = 6/2 = 3

R 3 = NDIG / NDII = 6/3 = 2
&

G
1

2

3

PI

PI

PI
PI
PI

PI
More faults must be detected 
through the third input than 
through others 

This results in the other inputs 
being weighted more heavily 
towards NCV
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BIST: Weighted pseudorandom test

&
G

1

2
3

PI

PI

PI
PI
PI

PI

W0, W1 - weights of the signals

WV - the value to which the input is biased

WV = 0, if W0 > W1 else WV = 1

Calculation of signal weights:

Function WOI W1I
AND WOG RI ∗ W1G

NAND W1G RI ∗ WOG

OR RI ∗ WOG W1G

NOR RI ∗ W1G WOG

W0G = 1

W1G = 1

Calculation of W0, W1

R 1 = 6
W01 = 1
W11 = 6

R 3 = 2
W03 = 1
W13 = 2

R 2 = 3
W02 = 1
W12 = 3
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BIST: Weighted pseudorandom test

&
G

1

2
3

W01 = 1
W11 = 6

W03 = 1
W13 = 2

W02 = 1
W12 = 3

1

1

1

PI1

PI2

PI6
PI5
PI4

PI3

R 1 = 1
W01 = 6
W11 = 1

R 1 = 2
W01 = 2
W11 = 3

R 1 = 3
W01 = 3
W11 = 2

Backtracing from all the 
outputs to all the inputs 
of the given cone

Weights are calculated for 
all gates and PIs

Function WOI W1I
OR RI ∗ WOG W1G

NOR RI ∗ W1G WOG

Calculation of signal weights:
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BIST: Weighted pseudorandom test

WF - weighting factor indicating the 
amount of biasing toward weighted 
value

WF = max {W0,W1} / min {W1,W0} 

Probability:

P = WF / (WF + 1)

Calculation of signal probabilities:

For PI1 :                 W0 = 6  W1 = 1       P1 = 1/7 = 0.15

For PI2 and  PI3 :   W0 = 2  W1 = 3       P1 = 3/5 = 0.6

For PI4 - PI6 :         W0 = 3  W1 = 2       P1 = 2/5 = 0.4

&
G

1

2
3

1

1

1

PI1

PI2

PI6
PI5
PI4

PI3

R 1 = 1
W01 = 6
W11 = 1

R 1 = 2
W01 = 2
W11 = 3

R 1 = 3
W01 = 3
W11 = 2
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BIST: Weighted pseudorandom test

&
G

1
2

3

PI

PI

PI
PI
PI

PI

Calculation of signal probabilities:

For PI1 :                  P1 = 0.15

For PI2 and  PI3 :    P1 = 0.6

For PI4 - PI6 :         P1 = 0.4

1

1

1

Probability of detecting the fault  ≡1
at the input 3 of the gate G:

1) equal probabilities (p = 0.5):

P  = 0.5 ∗ (0.25 + 0.25 + 0.25) ∗ 0.53 =
= 0.5 ∗ 0.75 ∗ 0.125 = 
= 0.046

2) weighted probabilities:
P  = 0.85 ∗

∗ (0.6 ∗ 0.4 + 0.4 ∗ 0.6 + 0.62) ∗
∗ 0.63 = 

= 0.85 ∗ 0.84 ∗ 0.22 = 
= 0.16

≡ 1
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BIST: Response Compression

1. Parity checking

2mod)()(
1
∑
=

=
m

i
irRP

UUT
Test

T
ri

Pi-1

2. One counting

∑
=

=
m

i
irRP

1
)(

UUT
Test ri Counter

3. Zero counting

∑
=

=
m

i
irRP

1
)(
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BIST: Response Compression

4. Transition counting

UUT
Test

T

ri

ri-1)()(
2

1∑
=

−=
m

i
ii rrRP

)()(
2

1∑
=

−=
m

i
ii rrRP

a) Transition 0→1

b) Transition 1→0

UUT
Test

T

ri

ri-1

5. Signature analysis

&

&
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Pseudorandom Test Generation

LFSR – Linear Feedback Shift Register:

x x2 x3 x4

x3x2 x4x

Polynomial: P(x) = x4 + x3 + 1

Standard LFSR

Modular LFSR
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BIST: Signature Analysis

1 x x2

x3

x4

x2x1 x4

x3

Polynomial: P(x) = 1 + x3 + x4

Signature analyzer:
Standard LFSR

Modular LFSR

UUT

Response 
string

Response in compacted 
by LFSR

The content of LFSR after 
test is called signature
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Theory of LFSR

The principles of CRC  (Cyclic Redundancy Coding) are used 
in LFSR  based test response compaction
Coding theory treats binary strings as polynomials:

R = rm-1 rm-2 … r1 r0 - m-bit binary sequence

R(x) = rm-1 xm-1 + rm-2 xm-2 + … + r1 x + r0 - polynomial in x

Example:

11001    → R(x) = x4 + x3 + 1

Only the coefficients are of interest, not the actual value of x

However, for x = 2, R(x) is the decimal value of the bit string
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BIST: Signature Analysis
Arithmetic of coefficients: 

- linear algebra over the field of 0 and 1:  all integers mapped into either 0 or 1

- mapping: representation of any integer   n   by the remainder resulting from
the division of   n   by 2:  

n = 2m + r,  r ∈ { 0,1 }    or    r ≡ n (modulo 2)

Linear - refers to the arithmetic unit (modulo-2 adder), used in CRC 
generator (linear, since each bit has equal weight upon the output)
Examples:

x4 +  x3 +   x  +  1
+ x4 +  x2 +   x 

x3 +  x2 +  1

x4 +  x3 +   x  +  1
∗ x    +  1

x5 +  x4 +  x2 +  x 
x4 +  x3 +  x  +  1

x5 +  x3 +  x2 +  1 



Technical University Tallinn, ESTONIA

Theory of LFSR

Characteristic Polynomials:

∑
∞

=

=+++++=
0

2
210 ......)(

m

m
m

m
m xcxcxcxccxG

Multiplication of 

polynomials

1            
  

1                  
1                       
1                  

34

234

2

2

2

+++
++

++
+
++

xxx
xxx

xx
x
xx
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Theory of LFSR

Characteristic Polynomials:

∑
∞

=

=+++++=
0

2
210 ......)(

m

m
m

m
m xcxcxcxccxG

Division of 

polynomials

x
x

xx
xx

xx
xx

xxx
xx

                                  
1                                 
1                            

                           
1                         

                    
1                1

1             

2

2

3

23

24

342

2

+
++

+
++

+

+++
++ Quotient

Remainder

DividendDivider
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BIST: Signature Analysis

Division of one polynomial  P(x) by another 
G(x) produces a quotient polynomial Q(x), 
and if the division is not exact, a remainder 
polynomial R(x)

)(
)()(

)(
)(

xG
xRxQ

xG
xP

+=

Example:

1
11

1)(
)(

35

2
23

35

37

+++
+

+++=
+++

++
=

xxx
xxx

xxx
xxx

xG
xP

Remainder R(x) is used as a check word in data transmission
The transmitted code consists of the unaltered message P(x) followed by the check 
word R(x)

Upon receipt, the reverse process occurs: the message P(x) is divided by known 
G(x), and a mismatch between R(x) and the remainder from the division indicates 
an error
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BIST: Signature Analysis
In signature testing we mean the use of CRC 
encoding as the data compressor G(x) and 
the use of the remainder R(x) as the signature
of the test response string P(x) from the UUT

Signature is the CRC code word )(
)()(

)(
)(

xG
xRxQ

xG
xP

+=

Example:

1)(
)(

35

37

+++
++

=
xxx

xxx
xG
xP

1 0 1                 = Q(x) = x2 + 1

1 0 1 0 1 1 1 0 0 0 1 0 1 0
1 0 1 0 1 1

0 0 1 0 0 1 1 0
1 0 1 0 1 1

0 0 1 1 0 1 = R(x) = x3 + x2 + 1 

P(x)

G(x)

Signature
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BIST: Signature Analysis

1)(
)(

35

37

+++
++

=
xxx

xxx
xG
xP

1 0 1

1 0 1 0 1 1 1 0 0 0 1 0 1 0
1 0 1 0 1 1

0 0 1 0 0 1 1 0
1 0 1 0 1 1

0 0 1 1 0 1 = R(x) = x3 + x2 + 1 

P(x)

G(x)

Signature

The division process can 
be mechanized using LFSR

The divisor polynomial G(x) 
is defined by the feedback 
connections

Shift creates x5 which is 
replaced by x5 = x3 + x + 1

x0 x1 x2 x3 x4

IN: 01 010001 Shifted into LFSR

x5

G(x)

P(x) Compressor

Response
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BIST: Signature Analysis

Aliasing:

UUT
Response

SA

L N

L - test length

N - number of stages in
Signature Analyzer

Lk 2=

All possible responses All possible signatures
Nk 2=Faulty 

response

Correct 
response

N << L
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BIST: Signature Analysis
Aliasing:

UUT
Response

SA

L N

L - test length

N - number of stages in
Signature Analyzer

Lk 2= - number of different possible responses

No aliasing is possible for those strings with   L - N leading zeros since they are 
represented by polynomials of degree   N - 1  that are not divisible by characteristic 
polynomial of LFSR

12 −−NL

Probability of aliasing:
12
12

−
−

=
−

L

NL

P NP
2
1

=1>>L

- aliasing is possible
000000000000000 ... 00000 XXXXX

L                          N
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BIST: Signature Analysis

x2 x 1x4

x3

Parallel Signature Analyzer:

UUT

x2 x 1x4

x3

UUT Multiple Input Signature 
Analyser (MISR)

Single Input Signature Analyser 
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BIST: Signature Analysis

Signature calculating for multiple outputs:

LFSR - Test Pattern Generator

Combinational circuit

LFSR - Signature analyzer

Multiplexer

LFSR - Test Pattern Generator

Combinational circuit

LFSR - Signature analyzer

Multiplexer
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BIST: Joining TPG and SA

1 x x2 x3 x4

LFSR

UUT

Response string for 
Signature Analysis

Test Pattern (when generating tests)
Signature (when analyzing test responses)

FF FF FF FF
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BIST Architectures

BIST 
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

• BIST components:
– Test pattern generator (TPG)
– Test response analyzer (TRA)
– BIST controller

• A part of a system (hardcore) 
must be operational to execute a 
self-test

• At minimum the hardcore usually 
includes power, ground, and 
clock circuitry 

• Hardcore should be tested by 
– external test equipment or 
– it should be designed self-

testable by using various forms of 
redundancy

General Architecture of BIST
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BIST Architectures

Test per Clock:

Disjoint TPG and SA: 
BILBO

Joint TPG and SA: 

CSTP - Circular Self-Test 
Path:

LFSR - Test Pattern Generator

Combinational circuit

LFSR - Signature analyzer

LFSR - Test Pattern Generator 

& Signature analyser

Combinational circuit
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BIST: Circular Self-Test Architecture

Circuit Under Test

FF FFFF
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BIST: Circular Self-Test Path

CSTP CSTP

CSTP

CSTP CSTP

CC CC

CC

CC

CC

R R
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BIST Embedding Example

M1 M2

M3
M5

LFSR1

M4

MISR1

BILBO

M6

MUX

CSTP

LFSR2

MISR2

MUXLFSR, CSTP  → M2 → MISR1
M2 → M5 → MISR2 (Functional BIST)
CSTP  → M3 → CSTP
LFSR2 → M4 → BILBO

Concurrent 
testing:
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BIST Architectures

Test Pattern Generator

MISR

Sc
an

 c
ha

in

CUT
...

STUMPS:
Self-Testing Unit Using MISR 
and Parallel Shift Register 
Sequence Generator

LOCST: LSSD On-Chip Self-Test

CUT

Error

Test 
ControllerSI SO

TPG SA

CUT

BS BS

Scan Path

Sc
an

 c
ha

in

IC
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Scan-Based BIST Architecture

Copyright: D.Xiang 2003

PS – Phase shifter

Scan-Forest

Scan-Trees

Scan-Segments (SC)

Weighted scan-
enables for SS

Compactor - EXORs
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Software BIST

To reduce the hardware 
overhead cost in the BIST 
applications the hardware LFSR 
can be replaced by software

Software BIST is especially 
attractive to test SoCs, 
because of the availability of 
computing resources 
directly in the system (a 
typical SoC usually contains 
at least one processor core) 

SoC ROMCPU Core
LFSR1: 001010010101010011
N1: 275

LFSR2: 110101011010110101
N2: 900
...

load (LFSRj);
  for (i=0; i<Nj; i++)
   ...
end;

Core j Core j+1 Core j+...

Software based test generation:

The TPG software is the same for all cores and is stored as a single copy 
All characteristics of the LFSR are specific to each core and stored in the ROM 
They will be loaded upon request. 
For each additional core, only the BIST characteristics for this core have to be stored 
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Problems with BIST

Time

Fa
ul

t C
ov

er
ag

e

Problems:
• Very long test 

application time
• Low fault 

coverage
• Area overhead
• Additional delay

Possible solutions 
• Weighted 

pseudorandom test
• Combining 

pseudorandom test 
with deterministic test

– Multiple seed
– Bit flipping

• Hybrid BIST

Time

F
au

lt 
C

o
ve

ra
g

e

The main motivations of 
using random patterns 
are:

- low generation cost
- high initial efeciency
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Problems with BIST: Hard to Test Faults

Time

F
au

lt 
C

o
ve

ra
g

e

Problem: Low fault coverageThe main motivations 
of using random 
patterns are:

- low generation cost
- high initial efeciency

1 2n-1
Patterns from LFSR:

Pseudorandom 
test window:

Hard 
to test 
faults

1 2n-1
Dream solution: Find LFSR such that:

Hard 
to test 
faults
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Hybrid Built-In Self-Test

PRPG

CORE UNDER
TEST

. . .
. . .

. . .

ROM

. . . . . .

SoC

Core

MISR

B
IS

T 
C

on
tro

lle
r

Hybrid test set contains 
pseudorandom and 
deterministic vectors 

Pseudorandom test is improved 
by a stored test set which is 
specially generated to target the 
random resistant faults

Optimization problem:

Pseudorandom Test Determ. Test

Where should be this breakpoint?

Deterministic patterns

Pseudorandom 
patterns
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Optimization of Hybrid BIST

Cost of BIST:

k rDET(k) rNOT(k) FC(k) t(k)
1 155 839 15.6% 104
2 76 763 23.2% 104
3 65 698 29.8% 100
4 90 608 38.8% 101
5 44 564 43.3% 99

10 104 421 57.6% 95
20 44 311 68.7% 87
50 51 218 78.1% 74

100 16 145 85.4% 52
200 18 114 88.5% 41
411 31 70 93.0% 26
954 18 28 97.2% 12

1560 8 16 98.4% 7
2153 11 5 99.5% 3
3449 2 3 99.7% 2
4519 2 1 99.9% 1
4520 1 0 100.0% 0

  Total Cost 
 CTOTAL 

Figure 2: Cost calculation for hybrid BIST 

Cost of 
pseudorandom test 

patterns CGEN 

Number of remaining 
faults after applying k 

pseudorandom test 
patterns rNOT(k) 

Cost of stored 
test CMEM 

Number of pseudorandom 
test patterns applied, k 

# faults

# faults 
not 

detected

# tests 
needed

PR test 
length

PR test length k

# tests

FAST estimation

SLOW analysis

CTOTAL = α k + β t(k)

β t(k)

α k

min CTOTAL

Det. TestPseudorandom Test
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Deterministic Test Length Estimation

 

i 

F 

F D k ( i ) F P E k ( i ) 

i * 

F* 

| T D E k ( i ) | 

100% 

| T D F k | j i 

Fault coverage

Pseudorandom 
test length

Deterministic test (DT)
Pseudorandom test (PT)

Deterministic test length estimation

For each PT length i* we 
determine 
- PT fault coverage F*, and
- the imaginable part of DT

FDk(i) to be used for the     
same fault coverage

Then the remaining part of DT 
TDE

k(i) will be the estimation of 
the  DT length

Fast estimation for the 
length of deterministic test:
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Calculation of the Deterministic Test Cost

Two possibilities to find the length of deterministic data for each 
possible breakpoint in the pseudorandom test sequence: 

ATPG based approach
For each breakpoint of P-
sequence, ATPG is used
Fault table based approach 
A deterministic test set with fault 
table is calculated
For each breakpoint of                 
P-sequence, the fault table is 
updated for not yet detected 
faults

FAST estimation
Only fault coverage is calculated

ATPG

Detected 
Faults

All PR patterns?

Yes
End

No

Next PR 
pattern

ATPG based:

ATPG

Fault table 
update

All PR patterns?

Yes
End

No

Next PR 
pattern

Fault table based:
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Calculation of the Deterministic Test Cost

ATPG based approach
For each breakpoint of P-sequence, ATPG is used

ATPG

Detected 
Faults

All PR patterns?

Yes
End

No

Next PR 
pattern

ATPG based:

T1
T2
.
.
.
.

Tn  

Tn+1

Tp

R1 R2 Rk Rk+1 Rk+2 Rn

Faults 
detected

by
pseudo-
random 
patterns

Faults to be 
detected

by

deterministic 
patterns

New detected 
faults

Task for 
ATPG 

Task for 
fault 

simulator 
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Calculation of the Deterministic Test Cost

ATPG

Fault table 
update

All PR patterns?

Yes
End

No

Next PR 
pattern

Fault table based:

T1
T2
.
.
.
.

Tn  

Tn+1

Tp

R1 R2 Rk Rk+1 Rk+2 Rn

Faults 
detected

By

pseudo-
random 
patterns

To be detected 
faults

Task for 
fault 

simulator 

Fault table based approach 
A deterministic test set with fault table is calculated
For each breakpoint of P-sequence, the fault table is updated

Fault table 
for full 

deterministic 
test

Updated 
fault 
tabel
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Experimental Data: HBIST Optimization

Pseudorandom Test Det. Test

Finding optimal brakepoint in the pseudorandom sequence:

Circuit LMAX LOPT SMAX SOPT Bk CTOTAL 
C432 780 91 80 21 4 186 
C499 2036 78 132 60 6 386 
C880 5589 121 77 48 8 481 
C1355 1522 121 126 52 6 388 
C1908 5803 105 143 123 5 612 
C2670 6581 444 155 77 30 26867 
C3540 8734 297 211 110 7 889 
C5315 2318 711 171 12 23 985 
C6288 210 20 45 20 4 100 
C7552 18704 583 267 61 51 2161 

 

LMAX
LOPT SMAX

SOPT

Pseudorandom Test Det. TestOptimized hybrid test process: 
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Hybrid BIST with Reseeding

Time

F
au

lt 
C

o
ve

ra
g

e

Problem: low fault coverage → long PR testThe motivation of using 
random patterns is:

- low generation cost
- high initial efeciency

1 2n-1

Solution: many seeds:
Pseudorandom 
test:

Hard 
to test 
faults

1 2n-1

Pseudorandom 
test:
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Store-and-Generate Test Architecture

• ROM contains test patterns for hard-to-test faults 
• Each pattern Pk in ROM serves as an initial state of the LFSR for test pattern 

generation (TPG) - seeds
• Counter 1 counts the number of pseudorandom patterns generated starting 

from Pk - width of the windows
• After finishing the cycle for Counter 2 is incremented for reading the next 

pattern Pk+1 – beginning of the new window

ROM TPG UUT

ADR

Counter 2 Counter 1

RD

CL

Seeds

Window
Pseudorandom test windows

Seeds

# seeds
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HBIST Optimization Problem

1 2n-1

Using many seeds:
Pseudorandom test:

Deterministic 
test (seeds):

Pseudo-
random 

sequences:

Block 
size:

Seed 1

Seed 1

Seed 2

Seed 2

Seed n
Seed n

Constraints

Problems:
How to calculate the 
number and size of 
blocks?

Which deterministic 
patterns should be the 
seeds for the blocks?

Minimize L at given M and

L

M

100% FC

100% FC



Technical University Tallinn, ESTONIA

Hybrid BIST Optimization Algorithm 1

ATPG patterns

Pattern selection
PRi

Pseudorandom
sequence

FC(PRi)

Modified
ATPG pattern

table

Detected faults subtraction,
optimization of ATPG patterns

Deterministic test patterns 
with 100% quality are 
generated by ATPG

The best pattern is selected 
as a seed

A pseudorandom block is 
produced and the fault table 
of ATPG patterns is updated

The procedure ends when 
100% fault coverage is 
achieved

Algorithm is based on 
D-patterns ranking

D-patterns are ranked
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Hybrid BIST Optimization Algorithm 2

Deterministic test patterns 
with 100% quality are 
generated by ATPG

All P-blocks are generated 
for all D-patterns and 
ranked

The best P-block is selected 
includeed into sequence 
and updated

The procedure ends when 
100% fault coverage is 
achieved

  

 

 
… 

 

 

 

… 

 

 

 
PTmin 

PT* 

 Deterministic test vector (seed) DTi 
Pseudorandom test sequence PRi 
Pseudorandom sequence removed with the 
block length optimization 

Algorithm is based on 
P-blocks ranking

P-blocks are ranked
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Cost Curves for Hybrid BIST with Reseeding

C1908
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M(b)

L1(b)

L2(b)

Block size 

 

Two possibilities for reseeding: 
Constant block length (less HW overhead)
Dynamic block length (more HW overhead)
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Functional Self-Test

• Traditional BIST solutions use special hardware for pattern
generation on chip, this may introduce area overhead and
performance degradation

• New methods have been proposed which exploit specific functional
units like arithmetic blocks or processor cores for on-chip test
generation

• It has been shown that adders can be used as test generators for
pseudorandom and deterministic patterns

• Today, there is no general method how to use arbitrary functional
units for built-in test generation
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Functional BIST Quality

Fault coverage of FBIST compared to Functional test

Functional testing Functional BIST Data B1 B2 Total B1 B2 Total 
4/2 13.21 15.09 14.15 35.14 40.57 29.72 
7/2 21.23 16.98 19.10 38.44 47.64 29.25 
6/3 19.34 31.6 25.47 41.04 39.62 42.45 
8/2 25.47 10.38 17.92 32.07 40.57 25.00 
9/4 8.96 5.66 7.31 36.56 47.64 25.47 
9/3 32.55 26.89 29.72 43.63 46.07 40.57 

12/6 13.44 8.02 18.87 36.08 39.62 32.55 
14/2 18.16 25.00 11.32 37.50 49.06 25.94 
15/3 29.48 31.13 27.83 47.88 50.00 45.75 

2/4 7.8 7.55 8.02 29.01 20.75 33.02 
Aver. 18.96 17.83 17.97 37.74 42.15 32.97 
Gain 1.0 1.0 1.0 2.0 2.4 1.8 
 

Reference

Result

⊕
Go/NoGo

UUT

Reference

Result

⊕
Go/NoGo

UUT

Signature

Traditional 
Functional 

test FBIST

FBIST: collection and analysis of samples during the working mode
Fault coverage is better, however, still very low (ranging from 42% to 70%)

HW  
overhead
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Example: Functional BIST

Register 
block

Control
ALU

Signature analyser

Functional 
test

Data

K

Samples from N=120 cycles

K*N Fault 
simulator

Fault 
coverage

Test patterns (samples) are 
produced on-line 
during the working mode

DB=64

SB=105

Data 
compression:

N*SB / DB = 197

Functional BIST quality analysis
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Hybrid Functional BIST

• To improve the quality of FBIST we introduce the 
method of Hybrid FBIST

• The idea of Hybrid FBIST consists in using for test 
purposes the mixture of
– functional patterns produced by the microprogram (no 

additional HW is needed), and 
– additional stored deterministic test patterns to improve the total 

fault coverage (HW overhead: MUX-es, Memory)
• Tradeoff should be found between

– the testing time and
– the HW/SW overhead cost
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Functional Hybrid Self-Test

Register 
block

ALU

Signature analyser

Deterministic
test set

Data

K

M 
Automatic 

Test Pattern 
Generator

Random
resistant

faults

Test patterns are 
stored in the 

memory

MUX

Register 
block

ALU

Signature analyser

Deterministic
test set

Data

K

M 
Automatic 

Test Pattern 
Generator

Random
resistant

faults

Test patterns are 
stored in the 

memory

MUX

Functional BIST implementation
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Cost Functions for Hybrid Functional BIST

Total cost:
CTotal = CFB_Total +CD_Total

The cost of functional test part:     
CFB_Total = CFB_Const + αCFB_T + βCFB_M

The cost of deterministic test part:
CD_Total = CD_Const + αCD_T + βCD_M

CFB_Const, CD_Const - HW/SW overhead
CFB_T, CD_T - testing time cost
α, β - weights of time and 

memory expenses

αCFB_T + βCFB_M

CD_Const

Cost

CTotal = CFB_Total +CD_Total

CFB_Const
Length  of 
FBIST

Opt. 
cost

Opt. length

αCD_T + βCD_M

Problem:  minimize CTotal
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Functional Self-Test with DFT

Example: N-bit multiplier

Register 
block

ALU

Signature analyser

Data

K

N cycles

T

MUX

F

Improving 
controllability

EXOR
Improving 

observability
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Hybrid BIST for Multiple Cores

SoC

       C3540       

   C1908       C880        C1355   

Embedded Tester
     C2670     

Test access
mechanismBIST BIST

BISTBISTBIST

Test 
Controller

Tester
Memory

Embedded tester for testing multiple cores
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Hybrid BIST for Multiple Cores

Deterministic test (DT)

Pseudorandom test (PT)

How to pack
knapsack?
How to 
compress the
test sequence?
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Cost of BIST:
  Total Cost 

 CTOTAL 

Figure 2: Cost calculation for hybrid BIST 

Cost of 
pseudorandom test 

patterns CGEN 

Number of remaining 
faults after applying k 

pseudorandom test 
patterns rNOT(k) 

Cost of stored 
test CMEM 

Number of pseudorandom 
test patterns applied, k 

# faults

PR test length k

# tests

FAST estimation

SLOW analysis

CTOTAL = α k + β t(k)

β t(k)

α k

min CTOTAL

Det. TestPseudorandom Test

How to avoid the calculation of 
the very expensive full DT cost 
curve?

Two problems:
1) Calculation of DT cost is 

difficult
2) We have to optimize n (!) 

processes

Multi-Core Hybrid BIST Optimization
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Deterministic Test Length Estimation

 

i 

F 

F D k ( i ) F P E k ( i ) 

i * 

F* 

| T D E k ( i ) | 

100% 

| T D F k | j i 

Fault coverage

Pseudorandom 
test length

Deterministic test (DT)
Pseudorandom test (PT)

Deterministic test length estimation for a single core

For each PT length i* we 
determine 
- PT fault coverage F*, and
- the imaginable part of DT

FDk(i) to be used for the     
same fault coverage

Then the remaining part of DT 
TDE

k(i) will be the estimation of 
the  DT length

Solution of the first 
problem:
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Deterministic Test Cost Estimation

0

2000

4000

6000

8000

Memory usage: 5357 bits

1000 1500500

5500

542

M
em

or
y 

(b
it

s)

Memory usage: 

1353
480
1025
363
2136

0
0

Core name:

c499 
c880
c1355
c1908
c5315
c6288
c432

 Deterministic 
time: 
33
8
25
11
12
0
0

Total Test Lenght (clocks)

Estimated Cost
Real Cost

Cost Estimates
for Individual Cores

Memory Constraint

Core costs
Real cost

Estimated cost

DT cost

Total 
test 

length

Total cost calculation of core costs:

Constraint

Solution
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Total Test Cost Estimation

       

COST       P,k       

COST       T,k       

COST       

j       
COST       D,k       

j       min       

COST       E*       T     

j*       k       

Solution       

  

E 

E 

DT cost 

Pseudorandom test 
(PT) length

Total cost

PT cost

Total cost 
solution

Using total cost solution 
we find the PT length:

Using PT length, we calculate 
the test processes for all cores:

PT length solution

136

86

40

19

48

50

46

21

13

25

6

4

4

2

73

123

169

205

203

190

0 50 100 150 200

c499

c1355

c5315

c1908

c880

c6288

c432
Deterministic
Pseudorandom

Total Test 
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Multi-Core Hybrid BIST Optimization

Iterative optimization process:

1  - First estimation

1* - Real cost calculation 

2  - Correction of the estimation

2* - Real cost calculation

3  - Correction of the estimation

3* - Final real cost
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Optimized Multi-Core Hybrid BIST

Pseudorandom test is carried out in parallel, 
deterministic test - sequentially
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Test-per-Scan Hybrid BIST

Embedded Tester

Test 
Controller

Tester
Memory

Scan Path

Scan Path

Scan Path

Scan Path

LF
S

R

LFS
R

Scan Path

Scan Path

Scan Path

Scan Path

LFS
R

LF
S

R

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

Scan Path

LF
S

R

LF
S

R

LFS
R

LFS
R

s838s1423

s3271 s298

SoC

TAM

Deterministic 
tests can only 
be carried out 
for one core at a 
time

Only one test 
access bus at 
the system level 
is needed.

Every core’s BIST logic is capable to produce a set of independent pseudorandom test  
The pseudorandom test sets for all the cores can be carried out simultaneously
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Bus-Based BIST Architecture

• Self-test control broadcasts patterns to each CUT over bus –
parallel pattern generation

• Awaits bus transactions showing CUT’s responses to the 
patterns: serialized compaction

Source: VLSI Test: Bushnell-Agrawal
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Broadcasting Test Patterns in BIST

Concept of test pattern sharing via novel scan structure – to 
reduce the test application time:

... ...

CUT 1 CUT 2

... ...

CUT 1 CUT 2

Traditional single scan design Broadcast test architecture

While one module is tested by its test patterns, the same test 
patterns can be applied simultaneously to other modules in the 
manner of pseudorandom testing
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Broadcasting Test Patterns in BIST

Examples of connection possibilities in Broadcasting BIST:

CUT 1 CUT 2 CUT 1 CUT 2

j-to-j connections Random connections
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Broadcasting Test Patterns in BIST

... ...

CUT 1 CUT n

Scan configurations in Broadcasting BIST:

...

MISR

Scan-In

Scan-Out

... ...

... ...

CUT 1 CUT n

MISR 1

Scan-In

Scan-Out

... ...
MISR n

Common MISR Individual and multiple MISRs



Fault-Model Free Fault Diagnosis
Combined cause-effect and 
effect-cause diagnosis

Faulty system

Faulty 
area

Faulty 
area

Faulty 
block

Failing 
test 

patternsTest

Fault1) Cause-Effect 
Fault Diagnosis
Suspected faulty area is 
located 

2) Effect-Cause 
Fault Diagnosis
Faulty block is located in the 
suspected faulty area

3) Fault Reasoning
Failing test patterns are mapped 
into the suspected  defect or into a 
set of suspected defects in the 
faulty block

Effect

Cause

Effect

Cause
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4/20

BISD scheme:

Test Pattern Generator
(TPG)

Circuit Under Diagnosis
(CUD)

. . . . . .

Output Response 
Analyser (ORA)

. . . . . .

BISD
Control Unit

Pattern Signature  Faults
............    .............    .......
............    .............    .......
............    .............    .......
............    .............    .......
............    .............    .......
............    ......... ....    .......
............    .............    .......
............    .............    .......

Test patterns

............    .............    .......

............    .............    .......

............    .............    .......

............    .............    .......

............    .............    .......

............    .............    .......

............    .............    .......

............    .............    .......

May 11-14, 2008 26th International Conference on Microelectronics, Niš, Serbia

Diagnostic Points (DPs) –
patterns that  detect new faults
Further minimization of DPs –
as a tradeoff with diagnostic 
resolution

Pseudorandom test 
sequence:

Embedded BIST Based Fault Diagnosis
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Built-In Fault Diagnosis

 Test Pattern Generator 
              (TPG) 

Circuit Under Test 
           (CUT) 

. . . . . . 

Output Response 
Analyser (ORA) 

. . . . . . 

BIST 
Control Unit 

Test patterns 
Number  Signature  Faults 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 

Test patterns 
Number  Signature  Faults 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 
............    .............    ....... 

Faulty signature

1. test 2. test 3. test

3. test

Faulty 
signature

Correct 
signature

Diagnosis procedure:
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Built-In Fault Diagnosis

№ All faults New faults  Coverage
1           5                 5            16.67%
2         15               10            50.00%
3         16                 1            53.33%
4         17                 1            56.67%
5         20                 3            66.67%
6         21                 1            70.00%
7         25                 4            83.33%
8         26                 1            86.67%
9         29                 3            96.67%

10         30                 1          100.00%

Pseudorandom test fault 
simulation

Binary search with 
bisectioning of test patterns

5

1

7

8

6 9

1010
1

15

1

3

1

2

3

41
3 4

Average number of test sessions: 3,3
Average number of clocks: 8,67
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Built-In Fault Diagnosis

№ All faults New faults  Coverage
1           5                 5            16.67%
2         15               10            50.00%
3         16                 1            53.33%
4         17                 1            56.67%
5         20                 3            66.67%
6         21                 1            70.00%
7         25                 4            83.33%
8         26                 1            86.67%
9         29                 3            96.67%

10         30                 1          100.00%

Pseudorandom test fault 
simulation

2

61

105 5

4

3

8

7 9

10

1

3 4

1

1

1 3
1

Binary search with 
bisectioning of faults

Average number of test sessions: 3,06
Average number of clocks: 6,43
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Built-In Fault Diagnosis

Test pattern generator

CUD

SA1 SA2 SA3

Fault

Diagnosis with multiple signatures:

SA1

SA2

SA3

D1 D2

D3

D4

D5 D6

D7
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Built-In Fault Diagnosis

1 1 1

1 1 1

0 0 1

0 0 1

0 1 1

h

i

k

l

v

R1

R1’’’

R3

No Codeword Diagnosis

0 1 1j R2

R1’, R2’, R3’

R1’’, R2’’

v

P

F/111
k

F/011

i

j

F/011

F/111

l R3

R2

h R1

R1’’’

R1’’, R2’’

F/001

R1’, R2’, R3’

Diagnostic tree

P

P

F/001

Diagnosis with multiple signatures:
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Test pattern generator

CUD

SA1 SA2 SA3

Fault

SA1

SA2

SA3

D1 D2

D3

D4

D5 D6

D7

Faulty signature

Faulty 
signature

Correct 
signature

Intersection 
using SA-s

Intersection 
using tests

Built-In Fault Diagnosis

BIST with multiple 
signature analyzers

Optimization of the interface between 
CUD and SA-s
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Built-In Fault Diagnosis
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1 SA Resolution 5 SA Resolution 10 SA Resolution
1 SA Test length 5 SA Test length 10 SA Test length

Optimal 
number of 
failed 
patterns

Gain in 
speed of 
diagnosis

Diagnosis with multiple 
signatures:

Measured:
- average resolution
- average test length

Compared: 1SA, 5SA, 10SA

Gain in test length:  6 times
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Extended Fault Models

Defect

Extensions of the parallel critical path tracing for two large 
general fault classes for modeling physical defects:

0
1
0
1

Conditional fault
Pattern fault

Constrained SAF
Single faulty signal

X-fault
Byzantine fault

Bridges
Stuck-opens

Multiple faulty signal

Resistive bridge fault

SAF

Multiple 
fault
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Diagnosis of Fault Model Free Defects

Real test 
experiment Simulation

Faulty machine
FM(f)

Circuit Under 
Diagnosis

Test pattern  t

Fault

f

Copyright: H.J.Wunderlich 2007

∆σt

∆τt

∆lt

Fault evidence:
for test pattern  t
e(f,t) = (∆τt , ∆σt, ∆lt, ∆γt)
∆γt = min (∆σt, ∆lt)
for full test  T (sum)
e(f,T) = (∆τ , ∆σ, ∆l, ∆γ)
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Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test 
experiment Simulation

Faulty machine
FM(f)

Circuit Under 
Diagnosis

Test pattern  t

Fault

f∆σt

∆τt

∆lt

Classic model lt τt γt

Single SAF 0 0 0

Multiple SAF 0 >0 0

Single conditional SAF >0 0 0

Multiple cond. SAF >0 >0 0

Delay fault >0 0 >0

General case >0 >0 >0

Different classical fault cases
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Diagnosis of Fault Model Free Defects

Copyright: H.J.Wunderlich 2007

Real test 
experiment Simulation

Faulty machine
FM(f)

Circuit Under 
Diagnosis

Test pattern  t

Fault

f∆σt

∆τt

∆lt

Ranking 
(on the top the most 
suspicious faults):  
(1) By increasing γT

(single SAF on top)
(2) If γT are equal then

by decreasing σT

(3) If γT and σT are
equal then by
increasing lT

∆γt = min (∆σt, ∆lt)

SAF γT σT lT
f1 0 42 0

f2 30 42 15

f3 30 42 25

f4 30 42 30

f5 30 36 38

f6 38 23 22

f7 38 23 23

Example:
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Fault Diagnosis Without Fault Models

Defective          
area

dy

Reverse 
defect 

mapping
x1

x2

x3

x4

x5

System level

Wd

Logic level
Error 

detection

Defect

Error (defective area) diagnosis

&

&

&

1

&

&

&
R2M3

+M1

*M2

R1

IN

Logic level
Transistor level

RT Level
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 S1 S2 

S10 

S11 

S5 

S8 

S3 

S6 

S9 

S4 

S7 

1 2 3 4
1 1
2 1
3 1
4 1
5 1 1 0
6 1
7 1
8 1 1 0
9 1
10 1 1
11 1 1 1 0

Fault Model Free Fault Diagnosis

1 0 1 0
Test response:

Diagnosis: s11

No match

Rectified code

Because of the 
unidirectional 

“distortions” of test 
responses, 

rectification is 
possible

Diagnostic tableSystem network graph
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Fault Tolerance: Error Detecting Codes

System

Checker Not eligible code

Examples:
Decimal digits:

Eligible: 0,1,2,..., 9

Not eligible: 10,11,..., 15

Parity check: 00   0 0   1
01   1 3   2
10 1 5   4
11   0 6   7

Parity bit

Eligible
Not eligible
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Error Detecting/Correcting Codes

d

Hamming distance between codes: Minimal number of bits 
how two codes differ 
from each other

Eligible 
codes

Eligible 
codes

Not eligible codes

Parity check: 00   0 0   1
01   1 3   2
10 1 5   4
11   0 6   7

Parity bit

Eligible
Not eligible

101
100
111
001

110

011

000
d = 2

010
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Error Detecting/Correcting Codes

d=2
Eligible 
codes

Eligible 
codes

Not eligible codes

Error detecting codes: Error correcting codes:

Error 
detection: 
direction 
unknown

Error correction is 
possible: direction 

is knownd=3

Eligible 
codes

Detection 
not possible

Correction 
not possible
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Fault Tolerance: Error Correcting Codes

d = 2e + 1 - 2e - error detection      
e - error correction 

One error correction code:  2c ≥ q + c + 1

Error free

q c
For addressing of the 

erroneous bit

Check bits

Information bits
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Fault Tolerance:  One Error Correcting Code

One error correction code:  2c ≥ q + c + 1

Check bits

b2
i, i = 0,1,,...,c-1

Calculation of check sums:

bc+q b2b1

1234567

cibk
Pk i

,...,1,0 ==∑
∈

Pi – number of bits where bi = 1

P1 = b1 ⊕ b3 ⊕ b5 ⊕ b7 = 0
P2 = b2 ⊕ b3 ⊕ b6 ⊕ b7 = 0
P3 = b4 ⊕ b5 ⊕ b6 ⊕ b7 = 0
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Fault Tolerance:  One Error Correcting Code

Location of erroneous bit:

Check bits

b2
i, i = 1,...,c

1234567

P1 = b1 ⊕ b3 ⊕ b5 ⊕ b7 = 0
P2 = b2 ⊕ b3 ⊕ b6 ⊕ b7 = 0
P3 = b4 ⊕ b5 ⊕ b6 ⊕ b7 = 0

Analogy with fault diagnosis 
by using fault table:

7 6 5 4 3 2 1 0
1 1 11

1 1 11
1 111

P1
P2

P3

Received code

Test 

0
0
1

Diagnosis

0011101

0010101 Initial code

Check bits have to be independently assigned
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Fault Tolerant Communication System

Initial code

Check-bits 
generator Sender Receiver

Error 
correction 

code

Checker

Error 
correction 
(restoring)

Error 
indication

Received 
correct code
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Error Detection in Arithmetic Operations

Residue codes

N – information bits

C = (N) mod m - check bits

m – residue of the code

p = log2 m  – number of check bits

Example
Information bits: I2, I1, I0
m = 3, p = 2

Check bits: c1, c0

I2 I1 I0 I c c1 c0
0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 2 2 1 0
0 1 1 3 0 0 0
1 0 0 4 1 0 1
1 0 1 5 2 1 0
1 1 0 6 0 0 0
1 1 1 7 1 0 1

Information bits
Check bits
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Error Detection in Arithmetic Operations
Addition:

Information bits   Check bits
0   0   1   0              1   0         2.2
0   1   0   0              0   1         4.1

0   1   1   0              1   1         6.3 
(6)mod3 = 0        (3)mod3 = 0

Multiplication:

Information bits   Check bits
0   0   1   0              1   0         2.2
0   1   0   0              0   1         4.1

1   0   0   0              1   0         8.2 
(8)mod3 = 2        (2)mod3 = 2

Information bits   Check bits
0   0   1   0              1   0         2.2
0   1   0   0              0   1         4.1

0   1   0 0              1   1         4.3 
(4)mod3 = 1 (3)mod3 = 0

Error!

Information bits   Check bits
0   0   1   0              1   0         2.2
0   1   0   0              0   1         4.1

1   0   0   1 1   0         9.2 
(9)mod3 = 0 (2)mod3 = 2

Error!
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Error Detection in Arithmetic Operations

A B 

Adder

Residue 
calculator

A + B 

C(A) C(B) 

Adder mod m

(C(A) + C(B)) mod m 

Comparator
C(A + B) 

Error 
indicator 

Check       
bit 

generator
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Summary

• LFSR pattern generator and MISR response 
compactor – preferred BIST methods

• BIST has overheads: test controller, extra circuit 
delay, Input MUX, pattern generator, response 
compactor, DFT to initialize circuit & test the test 
hardware

• BIST benefits:
 At-speed testing for delay & stuck-at faults
 Drastic ATE cost reduction
 Field test capability
 Faster diagnosis during system test
 Less effort to design testing process
 Shorter test application times
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Testing of Networks-on-Chip (NoC)

• Consider a mesh-like topology of NoC consisting of 
– switches (routers), 
– wire connections between them and 
– slots for SoC resources, also referred to as tiles. 

• Other types of topological architectures, e.g. honeycomb and 
torus may be implemented and their choice depends on the 
constraints for low-power, area, speed, testability

• The resource can be a processor, memory, ASIC core etc. 
• The network switch contains buffers, or queues, for the incoming 

data and the selection logic to determine the output direction,
where the data is passed (upward, downward, leftward and 
rightward neighbours)
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Testing of Networks-on-Chip

• Useful knowledge for testing NoC network structures can be obtained from 
the interconnect testing of other regular topological structures 

• The test of wires and switches is to some extent analogous to testing of
interconnects of an FPGA

• a switch in a mesh-like communication structure can be tested by using only 
three different configurations

 



Technical University Tallinn, ESTONIA

Testing of Networks-on-Chip

• Arbitrary short and open in an 
n-bit bus can be tested by 
log2(n) test patterns 

• When testing the NoC 
interconnects we can regard 
different paths through the 
interconnect structures as 
one single concatenated bus

• Assuming we have a NoC, 
whose mesh consists of 
m x m switches, we can 
view the test paths through 
the matrix as a wide bus of 
2mn wires 

m x m
matrix

2m buses
 

Concatenated bus 
concept
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Testing of Networks-on-Chip

• The stuck-at-0 and stuck-at-1
faults are modeled as shorts 
to Vdd and ground

• Thus we need two extra 
wires, which makes the total 
bitwidth of the bus 
2mn + 2 wires. 

• From the above facts we can 
find that 
3[log2(2mn+2)]
test patterns are needed in 
order to test the switches and 
the wiring in the NoC

m x m
matrix

2m buses
 

Concatenated bus 
concept
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Testing of Networks-on-Chip

0
1

2

3
4

5

6

7

Bus

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Test Detected faults

Stuck-at-1

Stuck-at-0

All 
opens 

and 
shorts

6 wires 
tested

3[log2(2mn+2)]
test patterns 
needed
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IEEE P1500 standard for core test

• The following components are generally required to 
test embedded cores
– Source for application of test stimuli and a sink for observing 

the responces
– Test Access Mechanisms (TAM) to move the test data from 

the source to the core inputs and from the core outputs to the 
sink

– Wrapper around the embedded core

embedded
core

wrapper

test
pattern
source

TAM
test

responces’
sink

TAM
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IEEE P1500 standard for core test

• The two most important components of the P1500 
standard are
– Core test language (CTL) and 
– Scalable core test architecture

• Core Test Language
– The purpose of it is to standardize the core test knowledge 

transfer 
– The CTL file of a core must be supplied by the core provider 
– This file contains information on how to 

• instanciate a wrapper, 
• map core ports to wrapper ports, 
• and reuse core test data
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IEEE P1500 standard for core test

Core test architecture
• It standardizes only the wrapper and the interface between the 

wrapper and TAM, called Wrapper Interface Port or (WIP) 
• The P1500 TAM interface and wrapper can be viewed as an 

extension to IEEE Std. 1149.1, since 
– the 1149.1 TAP controller is a P1500-compliant TAM interface, 
– and the boundary-scan register is a P1500-compliant wrapper 

• Wrapper contains
– an instruction register (WIR), 
– a wrapper boundary register consisting of wrapper cells, 
– a bypass register and some additional logic. 

• Wrapper has to allow normal functional operation of the core 
plus it has to include a 1-bit serial TAM. 

• In addition to the serial test access, parallel TAMs may be used. 
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IEEE P1500 standard for core test

System chip

Source/Sink
(Stimuli/Responses)

Off-chip or

On-chip

User-defined test access mechanism (TAM) On-chip

P1500 wrapper

Core 1

WIR

WPI WPO
Functional

inputs/
outputs

P1500 wrapper

Core n

WIR

WPI WPO
Functional

inputs/
outputs

P1500 Wrapper interface port (WIP)

WSIWSI WSO WSO
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Theory of LFSR: Galois Field

 Galois field (mathematical system) G(pn):
 Multiplication by x same as right shift of LFSR
 Addition operator is XOR ( ⊕ )

 Ts companion matrix:
 1st column 0, except n-th element which is always 1 

(X0 always feeds Xn-1)
 Rest of row n – feedback coefficients hi
 Rest is identity matrix I – means a right shift

• Near-exhaustive (maximal length) LFSR
 Cycles through 2n – 1 states (excluding all-0)
 one pattern of n 1’s, two of n-1 consecutive 0’s

LFSR as a Galois field:
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