# **PID Regulator**



Simple, robust (works also poorly config. )  $\Rightarrow$  the most widely used

## **Process Variable transient**



#### **PID controller**



CV = const. when e = 0 $CV \neq const.$  when  $e \neq 0$ 

**D** - derivative, rate action

*Ti* - *integral time* larger corresponds to reduced I component

*Td* - *rate time* larger corresponds to increased D component

responds to the rate and direction of change in the e preventing the overshooting and oscillations allowing to choose stronger P and I

## Integral "wind up"





> General Background > Inside the PID Function



## V200-18-E2B Analog I/O



# Analog I/O Configuration

Before you can use an analog input/output in your program, you must link it to an operand. An analog input value can be contained in an MI, ML, or DW.



#### Temperature control kit components







## Write to Data Tables



#### Open example M:\Andres Rahni\PLC\ A input for PID.vlp



|      | S<br>Pow | B 2<br>er-up | bit . | PID Configuration      |            |                |                          |             |                                                        |
|------|----------|--------------|-------|------------------------|------------|----------------|--------------------------|-------------|--------------------------------------------------------|
| Ŀ    |          | F            |       |                        | • •        | EN             | EI                       | <u>10</u> - |                                                        |
|      | · ·      | · · ·        | · ·   | MI 10 [2<br>PID: Set F | 00]<br>00] | PID<br>C<br>PI | A.TUN<br>ONFIG<br>D.AT_1 | IE<br>I     | MI 1 [0]<br>PID: Control                               |
|      | · ·      | · · ·        |       | MI 11<br>PID: Proc     |            |                |                          |             | MI 20<br>PID: PID Status                               |
| Para | ms       | Туре         | Add   | (                      | 60         | ·              | Format                   | Desc        | ription                                                |
|      |          | M            | 10    | 350                    |            |                | DEC                      | PID: 1      | Set Point - the target value                           |
|      |          | MI           | 11    |                        |            |                | DEC                      | PID: I      | Process Value - the PID input                          |
|      |          | MI           | 12    | 100                    |            |                | DEC                      | PID: I      | Proportional band - defined in units of 0.1% (P gain)  |
|      |          | MI           | 13    | 10                     |            |                | DEC                      | PID: I      | Integral time - defined in units of 1 second (I gain)  |
|      |          | ML           | 14    | 0                      |            |                | DEC                      | PID: I      | Derivative time - defined in units of 1 second (D gair |
| IN   |          | ML           | 15    | 50                     |            |                | DEC                      | PID: 3      | Sample Time - defined in units of 10 mSec .Recomm      |
|      |          | MB           | 10    |                        |            |                |                          | PID: /      | Action: 0: Reverse(Heating-default) 1: Direct(Cooling  |
|      |          | ML           | 16    | 0                      |            |                | DEC                      | PID: I      | Input Range - Process Value Low limit                  |
|      |          | MI           | 17    | 1000                   |            |                | DEC                      | PID: I      | Input Range - Process Value High limit                 |
|      |          | MI           | 18    | 0                      |            |                | DEC                      | PID: I      | Output Range - Control Value Low limit                 |
|      |          | MI           | 19    | 4096                   |            |                | DEC                      | PID:        | Output Range - Control Value High limit                |
|      |          | ML           | 1     | 0                      |            |                | DEC                      | PID:        | Control Value - the PID output                         |
| OU   | Т        | MI           | 20    |                        |            |                | DEC                      | PID:        | PID Status                                             |
|      |          | ML           | 200   |                        |            |                | DEC                      | Auto-       | tune parameters, 32 MIs - 1 of 32                      |

# **Run PID**



## **PID Auto-Tune Stages**



# **PID Auto-Tune Stages**



## **PID FB Status Integer**

PID error indications are given in the Status Messages MI

See VisiLogic Help > Ladder > FBs Library > PID FB + Auto-tune

- 0 FB status OK
- 1, 2, 3 Auto-tune in progress
- 4 PID running
- 5, 6 Setpoint change in progress
- 7 Integral-wind up
- 8 integral-wind down
- 9 Pause mode, Integral and Derivative values are not currently being calculated
- 10, 11 PV exceeds proportional band, no calculation performed

•••

#### ISS0089 ADVANCED PROGRAMMABLE LOGIC CONTROLLERS

autumn 2018

### Homework 3 - Vision 230 and PID regulator

<u>Plant</u>

Vision 230 controller and Temperature control process kit

Tasks:

Program a process PID control algorithm for temperature control in controller. Program must be able to stop the PID control (CV = 0), adjust the temperature setpoint between reasonable limits and run it again.

On controller display User Interface show temperature current value (and short history), control variable (CV) current value, PID current mode and all (manual mode) commands choices: STOP, RUN AT | PID.

In your report list the program, PID controller configuration, user interface manual and a setpoint change response (from self heated temperature level to 45..55°C level) graph. To draw graph, program must be able to store CV, (SP) and PV values for approx. 5 minutes.