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Abstract— Prompt tuning has achieved great success in various
sentence-level classification tasks by using elaborated label word
mappings and prompt templates. However, for solving token-level
classification tasks, e.g., named entity recognition (NER), previous
research, which utilizes N-gram traversal for prompting all spans
with all possible entity types, is time-consuming. To this end,
we propose a novel prompt-based contrastive learning method
for few-shot NER without template construction and label word
mappings. First, we leverage external knowledge to initialize
semantic anchors for each entity type. These anchors are sim-
ply appended with input sentence embeddings as template-free
prompts (TFPs). Then, the prompts and sentence embeddings
are in-context optimized with our proposed semantic-enhanced
contrastive loss. Our proposed loss function enables contrastive
learning in few-shot scenarios without requiring a significant
number of negative samples. Moreover, it effectively addresses
the issue of conventional contrastive learning, where negative
instances with similar semantics are erroneously pushed apart in
natural language processing (NLP)-related tasks. We examine
our method in label extension (LE), domain-adaption (DA),
and low-resource generalization evaluation tasks with six public
datasets and different settings, achieving state-of-the-art (SOTA)
results in most cases.

Index Terms— Contrastive learning, few-shot learning, infor-
mation extraction, named entity recognition (NER), prompting.

I. INTRODUCTION

AMED entity recognition (NER) aims to detect entity
spans from unstructured natural language and clas-
sify the entities into predefined types, such as LOCATION,
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PERSON, and EVENT. NER lays the foundation of many
downstream tasks, such as question answering [1], recom-
mend system [2], and knowledge graph construction [3]. Most
existing NER studies [4], [5] are trained with large amounts
of annotated data. However, large-scale manual annotations
for supervised learning NER in a wide range of domains are
cumbersome [6]. To this end, utilizing few-shot techniques in
resource-constraint settings is a promising method to mitigate
labor efforts and cross-domain challenges.

Recently, prompt-based research has shown great potential
on few-shot learning tasks by reformulating various down-
stream tasks as mask language learning tasks [7], [8], [9], [10],
[11]. Most prompt-based methods first construct semantic tem-
plates as prompts to obtain masked word predictions from a
pretrained language model (PLM), then map these predictions
into task-specific labels [12], [13]. Such a process is termed
label word mappings [14]. However, manual construction of
templates and label word mappings are cumbersome and
subjective. The nuances in prompt templates and label word
mappings may result in a huge difference in model perfor-
mance [15]. Considering the above problems, there is more
research focusing on generating prompts automatically and
improving label word mappings [13], [16], [17]. Some studies
achieved improvements by utilizing soft prompts instead of
natural language-based prompts [8], [18]. These soft prompts
are normally continual embeddings in embedding space, given
by a PLM. However, the study [19] finds that there is
no statistically significant difference in performances when
using instructive or misleading prompts. The work [20] just
concatenates a [MASK] special token with an input, which
can achieve competitive performances with manually written
prompts. This motivates us to explore whether an elaborately
designed template is necessary and what really works in
prompt-based methods.

Besides, prompts-based methods are intrinsically designed
for sentence-level tasks [9], [21]. When prompt tuning comes
to token-level NER, it needs N-gram traversal to query all
the possible combinations of spans and types or use different
prompts with repeatedly forwarding to obtain a single pre-
diction [22], [23], [24]. As shown in Fig. 1, given an input
“Franklin Archibald Dick is a famous lawyer in Franklin.
[Span] is a [Type] entity,” a typical prompt-based method
needs to iteratively fill all spans in the [Span] position, such
as “Franklin,” “Franklin Archibald,” and “Franklin Archibald
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Input : Franklin Archibald Dick is a famous lawyer in Franklin.

. . Is Franklin a entity ?
P rompt or Is Franklin Archibald a entity ?
erson Type: . . . .
Is Franklin Archibald Dick a entity ?
. Is Franklin a Location entity ?
Prompt for Is Franklin Archibald a Location entity ?
Location Type: . . . . .
Is Franklin Archibald Dick a Location entity ?
Fig. 1. Example of redundancy problem when applying prompt tuning for

sequence labeling-based NER task.

Dick.” Meanwhile, all predefined types in a label set need to
iteratively fill in the [Type] position for each span, such as
CITY and PERSON, to differentiate ‘“Franklin Archibald Dick”
and “Franklin.” Obviously, such a method suffers catastrophic
time costs when sentence length or entity types increase.

To tackle these modeling issues, we propose template free-
prompting (TFP) for few-shot NER via semantic-enhanced
contrastive learning. TFP employs prior knowledge to initialize
semantic anchors for each entity type in the vector space.
The prior knowledge is obtained from Wikipedia' to represent
the definition of labels in natural language. Such prompts
are understandable for humans compared with soft prompts.
Then, the semantic anchors are simply appended with the
embeddings of an original sentence as prompts without tem-
plate construction and label word mappings. Finally, semantic
anchors are in-context-encoded together with the input sen-
tence to form the prototypes of entity types. Noticeably, these
prototypes are context-dependent, because different inputs
have different original sentences for the in-context encoding.
By the comparison between each token in an input sentence
with these in-context-encoded prototypes, TFP allocates a
label for each token and parses the results as normal 10-based
NER (namely binary classification for each token), avoiding
the issues of N-gram traversal and appending different prompts
for the same sentence.

Inherently, such a comparison can be achieved by con-
trastive learning [25]. However, traditional contrastive learning
cannot be used in few-shot learning, because it needs a large
volume of negative samples [26] that cannot be supported
in few-shot settings. Furthermore, when previous contrastive
learning [27], [28], [29] developed a negative sample set,
the negative instances were naively considered as nonpositive
instances without comparing the semantic similarity between
positive and negative instances. This results in an issue in that
many negative instances share similar semantics to a positive
instance, whereas the negative ones are undesirably pushed
away to the positive one in vector space.

To overcome the learning issues, a hybrid granularity con-
trastive loss is developed in our TFP. The loss aims to optimize
the distances between tokens with calculated semantic pro-
totypes, instead of typical token-wise distances. Meanwhile,
the loss also optimizes the distances between different proto-
types. Since the above prototypes are initialized with semantic
anchors, they can alleviate the bias from randomly sampled
data and mean-based prototyping under the few-shot set-
ting [30]. By contrastive learning presentations of introduced
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semantic information and input tokens, our loss can be used
in few-shot settings without using many negative samples.

We demonstrated that the proposed TFP is robust and

generalizable by evaluating its abilities in label extension
(LE), domain-adaption (DA), and no-adapting (NA) under
few-shot settings. Specifically, TFP is tested with 26 sub-
tasks, six employed datasets, and three different few-shot
NER setups, achieving better performance on 19 tasks. For
example, compared with the strongest baseline, the proposed
TFP raises an averaged F1 measure of 11.37% and 8.95% in
1- and 5-shot 12B2 under DA settings. Also, various analysis
experiments are carried out to demonstrate its effectiveness.
Our contributions can be summarized as follows?:

1) We propose an effective template-free prompt (TFP)-
based method for few-shot NER. The method aims
to address the cumbersome template construction and
N-gram traversal-based inference when prompt learning
is employed in token-level labeling tasks.

2) We propose a novel semantic-enhanced contrastive
learning loss. The loss can achieve contrastive learn-
ing in a few-shot context, yielding more effective and
distinguishable representations for positive and negative
samples by their semantics.

3) We conduct detailed comparisons and analysis to explore
what really works in prompt-based methods and find that
in-context encoding plays a more important role than
elaborately designed prompts.

4) We conduct three few-shot learning evaluation tasks
to evaluate the capacity of our model in LE, domain
adaption, and low-resource generalization. Our proposed
method achieves 19/26 state-of-the-art (SOTA) results in
these few-shot NER evaluation tasks.

II. RELATED WORK
A. Few-Shot NER

Numerous practical challenges still persist in NER tasks,
such as multimodel NER [31], discrete NER [32], and
few-shot NER [33]. The primary emphasis of this article
is on addressing the challenges associated with few-shot
NER. Many advanced natural language processing (NLP)
applications and specific scenes need such technology, such
as dialogue systems [34], [35], personalized recommenda-
tions [36], [37], and handling long tail data distributions [38],
[39]. The study [40] represents an early effort that concen-
trates on the few-shot NER task. The researchers have put
forth an end-to-end trainable memory network, which has
the ability to identify and differentiate named entities in an
online fashion. The network is capable of performing one-shot
learning and can cope with a limited number of sparse super-
visions. According to METABDRY [41], presently available
NER methods are encountering difficulties in dealing with
sparse boundary tags. In addition, when the source domains
differ from the target domains, existing methods require
more training data to adapt to the new domains. To address
these challenges, METABDRY employs adversarial learning
to encourage the development of domain-invariant represen-
tations. Furthermore, they utilize meta-learning to explicitly

2Code and data will be released after review.
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simulate domain shifts during training, thereby enabling effec-
tive aggregation of meta-knowledge from multiple resource
domains. The work presented in [42] utilizes synthetic data
augmentation to simultaneously tackle few-shot and incremen-
tal learning for NER. PCBERT [43] proposes a novel Parent
and Child BERT method for Chinese few-shot NER, where an
annotating model is first trained on high-resource datasets to
discover implicit labels on low-resource datasets. SDNet [44]
proposes a self-describing mechanism for few-shot NER,
which can leverage illustrative instances and precisely transfer
knowledge from external resources by describing both entity
types and mentions using a universal concept set. In contrast
to the aforementioned methods, our proposed TFP method
focuses on a simple yet efficient prompt-based approach that
can unlock the true potential of large language models (LMs)
without requiring complex changes to the model structure.

B. Prompt Learning

The early studies [9], [21] explore manually constructing
prompts for sentence-level text classifications, which refor-
mulate downstream tasks as cloze questions with a PLM.
Considering manual prompts are troublesome and subjective,
some studies propose automated methods for prompt creation.
P-tuning [15] proposes soft prompts, which employ continual
embeddings as prompts rather than natural language. They
first employed trained parameters as continuous prompts and
further used long short-term memory (LSTM) to fuse contex-
tual information. Also, this study found that inserting anchor
words can effectively improve the performance of automat-
ically generated prompts. This method achieves significant
improvement over the traditional fine-tuning method in the
knowledge detection task. The idea of Prefix-Tuning [8] is
similar to P-tuning, where the model only optimizes a small
number of parameters in the process of training. The difference
is that Prefix-Tuning adds a small number of parameters to
each layer of the LM, which do not need to correspond
to any specific word. Prompt tuning with rules (PTRs) [12]
applied logic rules to construct auto-generated prompts. Auto-
Prompt [13] utilizes gradient-guided search to automatically
generate prompts for diverse tasks. The study [45] further
investigated the performance of prompt tuning on various
LMs. The study pointed out that a key advantage of prompt
tuning is that it can freeze the entire PLM and accomplish
a given predictive classification task by only tuning a small
number of parameters. Therefore, this method can be of
great practical value in the application of large-scale PLMs.
At the same time, the study concludes experimentally that this
method can only perform on par with the fine-tuning method
when using very large-scale PLMs (10B parameters or more).
On the contrary, our proposed TFP shows strong prediction
ability with small LMs.

The above prompt-based methods are designed for sentence-
level tasks. For token-level tasks, such as NER, prompting
each token with all potential classes is challenging. The
work [22] proposes a template-based method for prompting
NER, which enumerates all possible spans of input sentences
combined with all entity types to predict labels. This method

suffers serious redundancy when sentence length or entity
types increase. COPNER [46] introduced class-specific words
into prompt tuning, following the idea of distance metric
learning to compare each token with manually selected class-
specific words. Although this method avoided enumeration
of all possible spans, manual selection for class-specific
words is still labor-intensive and the method is sensitive to
selected class-specific words. The work [47] tries to explore
a prompt-free method for few-shot NER. This study proposes
entity-oriented LM fine-tuning to directly decode input tokens
to corresponding label words and then maps these label words
to related labels. However, this method heavily depends on
the label word mapping. Compared with the above studies,
our TFP needs neither template construction nor label word
mapping, which is more effective and high-performing.

C. Contrastive Learning

The goal of typical contrastive learning [48] is constructing
a representations space where instances from the same input
are pulled closer and instances from different inputs are pushed
apart, regardless of their semantic information. Contrastive
learning is widely utilized in the field of computer vision [26],
[49], [50], where we can easily construct an augmentation
for an image by flipping, rotating, and cropping to form
positive pairs. Contrastive clustering [51] and twin contrastive
learning (TCL) [52] combine an instance- and cluster-level
contrastive learning with clustering methods, achieving sig-
nificant improvements on CIFAR [53] and ImageNet [54]
datasets. Our hierarchical contrastive loss shares similarities
with instance- and cluster-level contrastive learning. However,
for image-related tasks, there is no requirement to consider
semantic consistency. The partially view-aligned problem is
addressed in partially view-aligned problem (PVP) [55] using
a noise-robust contrastive loss, which focuses on alleviating
the influence of the false negative pairs. In contrast, our loss
is designed to handle true negative pairs that have negative
effects on specific tasks.

In NLP tasks, randomly inserting, deleting, or switching
tokens are not perfect methods [56] for data argumenta-
tion, because these processes may cause incoherence or
even incoherence meaning. SimCSE [27] proposed a novel
method for sentence argumentation by repeatedly forwarding
a sentence with different dropout results, achieving strong
contrastive learning on textual similarity tasks. CADAN [57]
has introduced a contrastive approach that involves dividing
the feature extractor into two contrastive branches. One branch
is responsible for capturing the class-dependence in the latent
space, while the other focuses on achieving domain-invariance.
To fulfill these contrasting objectives, CADAN shares the first
and last hidden layers but maintains decoupled branches in
the middle hidden layers. CoLA [58] explores contrastive
learning in anomaly detection tasks with a graph neural
network, which exploits the local information by sampling a
novel type of contrastive instance pair. CLEAR [59] proposed
a sentence-level contrastive learning method, which utilized
random-words-deletion, spans-deletion, synonym-substitution,
and reordering as augmentation strategies to learn a noise-
invariant representation. DeCLUTR [60] focused on how to
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Fig. 2. TFP framework. (a) Contrastive in-context learning with semantic anchor guarding. (b) Initialization of semantic anchors with prior knowledge.

BERT in (a) and (b) share the same parameter set. y; and desc; are label and its description as (1). Anc is the set of semantic anchors as (2). hggp is the
representation of a special marker [SEP] in BERT. A TFP consists of the representations of Anc, Dynamic OTHERS, and hggp as (4).

learn better sentence representations from large amounts of
unlabeled data with contrastive learning. This method assumed
that if two text fragments (span) are from the same document,
then their semantic representations should be relatively close
to each other, otherwise, they are far away. Furthermore, when
two text fragments are both from the same document if they
are located closer together in the document, their seman-
tics indicate proximity, otherwise far away. Both the above
research are exploring unsupervised contrastive learning, they
cannot take advantage of semantic information within labels.

III. METHODOLOGY

First, we propose TFP tuning. TFP collects external descrip-
tions for all label classes in a used dataset and encodes
these descriptions as semantic anchors [Fig. 2(b)]. These
anchors are used to compose TFPs, and concatenated with
the embedded original input sentences, feeding into a PLM
encoder [Fig. 2(a)]. Second, we introduce semantic-enhanced
contrastive learning that achieves effective latent type proto-
types and token representations. TFP does not introduce extra
parameters for classification, which is an advantage in few-
shot tasks.

A. TFP Tuning for NER

An input of TFP consists of two parts. The first part
[Fig. 2(a)] consists of tokens from an original input sentence,
and special tokens [CLS] and [SEP] at the beginning and the
end of the original sentence (X = [xy, X2, ..., x;]). The second
part [Fig. 2(b)] is a label set ¥ = [y, y2,..., yn], Where
N is the number of predefined entity types for predictions
in the current episodes. TFP obtains the representations (H)
of X from the embedding layer of an employed PLM, i.e.,
BERT-base-uncased® [61], and the initialized semantic anchors
Anc = {ancy, ancy, ..., ancy} (the representations of Y with
prior knowledge) in vector space. For obtaining Anc, we col-
lect the description set Desc of Y, where each entity type
y; € Y can find a definition sentence (desc; € Desc) given
by the first sentence of the related Wikipedia page. We define

3BERT in following equations shares the same parameter set.

Fig. 3. Comparison of prototype representations between our prior
anchor-based method and a traditional mean-based method. The orange circles
denote data distribution.

such a process as a mapping function
desc; = M(y;). (1)

For example, the description of an entity type LOCATION
(descioe) 1s “location or place are used to denote a region
(point, line, and area).” This description contains the definition
of LOCATION and important entity features, such as “region”
and “place.” TFP encodes this description to obtain a semantic
anchor (Ancj,.) with prior knowledge as the initialization
of the prototype of LOCATION. For each u batches (u is a
hyper-parameter), TFP takes {desc}lN: | as inputs (namely N
description sentences as an extra batch) to obtain updated Anc
for the construction of prompts

Anc = BERT ({desc};,). ()

Different from using mean-based representations of ran-
domly sampled data as prototypes [62], [63], Anc are
embedded by external prior knowledge. Hence, a prior anchor
(the green triangle in Fig. 3) is more stable than sampling
from sparse data in different training episodes (the orange
triangles in Fig. 3), because different sampled data can yield
very different prototypes in few-shot learning.

Besides N semantic anchors of N target labels, TFP
also needs an extra semantic anchor for the entity type
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of OTHER. Previous works normally defined OTHER with a
unique representation [22], [46], [64]. However, we believe
that OTHER should have different representations, because it
is the label for the tokens that do not belong to any target
types. For example, for a three-way sampled data {PERSON,
LOCATION, ORGANIZATION}, a more reasonable OTHER type
representation should represent “nonperson, nonlocation, and
nonorganization” types. For another episode with different
labels, OTHER should have a different representation. To this
end, TFP takes advantage of dynamic OTHER representations
in different episodes. For Anc (Anc € RY*7%8) TFP randomly
initializes a matrix Tmp with the same size of Anc and applies
orthogonal triangle decomposition to obtain a dynamic OTHER
representation by

Tmp

3)

Tmp
Ogyn = Anc — (Anc,

['Tmp]| [ I Tmp|l z

where () denotes dot product and F denotes F-norm. The
intuition of using orthogonal triangle decomposition is to
obtain an embedding that is distant from existing N anchors in
the current episode. Then, our template-free prompt is given
by

prompt = [ Oayn, hsep, ancy, hsgp, .. ., ancy | 4)

where hggp is the representation of a special marker [SEP]
in BERT, which is used to separate different components.
These special markers are used to provide information to the
employed PLM about which part is an input sentence and
which parts are elements in a prompt.

We concatenate () prompt and the token representations
{h;}i_, of sequence X, where {h;} is obtained from the
BERT embedding layer (BERTy,). With such a concatena-
tion, we do not have to design any natural language-based
prompt templates, e.g., “[Span] is a [Type] entity,” or label
word mappings, e.g., “map(place, area) = LOCATION.” Next,
the input instance (inst) of TFP is given by

inst = {h;}!_, & {h }j et (5)

where h; € prompt, [ is the length of inst. inst is fed into
BERT encoder (enc) to obtain in-context representations by

(W), hys .. B,

1415 -+ ;] = BERTepc(inst) (6)

where BERT.,. means using the encoder of BERT without
embedding layer.

TFP compares token representations {/.};_, with prototypes
{h’j}.l]-:, 41 to predict probabilities as (7), from the normalized
cosine-similarity that is denoted as d(-). We only compute the
elements of Anc and Ogy, in prompt (the index set is denoted
as J), where hggp in (4) are masked

P(5i) = ), - )
> e exp(—d (. 1))

The final predicated label for a token is given by

g P(3i)- (8)

.....

B. Semantic-Enhanced Contrastive Learning

We propose a hybrid granularity contrastive loss guided by
semantic information. TFP takes advantage of using stable
semantic anchors to optimize distances between prototypes
with tokens, as well as prototypes with other prototypes. Our
semantic anchors utilize external descriptions to parameterize
prompts, so they are more stable than prototypes averaged
from random samples in typical prototype networks [62].

A typical contrastive loss InfoNCE [65] as

exp v; - v;/ r)

E — 1
InfoNCE = Z exp(vz vj /T)

where v; is the embedding of an input instance; v; is a related
positive embedding; v; is a positive embedding plus negative
embeddings from other instances; and t is a temperature
hyper-parameter. The idea of InfoNCE is to pull an instance’s
embedding close to its augmentations and far away from other
input instances. This loss optimizes representations with many
negative samples, rather than directly predicting labels.

In this article, we modify InfoNCE for few-shot learning
with semantic guiding. We assume that there are N + 1 latent
variables Proto = {o;};c; for all entity types, including
OTHER. First, the input of TFP inst contains elements {A;}} and
{h; }l +1» Where {h;}| are the representations of input tokens X
and {h; }t 41 are the representations of prompts. Our objective
is to optimize the network parameters 6 that maximize the
log-likelihood function of an inst as follows:

t t
* = argmaxgz Z logp([hi;hj];9)~

i=1 j=t+1

)

(10)

By assuming the input representations [A;; h;] are related
to N + 1 latent variable Proto = [0y, 02, ..., 0n+1] for each
entity type, (10) can be rewrite as follows:

t t
* argmax, Z Z logp([h,, /’lj], 0j; 9)

i=1 j=t+1

We introduce the latent distribution 7'(0;) (3>_, T = 1) over
each prototype o; as follows:

(1)

[ht’h ] 0j:6)
= argmax, logT 0j)——F7=
121}24_1 J T(Oj)
p([i: hj]. 053 0)
> argmax, 0j log—‘
;JZH:I ! T(oj)
t t'
= argmax, Z Z log T (0;) * p([hi; hj]. 0;: 6)
i=1 j=t+1
—T(0;) xlog T (0;) (12)
where
T(o)) = p([his hj]. 05 0)
Z] i1 P([hishj] 053 6)
_ p([hi,]’lj],Oj,G)
p([his h)]; 0)
= p(oj; [his h;]. 0). (13)
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By ignoring the constant

> -

i=1 j=t+1

oJ *logT(oj) (14)

our object is equal to

= argmax, z z

0] logp h,; hj]’ 0js 9)

i= lj_t+1
_argmaxez Z oj, h,,h 0)
i=1 j=t+1
s log p([his h)]. 0j: 0) (15)
where
hi;h;l,0;:;
roy — —in]osi0)
Z/ t+lp([hl’h ] 0j; )
_ p([hiy].05:0)
p([hi: hi]: 0)
=p(oj; [h,-;hj],é). (16)

With the assumption that there is a uniform prior over
cluster centers, and the prior probability p(c;; 8) for each o;
is 1/r

p([his hj]. 053 0) = p([his hj); 05.0) p(0),60)
= l/r*p([h,-;hj];oj,e).

Furthermore, by assuming that the distribution around each
cluster center (prototype 0;) is an isotropic Gaussian, we have

p([hi hils 05, 6) 2
— exp LO) Z( 2) (18)

where j° # j. Then, we compute p(o;;[h;; )], 6) in (15),
where p(oj; [hi; hjl,0) = 1 if h; is related to o}, otherwise
p(oj; [hi; hjl, 0) = 0. In such condition, combining (15) with
(17) and (18), and calculating distances between h; and o; with
function d(-), the log-likelihood function (10) can be rewritten

as
\2
i exp(—d(h[,oj) /‘L’)
0* = argmin, » log — >
i=l Zt,':l(—d(hivoj) /T)
where 7 is a constant. Namely, TPF updates parameters by
minimizing the loss function with a form of InfoNCE

exp i»0j 2 ‘
(-a(2) /")
Ly = — Zlo > 1( d(hi,Oj)z/f).

TFP employs in-context encoded representations {h ¥ it
in (6) as the estimations for o;. The core difference between
InfoNCE loss and our loss in (20) is that TFP constructs
a positive pair as (token, related prototype) and a negative
pair as (token, unrelated prototype). These prototypes are

a7

19)

(20)
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semantic-enhanced label representations. Thus, (20) can opti-
mize token-wise representations and also distinguish different
classes in few-shot settings. It pulls token embeddings closer to
their related prototypes and pushes them away from unrelated
ones. TFP optimizes prototypes by training after the prototypes
are initialized with external prior knowledge.

TFP desires prototypes can keep certain distances from
each other (this will be verified in Fig. 4 later). To this end,
we propose an auxiliary component, given by

N?/1
Za(fo " (fer)1™)")

where 1, is a temperature hyper-parameter for scaling loss val-
ues; j # j'. Such an auxiliary loss can avoid a representation
collision issue that was argued by the work [66]. The overall
loss (£) is

Lo = 21

L= EOZO + ['120- (22)

In summary, typical unsupervised InfoNCE loss is regarded
as a class-agnostic auxiliary loss to update token-wised repre-
sentations. Thus, they have to employ an extra class-specific
loss combined with a linear layer to predict labels. Different
from the above method, our semantic-enhanced contrastive
loss optimizes FTP by clustering the nodes with semantic
centers, i.e., latent prototypes. There is no additional parameter
introduced in our model, which is an advantage in few-shot
tasks.

IV. TASK FORMULATION

NER is defined as a token-level sequence labeling task.
Given an input sentence with ¢ tokens, X = {x, x2, ..., X},
NER assigns a label y; € Y to each token x;, where Y is a
predefined label set. Y usually contains entity types such as
ORGANIZATION, PERSON, and LOCATION. If a token does not
belong to these classes, it is labeled as OTHER. Models can
only learn from limited label-specific data in few-shot NER.
Some existing few-shot NER work under various settings [47],
[64], [67]. With a comprehensive survey, we conducted our
experiments with three different settings, including LE, DA,
and NA few-shot NER. These three settings focus on different
challenges in few-shot NER, which can systematically evaluate
the capacity of proposed TFP in aspects of LE, DA, and
low-resource generalization. LE and DA follow typical N-way-
K-shot settings* while NA is a stricter few-shot setting.

A. Label Extension

LE setting aims to evaluate the LE ability of a model. This
evaluation is motivated by the fact that new types of entities
often appear in certain domains in real-world applications.
There are eight subtasks in this setting, including the com-
binations of 5-way and 10-way by 1-2 and 5-10 shots in both
FEW-NERD INTER and FEW-NERD INTRA datasets [69].
The FEW-NERD dataset is designed with a hierarchical label
scheme, which contains 66 fine-grained entity types that

4N—way—K—shot details refer to the work [68].
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are clustered by eight coarse-grained types. In INTER and
INTRA datasets, there is no overlapped fine-grained entity
type between the training and validation/test sets. However,
INTER can share coarse-grained entity types. If a type, e.g.,
LOCATION-ISLAND is in the training set, the test sets of
INTRA and INTRA do not contain this fine-grained type,
whereas the type LOCATION-MOUNTAIN can be in the INTER
test set. FTP is fine-tuned by randomly sampling 1-2 shots
each time for each type class. After training, FTP is adapted’
in the support set of the test/validation set and then predict
corresponding fine-grained types in the query set of the
test/validation set. Accurate results in INTER/INTRA show
that the model can recognize new types of entities with/without
parts of class information sharing.

B. Domain-Adaption

DA setting evaluates the domain transferability of a model.
In this task, training and test data are from different domains.
This setting includes six subtasks. There is a common train-
ing dataset OntoNotes 5.0 [70] and three test datasets, i.e.,
CoNLL 03 [71], WNUT 17 [72], and I12B2 [73]. OntoNotes 5.0
data are from a general domain. CoNLL 03, WNUT 17, and
12B2 data are from newswire, social, and medical domains,
respectively. TFP is evaluated in 1- and 5-shot subtasks with
the later three test sets. First, OntoNotes 5.0 is employed as
training data to fine-tune a model. Then, for the test data
from CoNLL 03, WNUT 17, and 12B2, the model adapts with
their support sets and predicts related instances in query sets.
The reported results for CoNLL 03, WNUT 17, and 12B2
are averaged F-1 measures of the query set when models are
adapted with the five sampled few-shot support sets. The used
five sampled support sets come from the work [67].

C. No-Adapting

NA setting has the same predefined label set for training and
testing. However, NA does not contain a source-rich training
set to sample episodes for fine-tuning. Thus, NA strictly
tests the low-resource generalization ability of a model. For
example, when performing a 5-shot task with four entity types,
all available training data are 4 x 5 instances in this setting.
After training, a model is directly evaluated by test data
without adaptation steps. TFP employs the training data from
work [47] in this setting, which samples three limited support
sets from the whole data of CONLL 03, MIT-Movie [74],
and OntoNotes 5.0. The final results are reported on the
original test sets of these three datasets. This setting focuses
on evaluating models’ few-shot ability in the strictest way.

V. EXPERIMENTS
A. Datasets

We report the results of 26 subtasks within six employed
datasets under three different few-shot settings (LE, DA, and
NA) for evaluating the few-shot learning ability of TFP.

3 Adaptation is defined as training with support sets of a test set [46]. This
process is taken under a high-source scenario. The adapted support sets have
the same label space as its test set but do not overlap with train data.

TABLE I

STATISTICS OF DATA USED BY LE SETTING.
# DENOTES COUNTING NUMBERS

FEW-NERD INTER | FEW-NERD INTRA

LE ‘

| train dev test | train dev test
# Class 36 13 17 35 14 17
# Sent 130,111 18,816 14,006 99,518 19,357 44,058
# Token 3,455,927 425,998 312,762 | 2,677,915 503,784 1,012,940
# Entity token 582,280 67,002 62,114 404,209 82,462 212,898
Average length 26 22 22 26 26 22

The statistics of used data are shown in Tables I-III, which
shows the challenges of few-shot NER with different setups.
The related settings are summarized in Table IV.

B. Compared Baselines

A total of nine recent baselines are compared with the
proposed TFP under the settings of LE, DA, and NA. All
these baselines and TFP take BERT-base-uncased as the
employed PLM.

1) CONTaiNER [64] uses NER contrastive learning to
optimize Gaussian-distributed token-wise distances.

2) DML [75] proposes a model-agnostic meta-learning
method to initialize parameters for fast adaptations.

3) COPNER [46] proposes a prompt-based method that
uses class-specific words as metric referents and super-
vision signals to achieve few-shot NER.

4) ESD [76] studies sequence labeling tasks as a span-
level pipeline, including enhanced span representations,
prototype aggregations, and span conflict resolutions.

5) NNShot and StructShot [67] use a nearest neighbor
classifier to differentiate each token. StructShot adds a
Viterbi decoding algorithm upon NNShot.

6) ProtoBERT [69] combines a classical prototypical net-
work [62] with a BERT encoder to classify entity types.

7) Tagger [47] is a simple but strong baseline. The method
uses a linear classifier on top of BERT, following a full
supervision setting with cross-entropy.

8) TemNER [22] is a prompt-based method that treats
few-shot NER as an LM ranking task for a full use of
knowledge transfer in model parameters.

9) EntLLM [47] defines NER as an entity-oriented LM task
to address N-gram traversal. This method is seq2seq-
based; it generates entities in special positions and maps
them to manually defined label words.

C. Result

TFP performance on LE, DA, and NA tasks is shown in
Tables V-VII, respectively. In Table V, TFP achieves averaged
SOTA results, compared with strong baselines. A definite trend
is that TFP performs better with fewer data. Given 1-2 shots
of 5- and 10-way, TFP yields gains of 2.06%, 1.44%, 3.45%,
and 2.79% on FEW-NERD INTER and INTRA, compared to
the strongest baseline (DML). It shows the LE ability of TFP
under a few-shot setting.

Table VI shows that TFP achieves SOTA results in all sub-
tasks. On average, TFP exceeds COPNER by 2.15%, 4.38%,
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TABLE II
STATISTICS OF DATA USED BY DA SETTING

DA OntoNotes | CoNLL | 12B2 | WNUT
. 1 shot Sshot 1 shot Sshot 1 shot Sshot
Train Test ) ) Test Test
support set  support set support set  support set support set  support set
# Class 18 4 4 4 18 18 18 6 6 6
# Sent 59,924 2.6 8.6 683 13 58 7,527 5 25 1,287
# Token 1,088,503 48.2 192.2 46,665 119 479 120,982 53 382 23,394
# Entity token 149,374 9.6 36.2 8,112 43 188 14,652 15 54 1,740
Average length 18 21.75 22.71 12.67 9.15 8.26 16.07 10.60 15.28 18.18
TABLE III
STATISTICS OF DATA USED BY NA SETTING
NA CoNLL MIT-Movie OntoNote
\ Sshot  10shot 20Shot  50shot Test \ Sshot  10shot 20Shot  50Shot Test \ Sshot  10shot 20Shot  50Shot Test
# Class 4 4 4 4 4 12 12 12 12 12 18 18 18 18 18
# Sent 8 18 34 79 3,683 34 72 138 311 2,443 66 111 240 584 8262
# Token 248 430 837 1968 46,665 434 872 1649 3,833 24,686 | 1536 2760 5,689 13,629 152,728
# Entity token 23 60 120 306 8,112 135 289 574 1,330 9,757 191 364 781 2,078 20913
Average length | 31.00 23.80 24.61 2491 12.67 1276 12.11 11.95 12.32 10.10 | 23.27 24.86 23.70 23.33 18.49
TABLE IV
ILLUSTRATION OF DATASETS AND TASK SETTINGS
Setting Corpus Domain N-way-K-shot High-source  Fine-tuning data Valid data Test data
FEW-NERDINTER s . . 1 common 1 support set 1 support set
LE FEW-NERDINTRA General >-1,5-5,10-1, 10-5 Yes training set 1 query set 1 query set
CoNLL(test) News 4-1,4-5
DA ONOROS WNUT(esy)  Social 6-1.6-5 Yes . Common No 3 Support sets
2B2(test)  Medical 18-1,18-5 & query
CoNLL News 4-5,4-10, 4-20, 4-50 3 different
NA MIT-Movie Review  12-5,12-10, 12-20, 12-50 No train sets No 1 test set
OntoNotes General  18-5,18-10, 18-20, 18-50
TABLE V
F1 SCORES (%) IN THE LE SETTING
\ INTER INTRA
Model | 5-way 10-way Ave. | 5-way 10-way Ave.
\ 1-2 shot 5-10 shot  1-2 shot 5-10 shot \ 1-2 shot 5-10 shot  1-2 shot 5-10 shot
ProtoBERT! 38.831.49 58.790.44 3245079  52.920.37 45.75 | 20.760.84  42.540.94 15.050.44 3540013 28.44
ProtoBERT# 44.44/ 58.80/ 39.09/ 53.97/ 49.08 | 23.45/ 41.93/ 19.76/ 34.61/ 29.94
NNShot' 4724100 55.64063 38.870.21 49.572.73 47.83 | 25.78p.91  36.180.79 18.27p.41 2738053 26.90
NNShot? 54.29/ 50.56/ 46.98/ 50.00/ 50.46 | 31.01/ 35.74/ 21.88/ 27.67/ 29.08
StructShotT 51.880.69 57.320.63 43.34¢.10 49.573.08 50.53 30.210.90 38.001 .29 21.031 13 26.420.60 28.92
StructShot* 57.33/ 57.16/ 49.46/ 49.39/ 53.34 | 35.92/ 38.83/ 25.38/ 26.39/ 31.63
CONTaiNERT | 5920134 6423065 5022164 58.97142 58.16 | 44.111.01 57.68081 34.85120 50.890.42 46.88
CONTaiNER? 56.10/ 61.90/ 48.36/ 57.13/ 55.87 | 40.40/ 53.71/ 33.82/ 47.51/ 43.86
COPNERT 66.13112  67.33132  59.760.72 63.530.60 64.18 | 53.121.48 5799105 45.881.10 5194103 52.23
COPNER 65.98/ 67.70/ 59.56/ 62.37/ 63.90 | 54.26/ 58.84/ 44.26/ 51.18/ 52.14
ESD 66.460.49 7414050 5995069 6791141 67.12 | 4144116 50.680.094 3229110 4292075 41.83
DML 68.770.04 71.620.16 63.260.40 68.320.10 67.99 | 52.040.44 63.230.45 43.500.59 56.84p.14 53.90
Ours ‘ 70.830,62 72.140,40 64.700,72 67.650,15 68.83 ‘ 55-490.67 63.310,77 46.290,74 54~010.60 54.78

* The original baseline results’ with standard deviations are cited from the work [69] and the updated baseline results* without standard
deviations are cited from the work [64]. Considering that standard deviation is an important measure for few-shot tasks, we replicate
the resultsT for a fair comparison. Noticeably, original CONTaiNER* uses incorrect data samples. Our replication of CONTaiNERT
uses the revised samples published by the authors of CONTaiNER? later. We report our five-times averaged results, using the official
data splits from the work [69]. The best results are in bold.

and 10.17% F1. Compared with CoNLL sourced from news,
WNUT and I2B2 are more challenging. WNUT aims to extract

entities from noisy text where sentences are ungrammatical.
12B2 contains many numerical entity types, which are hard
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TABLE VI
F1 SCORES (%) IN THE DA SETTING

Model | CoNLL \ WNUT \ 12B2 \ Ave,
| 1 shot 5 shot Avg. | 1 shot 5 shot Avg. | 1 shot 5 shot Avg. |
ProtoBERT 53.007.2 659016 59.45 | 14.804.9 19.805.0 17.30 | 7.603.5 10.300.4 8.95 28.57
ProtoBERT+' | 56.007 .3 67.101.6 61.55 | 18.805.3 23.803.9 21.30 | 7.903.2 10.100.9  9.00 30.62
NNShot! 61.3011.5 743024 67.80 | 21.706.3 239050 22.80 | 16.602.1 23.70;.3 20.15 | 36.92
StructShot! 62.3011.4 752023 68.75 | 25.305.3 272067 26.25 | 22.1030 31.801.8 26.95 | 40.65
CONTaiNER* | 6120107 75.8027 68.50 | 27.501 ¢ 32.503.8 30.00 | 21.501.7 36.702.1 29.10 | 42.53
COPNER 66.502.1 74.603.1  70.55 | 34.90:.8 342026 3455 | 358013 4377015 39.75 | 48.28
Ours ‘ 67.43; 2 779714 7270 ‘ 38.860.50 38.99.5 38.93 ‘ 471735 52.661.3 49.92 ‘ 53.85

* We report averaged F-1 with standard deviations on five different support sets, and run each support set three times.

The results with T and I are from the work [64], [67].

TABLE VII
F1 SCORES (%) IN THE NA SETTING

|Model ~ |5shot 10 shot 20 shot 50 shot |Avg.
Tagger 41.8712,1 59.9110,7 68.665,1 73.203,1 60.91
. |NNShot |42.31s9 59.2411.7 66.89.1 72.633.4 |60.27
j StructShot | 45.8210.3 62.3711.0 69.51g5 74.735.1 |63.11
Z | TemNER |43.046> 57.865.7 66.386.1 72.712.1 |60.00
(3 EntLM 513277 66.863.0 712339 74.801.9 |66.05
COPNER |54.207.9 66.202.9 71.801.8 77.001.4 |67.30
‘Ours ‘61.932‘1 69.462,0 71.761,3 77.661,9 ‘7020
Tagger 39-57644 50.607.3 59.343,7 71.333,0 55.21
“o|NNShot |389755 504761 589435 71.172.9 |54.89
g StructShot | 41.609.0 53.1955 61.4230 72.076.4 |57.07
E. TemNER 459739 49.305.4 59.090.4 65.130.2 |54.87
& | EntLM 49.1589 59.2140 63.853.7 72.99:5 |61.30
= | COPNER [50.103.6 61.90;4 689024 74.6003 |63.88
\Ours \59.254‘4 658210 70.871.7 754204 \67.84
Tagger 210117 317116 36.231.4 46.18 1.2|33.78
+ | NNShot |[38.623.3 429140 487710 509505 |45.31
% StructShot | 389134 43.025.1  49.002.6 51.281.2 |45.55
% TemNER 39.063,1 50.821_9 59.281,0 67.940,8 54.28
< | EntLM 364135 53.2015 61.22535 68.92, ¢ |54.94
O|COPNER |38.726.4 50.6l73 59.3537 642130 |54.05
‘Ours ‘40.962‘5 51.142.2 59.502,5 68.593,1 ‘5505

* The results with { are from three different support sets
sampled by the work [47]. Each support set repeats three
times. The results with I are reported from our sampled three
support sets, because the work [47] exclude seven entity types
from the original OntoNotes. To keep the same OntoNotes
with our DA setting, we include these types in the NA setting.

to distinguish, e.g., a Medical Record entity “471-90-84-7”
and an ID Number entity “GL735LM.” Meanwhile, training
sentences from OntoNotes are sourced from a general domain
with formal formats. TFP yields large gains in such a context,
showing its strong domain transferability.

In Table VII, TFP shows its few-shot generalization ability
under NA setting. TFP achieves 61.93%, 59.25%, and 40.96%
F1 on CoNLL, MIT-Movie, and OntoNotes, respectively,
by only training with five annotated sentences in each class.
For 5-shot of CoNLL and MIT-Movie, TFP outperforms the
strongest baselines by 7.73% and 9.15% average F1.

TABLE VIII

ABLATION STUDY MEASURED BY F1 (%) IN FEW-NERD INTER 5-WAY-
1-SHOT (LE), CONLL 1-SHOT (DA), AND CONLL 5-SHOT (NA)

Prompt Form LE DA NA Avg.
EP (w/o. in-context) 48.8240 499036 56.6528 51.79
WP (w/. in-context) 66.131.1 66.502.1 542079 62.28
SP (w/. in-context) 674923 663831 5621358 63.36
SP! (w/o. in-context) 46.123.1 47.014o 550131 49.37
CP (w/. in-context) 68.0205 634299 582635 63.23
FTP! (w/o. in-context) 529654 38.8357 43.83350 45.21
FTP? (w/o. shuffle) 69.5409 682642 502417 62.68
FTP? (w/o. [SEP)) 67.161.4 650150 600133 64.06
FTP* (w/o. dynamic O) 6828, 66.0la9 59.6763 64.65
FTP 708306 67.43:> 61.93,> 65.84

*

w/. and w/o. denote with and without.

VI. ANALYSIS

A. Prompt Ablation Analysis

We compare prompts in different forms and perform abla-
tion analysis, which finds that in-context learning plays a core
function, rather than various construction formats of prompts
that were studied by recent research [22], [23], [24], [47].
Besides, semantic-type representations also work.

Table VIII shows the results of ten compared methods.
external prompt (EP) uses fixed label names with man-
ual label word mappings as prompts, which are separately
inputted into a model with original sentences, without in-
context encoding. Namely, we first input the first part {4;}}_,
of input inst in (5) to BERT, aiming to get the repre-
sentations of each token {h|,h},...,h;} in (6). Then, the
label set ¥ = [y, y2,...yn] as a prompt is separately
fed into BERT to obtain the representation of each class
to replace the part {h j}lj=, 41 in (6). By such a method,
we exclude the effects from in-context encoding a sentence
with a prompt. The following “without in-context encoding”
means the same method to exclude the effects from in-context
encoding.

Words prompt (WP) is from the work [46], which uses
the same prompts with EP but with in-context encoding.
Namely, EP uses a label name to replace a description sentence
(replace (1) into desc; = ;).
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TABLE IX
SEMANTIC-ENHANCED CONTRASTIVE LOSS ANALYSIS

LE DA NA Avg.
Random semantics 26.293.3 30.8096 49.196.4 3543
Token-wise contrastive 31.11117 42.6324 35.555.1 36.43
Mean-based prototype 56.22.3 58.23.0 579045 57.43
FTP 708306 67.43:> 61.93,> 65.84

* The used data and measure keep the same with Table VIIIL.

Synonyms prompt (SP) utilizes averaged embeddings of
three synonymous label names from PLM as prompts.
SP! refers to SP without in-context encoding.

Continual prompts (CPs) use randomly initialized embed-
dings plus a special prompt encoder for further encoding,
which follows the work [77].

Our FTP uses prior semantic anchors for initialization
and performs in-context encoding with input sentences.
FTP! denotes that we separately input the prompts and orig-
inal sentences into a model, without in-context encoding.
FTP? uses prompts in which all elements are not shuffled.
FTP? denotes that no specific marker [SEP] is used to separate
input anchors in prompts [see (4)]. FTP* uses the fixed
representation of OTHER instead of dynamic OTHER described
in (3).

By comparing EP with WP, we find that in-context-learning
can significantly improve the results by 10.49%. Similar results
are also observed when comparing SP! with SP and FTP' with
FTP, where in-context learning achieves 13.99% and 20.63%
averaged F1 gains. By comparing FTP with WP, SP, and CP,
it is apparent that using our proposed semantic anchors to
construct prompts is better than using label names with manual
mappings, label name synonyms, and continual embeddings,
as F1 improvements by 3.56%, 2.48%, and 2.61% showing
in Table VIIL. The F1 gains of FTP over FTP!>3# show the
effectiveness of prompt element shuffle, using [SEP] markers,
and introducing dynamic OTHER learning.

B. Semantic-Enhanced Contrastive Loss Analysis

In Table IX, we analyze the utility of our semantic-enhanced
contrastive learning. Random semantics means we replace
our semantic anchors {anc,-}iN: , in (4) with random vectors.
Token-wise contrastive means we adopt typical contrastive
learning without semantic-enhancement. This method uses
InfoNCE for representation optimization and a linear layer
combined with cross-entropy loss for predictions. Mean-based
prototype means we randomly sample some embeddings from
label-specific tokens and take mean representations instead of
the semantic anchors. In Table IX, TFP surpasses random
semantics and is token-wise contrastive with large margins
(30.41% and 29.41% in F1). Most existing contrastive learning
is token-wise [27], [57], which will wrongly push away the
presentations of negative instances that share similar seman-
tics. Notably, this is particularly important in NLP tasks, where
it is necessary to maintain consistent and proper semantic
information for input tokens, even when they are negative
pairs. Besides, the improvements of TFP over the mean-based
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(©) (d)

Fig. 4. t-SNE visualization for the test set of CoNLL in the NA setting.
Four colors represent four classes in CoNLL. (a) Tagger. (b) StructShot.
(c) COPNER. (d) TFP.

TABLE X

AVERAGED SEMANTIC SIMILARITY OF POSITIVE AND NEGATIVE
PAIRS ON DA-BASED CONLL 1-/5-SHOT

Semantic similarity Pos Neg SimNeg
Initial similarity 13.28 12.88 10.58
Random semantics 76.47/81.57  77.17/78.99  77.67/78.66
Token-wise contrastive  37.63/37.25 31.93/31.35 18.72/18.24
Mean-based prototype ~ 42.66/42.64  27.77/27.12  19.37/18.30
FTP 84.15/84.46  66.39/65.03  66.28/64.52

* A higher value denotes more similar. Pos and Neg means
the average distance of instances to all positive and negative
pairs, respectively. MinNeg denotes the minimum Neg distance.
Pos means the average distance of all positive pairs and Neg
for negative pairs. Min neg stands for the minimum distance
of negative pairs with most similar semantic. All distances are
calculated with the same scaling parameter.

prototype indicate that our method alleviates the bias of
random sampling in few-shot NER.

Fig. 4 shows the effects of our semantic-enhanced con-
trastive loss in the NA-based CoNLL test set. Compared with
external baselines, TFP can generate the most distinguishable
representations optimized by our loss. The distribution of
token embeddings [A]., in (6)] shows four separated clusters
via t-SNE. The nodes from four classes are pulled to four
directions by TFP. This finding is statistically supported by
Table X, which shows the averaged semantic (cosine) simi-
larity between instances and positive samples (Pos), negative
samples (Neg), and semantically similar negative samples
(Sim Neg). The semantically similar negative samples are
given by original BERT hidden states and cosine similarity.
We use A}, in (6) to compute cosine similarity. The values
are based on a DA-based CoNLL test set (1- and 5-shot).
In Table X, initial similarity shows that the representations
of instances and the representations of positive and nega-
tive samples are not well distinguished, because Pos, Neg,
and Sim Neg are small and close. After training, the rep-
resentations of the random semantics-based method are still
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indistinguishable in vector space, because the values are near.
However, FTP shows a large gap between Pos and Neg, which
means the positive and negative pairs are well distinguished.
More importantly, the semantically similar negative examples
are not further pushed away from the instances, because its
Sim Neg is similar to its Neg. In contrast, the benchmarking
methods, e.g., token-wise contrastive and mean-based proto-
types push those semantically similar negative samples further
(their Sim Neg is smaller than their Neg). Thus, it proves
that our semantic-enhanced contrastive loss can distinguish
positive and negative samples by inputting instances in vector
space and also can prevent the distance of semantically similar
negative samples from being pushed too far.

VII. CONCLUSION

In this article, we have introduced the TFP framework,
which utilizes prompt tuning to improve token-level NER
tasks without the need for template construction or label word
mapping. Our prompt-based approach is straightforward to
implement and achieves significant performance gains without
requiring any complex modifications to the neural architec-
ture. By incorporating the proposed hybrid granularity loss,
TFP achieves semantic-guided contrastive learning in few-
shot tasks. We demonstrate that our proposed semantic guided
loss can effectively address the problem of wrongly pushing
away the presentations of negative instances that share similar
semantics in typical contrastive learning. Through compre-
hensive evaluations, we show that our model exhibits strong
performance in LE, domain adaptation, and low-resource gen-
eralization, achieving 19 out of 26 SOTA results on few-shot
NER tasks. Moreover, we find that in-context encoding plays
a more critical role than elaborately designed prompts, which
is the primary reason why prompt tuning works effectively.
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