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counterparts, e.g., in KL divergence. Besides, research some-
times requires metric distances in related processes, where
triangular inequality is desirable.

Inspired by the success of IDF and its limits, we have
identified a new information measure, namely DLITE, and
derived from it an alternative term weighting method we
refer to as iDL. In this study, we apply iDL to ranked
retrieval and compare it to BM25 on multiple benchmark Text
REtrieval Conference (TREC) datasets. Results show superior
performances of iDL compared to the classic, competitive
baseline.

II. RELATED WORKS

Term frequency (TF) and document frequency (DF) are
important statistics for term weighting in information retrieval
and text mining. While term frequency (TF) exhibits the degree
of a document’s association with a term, inverse document
frequency (IDF) is a manifestation of a term’s specificity
and discriminative power, a crucial indicator of document
relevance [35].

While a term’s IDF is equivalent to the mutual information
between the term and the collection [33], the probabilistic
retrieval framework provides a probabilistic interpretation of
IDF weights as well [26]. Mutual information is equivalent to
relative entropy that quantifies the difference between the joint
probabilities and product probabilities of two random variables
[12].

A. IDF as KL Divergence

IDF can also be regarded as Kullback-Leibler (KL) di-
vergence of a term’s occurrence in a document from its
probability distribution in the entire collection [1]. Given
a collection of N documents, the probability of drawing a
document containing term t can be estimated by:

qt =
nt
N

(1)

where nt is the number of documents containing t. The
complementary probability of drawing a document without
term t is q′t = N−nt

N . For a specific document that contains
the term, the probability of the term’s occurrence is certain,
i.e. pt = 1 and p′t = 0.
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I. INTRODUCTION

Research has relied on Shannon’s information entropy and
its derivatives in a wide range of processes for information
retrieval (IR) and data mining (DM) [30], [32]. Information
and probability theories provide essential guidance to the
development of probabilistic retrieval and language modeling
[27].

In particular, Kullback-Leibler (KL) divergence (relative
entropy) and mutual information lay a robust theoretical foun-
dation for the term significance measure of Inverse Document
Frequency (IDF) [2], [5], [21]. IDF quantifies t he amount
of information of observing a term in a specific document
by measuring its KL divergence from the collection-wide
probability distribution.

In ranked retrieval, we often need to aggregate scores
such as those based on TF*IDF and BM25, which include a
similar component of IDF [28]. This practice presumes related
weighting functions to be additive and bounded. However,
such properties are not necessarily present in their theoretical
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Given the definition of KL divergence for distributions P
and Q:

KL(P ||Q) =
∑
x∈X

px log
px
qx

(2)

We can compute KL divergence of term t:

wt = KL(Pt||Qt) (3)

= pt log
pt
qt

+ p′t log
p′t
q′t

(4)

= 1× log
1
nt

N

+ 0× log
pt
qt

(5)

= log
N

nt
(6)

wt is exactly the classic IDF weight of term t. This
reflects the amount of KL divergence in the term’s occurrence
(certainty) measured from the distribution obtained under a
random process (collection-wide distribution) [6].

KL divergence (relative entropy) measures information for
discrimination between two probability distributions by quan-
tifying the entropy change in a non-symmetric manner [22]. Its
values are unbounded and do not satisfy triangular inequality.
Research has also employed KL information in language mod-
eling to measure the difference between a document and query
models for ranking and demonstrated strong performances
[23], [36].

B. IDF in TF*IDF

Let tfdt denote the term frequency of t in document d. Its
TF*IDF weight can be computed by:

TFIDFdt = tfdt × log
N

nt
(7)

There are variations of TF*IDF where TF is log-transformed
or normalized by document length:

TFIDF log
dt = (1 + log tfdt)× log

N

nt
(8)

TFIDFnorm
dt =

tfdt
ld
× log

N

nt
(9)

where ld is the length of document d, i.e., the number of
terms it contains. Document length normalization reduces term
frequencies to probability estimates and is a common practice
in ranked retrieval.

C. IDF in BM25

Another classic variation of TFIDF is Okapi BM25, which
is derived from probabilistic models [28]. In BM25, the
TF weight is normalized by document length as well as a
saturation function:

wTF
dt =

tfdt

tfdt + k
(
(1− b) + b ld

avl

) (10)

where avl is the average document length in the collection.
Whereas b controls the degree of document length normaliza-
tion (0 for no normalization and 1 for full-scale normalization),
k is the pivot value that determines how quickly an increasing
score saturates.

BM25 also includes an IDF component with a smoothed
probability estimate:

wIDF
t = log

N − nt + 0.5

nt + 0.5
(11)

The final BM25 weight is the product of wTF
dt and wIDF

t :

BM25dt = wTF
dt × wIDF

t (12)

=
tfdt

tfdt + k
(
(1− b) + b ld

avl

) (13)

× log
N − nt + 0.5

nt + 0.5
(14)

Experiments have shown competitive results based on 0.5 <
b < 0.8 and 1.2 < k < 2. For TREC ad hoc retrieval, years
of evaluation results indicate that best results can be achieved
by roughly b = 0.75 and k = 1.5.

III. DLITE THEORY

The Discounted Least Information Theory of Entropy
(DLITE) is an extension of our prior work on the Least Infor-
mation Theory (LIT) that satisfies several additional properties
as an information metric. We shall introduce the LIT measure
first.

A. LIT Measure

The Least Information Theory (LIT) quantifies the amount
of entropic difference between two probability distributions
[8], [17]. Given distributions P and Q of variable X , LIT is
computed by:

LIT (P,Q) =
∑
x∈X

∫ qx

px

− log p dp (15)

=
∑
x∈X

∣∣∣px(1− ln px)− qx(1− ln qx)
∣∣∣(16)

where x is one of the mutually exclusive inferences of
X , and px and qx are probabilities of x on the P and Q
distributions respectively.

For any probabilities p and q, let:

g(p, q) =
∣∣∣p(1− ln p)− q(1− ln q)

∣∣∣ (17)

LIT can be written as:

LIT (P,Q) =
∑
x∈X

g(px, qx) (18)

Research has applied LIT to data clustering, classification,
and information retrieval, and shown its competitive perfor-
mances compared to classic baselines [10], [13], [17]–[19].
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B. Entropy Discount

For DLITE, we introduce the following entropy discount:

∆H(P,Q) =
∑
x∈X

∣∣∣px − qx∣∣∣∫ qx
px
−p log p dp∫ qx
px
x dx

(19)

=
∑
x∈X

∣∣∣p2x(1− 2 ln px)− q2x(1− 2 ln qx)
∣∣∣

2(px + qx)
(20)

For any probabilities p and q, let:

δh(p, q) =

∣∣∣p2(1− 2 ln p)− q2(1− 2 ln q)
∣∣∣

2(p+ q)
(21)

The entropy discount ∆H can be written as:

∆H(P,Q) =
∑
x∈X

δh(px, qx) (22)

C. DLITE: LIT with Entropy Discount

We now define the Discounted Least Information Theory
of Entropy, or DLITE, as the amount of LIT subtracted by its
entropy discount ∆H :

DL(P,Q) = LIT (P,Q)−∆H(P,Q) (23)

=
∑
x∈X

g(px, qx)− δh(px, qx) (24)

For any probability change from p to q, let:

dl(p, q) = g(p, q)− δh(p, q) (25)

Equation 24 can written as:

DL(P,Q) =
∑
x∈X

dl(px, qx) (26)

D. DLITE’s Information-theoretic Properties

Again, DLITE is the amount of LIT with the ∆H discount:

DL(P,Q) = LIT (P,Q)−∆H(P,Q) (27)

=
∑
x∈X

∫ qx

px

log
1

p
dp (28)

−
∑
x∈X

∣∣∣px − qx∣∣∣∫ qx
px
p log 1

p dp∫ qx
px
p dp

(29)

Whereas LIT represents the sum of weighted, microscopic
entropy changes, it consists of an amount of entropy change
due to the scale of related probabilities, leading to an undesir-
able consequence of having different LIT amounts in different
sub-system breakdowns. The entropy discount, ∆H , accounts
for this extra amount in the LIT and reduces it to a scale-free
measure. As shown in Equation 29, the discount on each x

dimension is a product of the absolute probability change in
p and a mean of log 1

p .
We discussed justifications of DLITE with a list of metric

and information-theoretical properties in [20]. The latest up-
date on mathematical proofs, including those on its triangular
inequality properties, can be found in the technical report [37].
We highlight DLITE’s major theoretical properties below.

Research has proposed many basic properties desirable of
any information measure or a coefficient of divergence. The
DLITE measure meets several of these properties, such as
those listed in [3], [21]. Here we list major DLITE charac-
teristics as an information quantity:

1) DLITE is defined for all pairs of probabilities on two
distributions P and Q.

2) DL(P,Q) increases when absolute pairwise probability
differences of P and Q increase.

3) DLITE increases with an increasing number of
equiprobable inferences, when reducing that uniform
distribution to a certainty.

4) DLITE is non-negative, with its maximum at 1.
5) DLITE of an ensemble (entire system) is the weighted

sum of DLITEs in its sub-systems.
6) It is additive for independent variables as well as depen-

dent probability distributions in special cases.
7) The sum of DLITE distances 3

√
DL on two variables is

no less than 3
√
DL on their product distributions.

To demonstrate some of these properties, Figure 1 compares
DLITE to classic information measures including Shannon
Entropy [31], KL divergence [21], and Jensen-Shannon (JS)
Divergence [24]. DLITE is bounded in [0, 1] regardless of the
dimensionality. The quantity on one single inference x ∈ X
is maximized, dl(px, qx) = 0.5, when the probability changes
from px = 0 to qx = 1, or from px = 1 to qx = 0.
With 2 mutually exclusive inferences, the overall DLITE is
maximized for changes from P = (0, 1) to Q = (1, 0), where
DL(P,Q) = 1.

Shannon entropy, on the other hand, always returns 0 for
swapped probabilities, as shown by examples in Figures 1 (a)
and (b). In Figure 1 (a), KL Divergence approaches infinity
with a 0 probability whereas DLITE and JS divergence are
bounded by 1 and ln 2 respectively. Likewise, as Figure 1
(b) shows, DLITE is bounded in [0, 1], when 2 out of 3
probabilities are swapped.

E. DLITE’s Metric Properties
Given the definition in Equation 24 or 29, it can be shown

that DLITE satisfies the following metric properties:
1) Non-negativity: DL(P,Q) ≥ 0 for any probability

distributions P and Q of the same dimensionality.
2) Identity of Indiscernibles: DL(P,Q) = 0 if and only if

P and Q are identical distributions.
3) Symmetry: DL(P,Q) == DL(Q,P ), the amount of

the information from P to Q is the same as that from
Q to P .

Figure 2 plots the value of DLITE, dl(p, q), for any prob-
ability change from p to q and demonstrates the above three
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(a) Binary swap P (p1, p2)→ Q(p2, p1) (a) Swap 2 of 3 probabilities

Fig. 1. Information for Swapped Probabilities. X axis denotes the probability of one inference whereas Y shows the amount of information, with (a) swapped
probabilities in the binary case and (b) swapped probabilities of 3 inferences. Compare to Fig. 1 in [24].

Fig. 2. dl(p, q) for any p and q values

properties: (1) all values ≥ 0, (2) 0 values only on the diagonal
line (in a lighter color) where p = q, and (3) a symmetry
indicating dl(p, q) = dl(q, p).

We observe that DLITE’s cube root 3
√
dl satisfies triangular

inequality:

3
√
dl(p, q) + 3

√
dl(q, r) ≥ 3

√
dl(p, r) (30)

Applying Minkowski’s inequality [14] to the above, we also
prove that 3

√
DL satisfies the triangular inequality:

3
√
DL(P,Q) + 3

√
DL(Q,R) ≥ 3

√
DL(P,R) (31)

where P , Q, and R are probability distributions of the same
dimensionality.

Given the above properties of DLITE, it is straightforward
to show that 3

√
DL also satisfies non-negativity, the identity

of indiscernibles, and symmetry. Therefore, the cube root is
a metric distance, and we can regard DLITE as a volumetric
measure in the amount of information. We refer to 3

√
DL as the

DLITE distance. Detailed proofs of these and related properties
can be found in [20], [37].

We can compare this characteristic to that of Jessen-
Shannon (JS) Divergence, of which the square root is a metric
[11], [24]. DLITE and JS Divergence share similar patterns in
the measured amount of information.

In Figure 3 we compare DLITE with classic measures on
reducing a probability distribution to certainty (when one in-
ference becomes the ultimate outcome). Figure 3 (a) compares
the measures of reducing a binary probability distribution
P (p1, p2) to certainty Q(1, 0), i.e. with the first inferences as
the ultimate outcome. Shannon entropy is symmetric because
it only accounts for the overall entropy reduction and disre-
gards the amount of probability change in specific inferences
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(a) P (p1, p2)→ Q(1, 0) (b) Equiprobable P to certainty Q

Fig. 3. DLITE vs. classic information measures on reducing to certainty. Y is the amount of information I(P,Q) based on each information measure. (a)
is the binary case, where X denotes probability p1 of two mutually exclusive inferences, with p2 = 1 − p1. (b) shows the general case of reducing an
equiprobable distribution P to certainty Q, where log-transformed X denotes the number of equiprobable inferences.

(dimensions). DLITE and Jessen-Shannon divergence follow a
similar pattern with a upper bound, whereas the KL divergence
is unbounded.

In Figure 3 (b), we compare the information measures in
reducing equiprobable inferences to certainty. With an in-
creasing number of equiprobable inferences, Shannon entropy
continues to increase, whereas DLITE and JS divergence are
bounded. DLITE approaches 1 asymptotically as the number
of equiprobable inferences approaches infinity.

F. Implications of DLITE Properties

The above DLITe properties have important implications in
applications such as Information Retrieval and Text Mining.
We highlight some of these properties and how they can make
a difference compared to classic treatments:
• Given the metric properties of DLITE, it is fitting to use

it as a distance measure where the sum of such values
(scores) are meaningful. This is compatible with classic
IR ranking methods where the scoring function is the sum
of matching term weights.

• Because DLITE is bounded in [0, 1], it is different from
an unbounded function such as the KL divergence. IDF
as a direct application of KL divergence can have infinite
(theoretically) or extremely large values (practically) that
dominate the scoring function. As a result, when the
query contains a rare term, that term’s large IDF will
render other terms useless for retrieval ranking. DLITE
does not inherit this problem thanks to the upper bound.

• As the DLITE of an ensemble (the entire system) can
be computed as the weighted sum of its sub-systems, it
offers researchers the capacity to dissect and reconstruct a
system in different ways without altering the final scoring.

IV. IDL TERM WEIGHTING

In this work, we apply the DLITE theory to ad hoc
information retrieval (IR), particularly for term weighting. In
the bag-of-words approach to IR, we view a document as a
set of terms with probabilities (estimated by frequencies) of
occurrences. By analyzing a term’s probability (frequency) in
a document vs. that in the collection, we can compute the
amount of information in the term’s occurrence to weight the
term. We conjecture that the greater amount of DLITE a term
has, the more heavily the term should be weighted to represent
the document.

A. DLITE Alternative to IDF

Following the discussed KL divergence model for IDF,
we compute a term’s weight based on its DLITE from its
probability distribution in the entire collection [1]. Again,
given a collection of N documents, the probability of drawing
a document containing term t can be estimated by:

qt =
nt
N

(32)

where nt is the number of documents containing t. The
complementary probability of drawing a document without

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on October 10,2023 at 07:26:00 UTC from IEEE Xplore.  Restrictions apply. 



41

term t is q′t = N−nt

N . For a specific document that contains
the term, the probability of the term’s occurrence is certain,
i.e. pt = 1 and p′t = 0.

Based on the DLITE definition, we compute the weight of
term t based on Pt (document) and Qt (collection) distribu-
tions:

wDLITE
t = DLITE(Pt, Qt) (33)

= LIT (Pt, Qt)−∆H(Pt, Qt) (34)

=

∫ q′t

0

log
1

p
dp+

∫ 1

qt

log
1

p
dp

−q′t

∫ q′t
0
p log 1

p dp∫ q′t
0
p dp

−(1− qt)
∫ 1

qt
p log 1

p dp∫ 1

qt
p dp

(35)

= q′t(1− ln q′t)−
1

2
q′t(1− 2 ln q′t)

+(1− qt(1− ln qt))

−1− q2t (1− 2 ln qt)

2 + 2qt
(36)

=
q′t
2

+ (1− qt(1− ln qt))

−1− q2t (1− 2 ln qt)

2 + 2qt
(37)

where qt = nt

N and q′t = N−nt

N .

B. iDL with TF

We adopt the same TF component as in BM25:

wTF
dt =

tfdt

tfdt + k
(
(1− b) + b ld

avl

) (38)

where avl is the average document length, b is the parameter
for document length normalization, and k is the saturation
pivot value.

Finally, we conbine wDLITE
t and wTF

dt using their product:

iDLdt = wTF
dt × wDLITE

t (39)

C. iDL
1
3 with TF

We showed that 3
√
DLITE meets triangular inequality and

is a metric distance. Here we propose a second term weighting
method based on the product of wTF

dt and 3
√
wDLITE

t :

iDL
1
3

dt = wTF
dt ×

3

√
wDLITE

t (40)

D. A Note on Computational Complexity

As shown in the equations above, iDLdt and iDL
1
3

dt scores
depend on qt, which is estimated by the term’s document
frequency (DF) nt, whereas wTF

dt is a function of its term
frequency in the document (TF). Same as TF*IDF and BM25,
both iDL and iDL

1
3 are a function of TF and DF statistics.

They are all based on a logarithmic transformation with
normalization of these statistics. In short, the alternative iDL
methods proposed in this research does not incur additional
computational costs than classic BM25 or TF*IDF does.

V. EXPERIMENTAL SETUP

A. Data Collections and Topics

We used the following Text REtrieval Conference (TREC)
benchmark datasets, from the Linguistic Data Consortium and
NIST, for retrieval experiments: TREC 1994 Vol 2 Disk 3,
TREC 2005 Hard (High Accuracy Retrieval from Documents)
track, and TREC 2017 Common Core track. These are rep-
resentative TREC datasets of three decades and have been
widely used for ad hoc retrieval experiments. We use the
following topics (queries) and relevance judgment provided
by TREC in each year:
• TREC 2 routing topics 51 - 100 with title, description,

summary, narrative, and concepts (disk 3) [29];
• TREC 2005 HARD/Robust 50 topics (303 - 689)

with title, description, and narrative for retrieving the
AQUAINT I data [38].

• TREC 2017 Common Core topics (303 - 690) with title,
description, and narrative reused for experiments on the
New York Times Annotated Corpus [4].

These collections represent a diversity of text data and query
tasks. In TREC 2, for example, the concepts field in 51 -
100 topics contains a verbose list of concepts to represent
each search topic. Text queries automatically generated from
the concept lists are likely to be more accurate than general
descriptions in sentences. TREC 2005 HARD topics were
developed as a list of difficult topics from previous years’
ad hoc experiments. TREC 2017 reused and revised queries
from the 2004 Robust track to bring them up to date. These
were run and re-evaluated based on a more recent collection of
1.8 million NYT articles. Using these diverse data and topics
enabled a relatively thorough examination of the proposed
methods’ effectiveness in various domain and task contexts.

B. Experimental System

We implemented the retrieval ranking methods using the
Lucene core search engine library in Java [15]. We reused the
Okapi BM25 implementation reported in [25] and validated
by [27], which achieved highly competitive results in TREC.
We set parameter values b = 0.75 and k1 = 1.5 for BM25,
according to reported best results on related data. We used the
same b and k parameters for the TF component in iDL.

We performed standard tokenization, case-folding, and stop-
word removal before indexing documents. For each data col-
lection, we conducted one set of experiments with stemming
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and the other without it. We also used different query verbosity
levels in the searches, with query title, description, or narrative.

C. Evaluation Metrics

We used human relevance judgment (QRELs) NIST devel-
oped for TREC 2, TREC 2005 HARD tracks, and TREC 2017
common core track as the ground truth for retrieval evaluation.
We compared the proposed methods based on DLITE, namely
iDL and iDL

1
3 , to Okapi BM25, a very strong baseline.

Evaluation metrics included mean average precision with
arithmetic averaging (MAP) and geometric (gMAP), best
precision at rank 10, normalized discounted cumulative gain at
10 (nDCG10), and recall precision. While arithmetic average
MAP provides a simple mean score across multiple queries,
the geometric average (gMAP) is sensitive to poorly performed
tasks and is a very useful metric developed for the 2005 HARD
track [38]. NDCG favors early retrieval of highly relevant
documents in a ranked list and has become widely adopted
for ranked retrieval evaluation [16].

VI. EXPERIMENTAL RESULTS

Overall, the proposed DLITE methods overwhelmingly out-
performed BM25 in experiments. Table I is a summary of best
results achieved by each method, per evaluation metrics on
each data collection. As shown in Table I, iDL and iDL

1
3

dominate the best results in every evaluation metric. The
results are consistent across the benchmark data collections
developed in a period of more than 20 years (1994 - 2017).

Method gMAP MAP P10 nDCG RPR

TREC 1994 Routing Track
BM25 0.288 0.407 0.597 0.504 0.451
iDL 0.305 0.414 0.639 0.509 0.467

iDL
1
3 0.309 0.419 0.637 0.524 0.469

TREC 2005 HARD Track
BM25 0.271 0.337 0.509 0.387 0.371
iDL 0.306 0.369 0.533 0.412 0.421

iDL
1
3 0.323 0.388 0.564 0.447 0.447

TREC 2017 Common Core
BM25 0.387 0.457 0.615 0.452 0.452
iDL 0.394 0.468 0.642 0.477 0.468
iDL

1
3 0.387 0.470 0.612 0.465 0.424

TABLE I
BEST RESULTS ON EACH COLLECTION. EACH SCORE IS THE HIGHEST A
METHOD ACHIEVED IN THE GIVEN EVALUATION METRIC. A BOLD FONT

SHOWS THE BEST AMONG THE THREE METHODS IN EACH METRIC.

We elaborate on each set of experiments in sections VI-A -
VI-C below. In each of Tables II - IX, we report on one set of
experiments conducted with stemming and the other without.
We highlight the best scores in each evaluation metric in bold
fonts.

A. TREC 1994 Routing on Vol 2 Disk 3

Table II shows results from experiments using query terms
from topic titles. Without stemming, iDL

1
3 performed best in

terms of every evaluation metric. Stemming further improved
the results for DLITE methods, where iDL

1
3 continued to

dominate the best results (in MAP, nDCG, and RPR). iDL
also consitently outperformed BM25.

Method gMAP MAP P10 nDCG RPR

No Stemming
BM25 0.187 0.334 0.495 0.362 0.361
iDL 0.195 0.354 0.497 0.374 0.384

iDL
1
3 0.203 0.360 0.495 0.380 0.392

With Stemming
BM25 0.183 0.329 0.440 0.338 0.353
iDL 0.202 0.370 0.489 0.396 0.398

iDL
1
3 0.174 0.376 0.483 0.402 0.407

TABLE II
TREC 1994 WITH QUERY TITLE (DISK3)

Method gMAP MAP P10 nDCG RPR

No Stemming
BM25 0.206 0.356 0.503 0.398 0.387
iDL 0.224 0.384 0.579 0.431 0.422

iDL
1
3 0.201 0.393 0.560 0.432 0.427

With Stemming
BM25 0.220 0.335 0.460 0.354 0.362
iDL 0.246 0.374 0.533 0.414 0.405

iDL
1
3 0.229 0.394 0.544 0.431 0.424

TABLE III
TREC 1994 WITH QUERY TITLE+DESC

Table III continues to show superior performance of DLITE
methods over BM25, using query titles and descriptions.

Method gMAP MAP P10 nDCG RPR

No Stemming
BM25 0.288 0.407 0.597 0.504 0.451
iDL 0.302 0.410 0.639 0.509 0.456
iDL

1
3 0.299 0.408 0.634 0.493 0.453

With Stemming
BM25 0.281 0.399 0.565 0.488 0.442
iDL 0.305 0.414 0.623 0.523 0.467

iDL
1
3 0.309 0.419 0.637 0.524 0.469

TABLE IV
TREC 1994 WITH QUERY CONCEPTS (DISK3)

In TREC 2 topics, each query also comes with a verbose list
of concepts (accurate keywords). With these manually picked
concept terms, which are overall quite precise in defining each
topic, Table IV shows further improvement of DLITE methods
– whereas iDL produced the best results without stemming
in all metrics, iDL

1
3 did that with stemming.

B. TREC 2005 HARD Track

In TREC 2005 HARD/Robust track, the 50 topics were
considered difficult retrieval tasks. We used title, description,
and title+description as queries in the experiments. As Table V
shows, iDL

1
3 is the best method for searches based on titles

with and without stemming, in terms of all evaluation metric.
iDL outperformed BM25 as well.

When we used topic title and descriptions for query repre-
sentation, as shown in Table VI, iDL

1
3 and iDL continued to

outperform BM25.
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Method gMAP MAP P10 nDCG RPR

No Stemming
BM25 0.169 0.274 0.403 0.256 0.298
iDL 0.184 0.301 0.408 0.316 0.345

iDL
1
3 0.189 0.308 0.423 0.333 0.355

With Stemming
BM25 0.162 0.261 0.377 0.270 0.293
iDL 0.173 0.277 0.420 0.317 0.318

iDL
1
3 0.183 0.295 0.441 0.348 0.341

TABLE V
TREC’05 WITH QUERY TITLE (HARD)

Method gMAP MAP P10 nDCG RPR

No Stemming
BM25 0.221 0.293 0.454 0.322 0.334
iDL 0.241 0.322 0.437 0.336 0.370

iDL
1
3 0.252 0.335 0.454 0.367 0.386

With Stemming
BM25 0.214 0.289 0.452 0.355 0.331
iDL 0.237 0.315 0.464 0.387 0.368

iDL
1
3 0.261 0.339 0.502 0.411 0.399

TABLE VI
TREC’05 HARD WITH QUERY TITLE+DESC

We observed the same consistent results using query title,
description, and narratives. DLITE methods’ evaluation scores
have a higher margin over those of BM25.

TREC 2005 HARD topics represent difficult information
needs, for which query specification is challenging. The pro-
posed methods appeared to perform better with these challeng-
ing tasks, as was so suggested by the higher gMAP scores in
the experiments.

Method gMAP MAP P10 nDCG RPR

No Stemming
BM25 0.271 0.337 0.509 0.357 0.371
iDL 0.306 0.369 0.533 0.410 0.421

iDL
1
3 0.323 0.388 0.565 0.446 0.447

With Stemming
BM25 0.252 0.324 0.491 0.387 0.371
iDL 0.287 0.358 0.532 0.412 0.403

iDL
1
3 0.312 0.382 0.548 0.447 0.436

TABLE VII
TREC’05 HARD W. QUERY TITLE+DESC+NARR

Method gMAP MAP P10 nDCG RPR

No Stemming
BM25 0.202 0.388 0.459 0.357 0.410
iDL 0.207 0.389 0.479 0.358 0.413

iDL
1
3 0.208 0.389 0.480 0.366 0.413

With Stemming
BM25 0.222 0.412 0.527 0.390 0.443
iDL 0.224 0.405 0.501 0.385 0.437

iDL
1
3 0.223 0.403 0.499 0.387 0.434

TABLE VIII
TREC’17 COMMON CORE WITH QUERY TITLE

C. TREC 2017 Common Core
Using query titles on the recent TREC 2017 common core

dataset, experiments produced mixed results with very close
scores. While DLITE methods performed slightly better than
BM25 without stemming, BM25 with stemming produced the
best results in terms of metrics such as P10 and nDCG, as
shown in Table VIII.

Method gMAP MAP P10 nDCG RPR

No Stemming
BM25 0.353 0.439 0.591 0.472 0.466
iDL 0.377 0.449 0.624 0.478 0.472

iDL
1
3 0.320 0.455 0.612 0.465 0.474

With Stemming
BM25 0.375 0.450 0.615 0.452 0.486
iDL 0.392 0.464 0.642 0.468 0.497
iDL

1
3 0.386 0.456 0.596 0.446 0.477

TABLE IX
TREC’17 COMMON CORE WITH QUERY TITLE+DESC

When query descriptions are also included in the searches,
experiments showed significant improvements. As Table IX
shows, DLITE methods, especially iDL, outperformed BM25
in all experimental settings. We observe that increasing query
verbosity improved retrieval performances and gave a greater
boost to iDL methods.

We want to note that, while our results are competitive
and comparable to those reported in TREC, it is not a fair
comparison to put them side by side with ours. In TREC,
many systems were fine-tuned, sometimes with additional
data and manual input. Participants have reportedly used
external resources such as WordNet and Wikipedia to obtain
the best results. We have limited our methods in this study
to use provided TREC data only and to demonstrate their
effectiveness in standard settings without additional variables.

We conduct these experiments to understand the application
of DLITE for text processing and information retrieval. While
these initial results are impressive out of the box, we plan
to fine tune BM25 and the proposed alternatives, perform
significance tests with randomization, and conduct a meta-
analysis of results from a wider range of related experiments
in future research [34].

VII. CONCLUSION

In this paper, we proposed an alternative to the classic IDF
term weighting scheme, namely iDL, based on a new DLITE
information measure. In a series of experiments on bench-
mark TREC collections, iDL consistently outperformed Okapi
BM25 – a very competitive baseline in the latest research and
the default scoring function of ElasticSearch [9] – and showed
exceptionally superior results with longer queries. Overall,
stemming also improved the proposed methods’ effectiveness.

Several fundamental properties of DLITE may have con-
tributed to the effectiveness of the proposed methods. As
noted, DLITE is bounded, satisfies conditions as a metric
distance1, and is additive. Unlike KL divergence, on which

1Note the cube root of DLITE satisfies the triangular inequality.
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BM25-IDF is based, DLITE quantities are finite (no greater
than 1). These properties enable related term weights to be
reasonably compared and aggregated in the scoring process.

DLITE offers a new measure to quantify information in
probability distributions. While it is possible to derive other
novel methods for IR from DLITE, one can incorporate DLITE
into an existing probabilistic framework such as Divergence
from Randomness (DFR) [7]. DLITE can also be used in
machine learning (ML) models where an information gain
criterion or a loss function is critical, e.g. for building a
decision tree. With demonstrated experimental results in this
work, we expect DLITE to be applicable in many other
applications of big-data analytics where further research will
be valuable.
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