
Earned Value Management approach in
the Software Project Management

Evgenii Morozov

Earned Value Management (EVM)
Earned Value Management is a methodology used to measure and communicate
the real physical progress of a project and to integrate the three critical elements
of project management:

– scope

– time

– cost management

Purposes of an EVM
The purpose of an EVM system is to provide answers to project managers on
questions such as:

● What is the difference between budgeted and actual costs?

● What is the current project status? Ahead of schedule or schedule delay?

● Given the current project performance, what is the expected remaining time
and cost of the project?

The Challenges

Challenge – Innovation and Prototype
– Many software projects may be exploring functionality that has never been
developed before or has never been applied to a particular functional area.

– Prototypes and innovations are not always successful during the execution of a
software project – the result is often unplanned rework

– The calculations for the budget at completion (BAC) of the project as well as
estimates for completion dates become unstable, resulting in non-sense answers
in many EVM systems.

Challenge – Defect Discovery and Resolution
– All software has defects (bugs). During the process of development the
discovered defects must be resolved or fixed.

– The nature and size of the defects discovered can be hard to predict, resulting in
a large amount of volatility and long delays with no positive progress

– This then results in performance indices that trend downward and without
reaching the goal. This reduces the ability of a software project to accurately
forecast.

Challenge – Architectural Changes
– When the development of a software begins: certain architectural choices are
made. As time and team experience progresses some of the architectural choices
may need to be changed.

– An architectural change can result in unplanned rework. This unplanned rework
can result in no project progress or even negative project progress for an
extended period of time.

– To compound the problem further, the architectural changes often result in a
large number new defects being introduced into the software

The Solutions

Solution – Measuring Volatility through Metrics
– In order to ensure that the values of the metrics collected and communicated
accurately reflect the project and it’s progress, the volatility of the project and the
measures taken must be examined.

– Examining not only the traditional earned value management metrics, but also
providing additional measures to gauge the volatility or stability of the project
processes is a technique that is addressed by the PBEVM approach.

Solution – Task Definitions
– On software projects a key to being able to accurately track work progress with
earned value is a set of guidelines used for defining task duration. On projects that
are small or large, if the duration of an individual task is too long, the tracking of
that task becomes highly inaccurate.

– Confidence Intervals: Planning for tasks should never be done using the nominal
values. A common confidence interval for software projects is on the order if 80%.

– Short Duration Tasks: By keeping the duration of the tasks that are scheduled to
a short duration, no more than two to four weeks, it ensures that schedule
estimation errors are minimized and localized.

Solution – Scheduling Techniques
– Resource Loading: every task must be assigned to a resource in order to
ensure that the task list can be measured against the available resources.

– Weighted Milestones: One effective set of weighted milestones is to grant 25%
for starting a task, 50% once significant progress has been made that
demonstrates an understanding of the challenges involved in the task, 75% on the
first report of completion, and then 100% upon confirmation of completion of the
task.

– Task Queuing Technique: the technique of creating a set of collectively
exhaustive tasks that are mutually exclusive based upon the specific resource that
has been assigned to them.

Solution – Incremental Implementation Approach
– High Risk Tasks: By taking those high risk tasks and moving them up into the
schedule as early as possible, if the risk does occur, then there is more flexibility in
forming a response.

– High Value Tasks: It is important to schedule the functionality that is of the
highest value to the customer early in the project. In this way, each incremental
delivery has value to the customer.

Applying The Solutions

Applying – Innovation and Prototypes
– Effective Tracking of Innovations and Prototypes: The approach here should be
to focus the scheduling of the task on the various phases of the process of
discovery that can be estimated.

– Reducing the Impact of Innovations and Prototypes: Using the incremental
approach to bring high risk items into the development process early helps
alleviate the amount of rework that may occur later in the project.

Applying – Defect Discovery and Resolution
– Development Defects: These defects are discovered and resolved during the
development process so their resolution should be tracked as a part of the work
package that describes the work associated with a particular release.

– System Test Defects: In an integrated development environment where there
are dependencies on the work of different development staff, there is a need to
track these types of defects in the repair cost account.

– Reducing the Effect of Defects Discovered: If there are a large number of
defects that are discovered and need to be resolved, the resources to correct
those defects are usually the same set of resources that are used for the
generation of new features in the software system.

Applying – Architectural Changes
– Effective Tracking of Architectural Changes: In order to effectively track the
progress of architectural changes, the adaptation costs for the architectural
change to the existing modules should be captured under the development cost
account and as part of the specific deliverable that the architectural change is
needed to enable.

– Reducing the Effect of Architectural Changes: In order to reduce the effect of
architectural changes the iterations should be sized in order to give the team time
to react to future instances of architectural changes in future releases. The goal
should be that when there is a large amount of instability in the architecture, the
releases that are planned and managed should be shorter in duration.

Conclusion
There are a variety of challenges that face software projects when they are
working to deliver high quality software on time and within budget constraints.

Many of those challenges are related to a large degree of uncertainty, either in
schedule duration, quality factors, or design issues.

By applying techniques that help quantify the nature of the uncertainty, separate
the distribution of uncertainty in project schedule and insulate the project budget
from the effects of the uncertainty, projects can be successful in gaining value
from EVM.

